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Abstract. This paper presents an alternative approach to constructing computer experiment designs based on stochastic

process theory, specifically marked point processes with two types. The originality of this method lies in the use of

Markov Chain Monte Carlo (MCMC) techniques, combined with the Metropolis-Hastings algorithm and a new dynamic

called local shift dynamics. These tools enable the generation of highly flexible and adaptable experimental designs,

which can be tailored to a variety of specific objectives according to experimental needs. Special attention has been

given to analyzing the convergence of the Markov chain, thus ensuring the robustness and efficiency of the results

obtained. Additionally, a comparative study was conducted to position our method relative to other existing computer

designs. This comparison highlights the advantages and disadvantages of our approach in terms of modularity and

performance.

1. Introduction

In an increasingly digital world, computer experiment designs play a crucial role in simulating

situations, analyzing data, and making informed decisions in various fields, including scientific

research and business management. These methodologies foster innovation and enhance our

understanding of complex phenomena. In the context of numerical simulation, where experiments

can be computationally expensive, it is essential to use experimental design methods to optimize

their planning. Numerical models, consisting of simulation codes, connect descriptive variables

of the system’s state to specific parameters; however, these calculations often remain complex and

time-consuming to execute. To address this issue, it is advisable to replace the simulator with

approximation functions, built from interpolation methods and computer experiment designs,

which can save time and improve the efficiency of simulations.

Received: Jan. 5, 2025.

2020 Mathematics Subject Classification. 05B30, 60G55, 62K99.
Key words and phrases. experiment designs; computer experiment designs; point processes; Marked point processes;

Markov chain Monte Carlo (MCMC) method; Metropolis-Hastings algorithm.

https://doi.org/10.28924/2291-8639-23-2025-82
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-82


2 Int. J. Anal. Appl. (2025), 23:82

To optimize the exploration of experimental parameters and gather relevant information across

the entire experimental domain, we propose an innovative method for computer experiment

designs. The main goal is to ensure that experiments are distributed as uniformly as possible

within the unit hypercube, ensuring consistent coverage of the search space. This approach not

only maximizes the efficiency of parameter exploration but also improves the accuracy of the

obtained results. To achieve this, we rely on the use of a point process that generates the points

forming the experiment designs. This process is defined according to a Markovian structure, in

line with Ripley-Kelly’s interpretation [1]. The Markovian nature of the process ensures that each

point is generated considering the others. This method is distinguished by its ability to reduce

redundancy in experiments while effectively covering the parameter space.

In 2008, Franco [2] first introduced an innovative approach to the computer experiment designs,

based on the Strauss point process. This process incorporates the concept of pairwise point

interaction, adding an extra dimension to the spatial distribution of data. In 2020, Elmossaoui

et al. [3, 4] expanded this field by proposing a method based on the marked Strauss process.

This approach allowed for the optimization of both the distribution of points in space and the

characterization of the marks associated with these points. Recently, in 2023 and 2024, Elmossaoui

et al. further advanced the research by developing a method for constructing computer designs

based on the connectivity interaction and area-interaction point process [5, 6] . This method

establishes links between points and analyzes their complex interactions.

Our approach stands out by going even further: we use a marked point process, introducing two

distinct marks [7]. To create these designs, we rely on advanced simulation techniques, particularly

Markov Chain Monte Carlo (MCMC) methods and the Metropolis-Hastings algorithm [8]. These

sophisticated tools allow for the generation of computer experimental designs with a high degree

of precision and flexibility. Thus, the evolution of these methods reflects a continuous effort to

optimize computer designs, gradually integrating interaction and connectivity elements while

leveraging increasingly efficient simulation techniques.

2. Preliminaries

Let (Ω,A,P) be a probability space. Consider χ as a non-empty set equipped with the

Euclidean distance d, which makes it a complete separable metric space. If we assume that the

model has p continuous factors of interest, where p ≥ 1, then in most cases, χwill be equal to [0, 1]p

(a subset of Rp).

Definition 2.1. A configuration is defined as a countable set, unordered set of points x = (x1, x2, ..., xn),
where xi ∈ (χ, d), representing the points resulting from a random experiment. A configuration is said to
be locally finite if it contains at most a finite number of points within any bounded Borel set A in (χ, d). We
denote Nl f as the family of locally finite configurations.

Definition 2.2. A point process is a mapping X from a probability space (comprising a metric space χ
equipped with a sigma-algebraA and a probability measure P) to the family of locally finite configurations
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of points in χ. This mapping satisfies the property that for any Borel set A ⊆ χ, the number of points in A,
denoted by NX (A), is a finite discrete random variable.

Definition 2.3. A marked point process is a random sequence X = {xn, mn} consisting of a point process
xn defined on (χ, d) and corresponding marks mn for each xn in a mark spaceM = (K, d′).

Figure 1 represents an example of a marked point process with two marks.

Figure 1. Example of a marked point process with two marks.

3. Computer Experimental Design UsingMarkedMarkovian Strauss Point Processes

The main idea is to consider each experiment xi as a point or particle defined within [0, 1]p, and

each configuration x as a matrix of experiments. Each point in this configuration is characterized

by two marks mi and m′i defined in the mark space M. The point and its marks form an object

defined as
(
xi, mi, m′i

)
. Therefore, we equate the objects (experiment design) to realizations of the

two-marked point process X. The marked process implies the possibility of interaction. These

interactions correspond to neighborhood properties defined in the Ripley-Kelly [1] Markov field.

The most commonly used interaction potential is the interaction between pairs of objects. These

object processes are crucial for modeling repulsive phenomena. The probability density of a

two-marked point process for a configuration x of points is given by:

π (x) = αβm1(x)
1 βm2(x)

2 γm11(x)
11 γm12(x)

12 γm22(x)
22 (3.1)

Where,

• α is the normalization constant,

• 0 < γkl ≤ 1, where k ∈ {1, 2} and l ∈ {1, 2} are interaction coefficients,

• βk, where k ∈ {1, 2}, is the intensity of the process,

• mk(x) is the number of points with mark k in x,

• mkl(x) is the number of pairs of ∼x-neighbors of type (k, l) or (l, k) in x (both marked as k
and l simultaneously).
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3.1. Mark Selection. In this study, we characterize the points using two marks: the first one will

be the value of the prediction error ŷxi at point xi. Recall that this value is defined as [2]:

Var (ŷxi) =
t f (xi)

(
tXX

)−1
f (xi)

Where,

• X = t [ f (x1), f (x2), . . . , f (xn)] is the computation matrix, which depends on the chosen

experimental points and the assumed model,

• (tXX)
−1 is the dispersion matrix,

• f (xi) is the modeled vector for point xi.

In this case, we define n1 (x) for a configuration x as follows:

m1(x) =
n∑

i=1

1Var(ŷxi)≤ε

As a second mark, we will take the average of the normal density distances between point xi and

the other points in configuration x. This mark will be given by:

m2(x) =
n∑

i=1

1µ(xi)≤r

Where µ (xi) = 1
n−1

n∑
i=1
j,i

δ
(
xi, x j

)
with δ

(
xi, x j

)
=

l∫
0
ϕ(t)dt, where l is the usual distance between

points xi and x j. ϕ represents the density of the normal distribution where ε and r are fixed values.

4. Simulation of Point Processes using theMCMC Method and theMetropolis-Hastings

Algorithm

This method involves constructing a chain {X0, X1, . . . , XN} that converges to the desired distri-

bution π. In fact, the Metropolis-Hastings (MH) algorithm can perform this construction using the

π-reversible transition kernel. Recall that the algorithm goes through two steps.

• We propose a state change from x to y according to the probability distribution Q (x, ·),

• We accept y with probability a(x, y), otherwise, we stay in the state x (Where a : Ω ×Ω 7→
[0, 1]).

Let q(x, y) be the density of Q (x, ·), the MH transition is written as [9]:

PMH (x, y) = a (x, y) q (x, y) +

1−
∫
Ω

a (x, z) q (x, z) dz

 δx(y)

With δx(.) representing the point mass at x. To simplify calculations, we use the Dirac measure at

x (δx (y) = 1 if x = y and 0 otherwise).

The choice of (Q, a) will ensure the π-reversibility of PMH if the following equilibrium equation

is satisfied:

∀x, y ∈ Ω : π (x) × q (x, y) × a (x, y) = π (y) × q (y, x) × a (y, x)
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The choice of the acceptance probability a(x, y) is more constrained: it is essentially dictated by

the goal of (asymptotically) simulating a given probability distribution π. This is the case in the

usual choice, where:

a (x, y) =
π (y) × q (y, x)
π (x) × q (x, y)

Two important points to note. First, the calculation of a (x, y) does not require any knowledge

of the normalization constant of (3.1). Second, in this work, we consider the case where two

configurations x and y differ by exactly one point. This is referred to as local shift dynamics, and

thus, the density q is symmetric:

q (y, x) = q (x, y)

In this case, the acceptance probability reduces to:

a(x, y) =
π (y)
π(x)

=
β

m1(y)
1 β

m2(y)
2 γ

m11(y)
11 γ

m12(y)
12 γ

m22(y)
22

βm1(x)
1 βm2(x)

2 γm11(x)
11 γm12(x)

12 γm22(x)
22

4.1. The algorithm for constructing the proposed experiment design. The computer experiment

design proposed in this work [referred to as the two-type marked experiment design] is generated

using the following algorithm:

Algorithm 1:
• Initialization step: Choose an initial configuration (experiment design)(

X0 = x or x = (x1, x2, . . . , xn) and x ∈ [0, 1]k
)

according to a given probability distribution, for

example, the uniform distribution.

• Iteration step:

for N = 1, 2, ..., NMCMC do

for each configuration x do
sample y using local shift dynamics.

• Randomly select a spin j uniformly from the set {1, · · · , n}.
• Move the point x j according to a normal distribution centered at x j with variance r,

that is, y j = x j + ε where ε follows N(x j, r). The new configuration is then taken as:

y = (x1, x2, · · · , x j−1, y j, x j+1, · · · , xn).

end

• Calculation of the acceptance probability

a(x, y) = min
(
1; βm1(y)−m1(x)

1 β
m2(y)−m2(x)
2 γ

m11(y)−m11(x)
11 γ

m12(y)−m12(x)
12 γ

m22(y)−m22(x)
22

)
.

• Take x =

y with a probability a

x with a probability 1− a
.

Repeat these last two steps n times for each iteration N.

Take XN = x
end
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For N = 1000, Figure 2 shows the convergence towards a configuration that characterizes the

realization of a two-marked Strauss point process from an initial configuration of 50 points chosen

uniformly in [0, 1]2:

Figure 2. On the left, represents an initial configuration of 50 points, and on the

right, a final configuration for γ11 = 0.01, γ12 = 0.01, γ22 = 0.05, β1 = 0.9, β2 = 1.5

and r = 0.1.

The interactions between the experiments will be shown in Figure 2 using circles with a radius

of r/2. When two circles overlap, it indicates a specific interaction between those experiments. If

the radius r is too small, the distribution shows no interactions. On the other hand, if the radius is

too large, the distribution forms clusters. Therefore, it is crucial to choose an appropriate radius

to avoid these issues. The value must be carefully selected. For a given criterion, the best solution

would likely be to tabulate this value based on the number of points and the problem’s dimension.

5. Convergence Study

For each iteration N of the construction algorithm described above, we perform n basic trans-

formations. Therefore, the chain of experimental designs (XN)N≥0 generated in this way is the

realization of a Markov chain with the transition kernel:

P (x, y) = Pn
MH (x, y)

At this point, the fundamental question is whether the chain converges to the distribution π(x)
defined in (3.1). The chain converges to the invariant distribution π if:

Pt (x, A) →
t→∞

π (A)

Where A is a Borel set from A, and Pt (x, A) = p(Xt = A/X0 = x) is a transition kernel at time t.
Let’s state the main result of interest here:

Proposition 5.1. On a finite space, the transition kernel P of the Markov chain (XN)N≥0 obtained from the
construction algorithm is positive recurrent, π-stationary, aperiodic, and primitive (primitive Kernel).

Proof. First, we demonstrate three important properties for the kernel PMH: π-reversibility, π-

stationarity, and π-irreducibility.
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• π-reversibility: By definition, the transition PMH is π-reversible if:

∀x, y ∈ Ω : π (x)PMH (x, y) = π (y)PMH (y, x)

Let x ∈ Ω and B ∈ A, we have:∫
Ω

1B(x,y)π (x)PMH (x, y) dx =

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dx

+

∫
Ω

1B(x,y)π (x)

1−
∫
Ω

a (x, z) q (x, z) dz

 δx (y) dx

=

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dx

+

∫
Ω

1B(x,y)δx (y)π (x)

1−
∫
Ω

a (x, z) q (x, z) dz

 dx

=

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dx

+

∫
Ω

1B(x,x)π (x)

1−
∫
Ω

a (x, z) q (x, z) dz

 dx

And since:

π (x) a (x, y) q (x, y) = αβm1(x)
1 βm2(x)

2 γm11(x)
11 γm12(x)

12 γm22(x)
22

×min
(
1; βm1(y)−m1(x)

1 β
m2(y)−m2(x)
2 γ

m11(y)−m11(x)
11 γ

m12(y)−m12(x)
12 γ

m22(y)−m22(x)
22

)
q(x, y)

= αmin
(
βm1(x)

1 βm2(x)
2 γm11(x)

11 γm12(x)
12 γm22(x)

22 , βm1(y)
1 β

m2(y)
2 γ

m11(y)
11 γ

m12(y)
12 γ

m22(y)
22

)
q(x, y)

= αβ
m1(y)
1 β

m2(y)
2 γ

m11(y)
11 γ

m12(y)
12 γ

m22(y)
22

×min
(
β

m1(x)−m1(y)
1 β

m2(x)−m2(y)
2 γ

m11(x)−m11(y)
11 γ

m12(x)−m12(y)
12 γ

m22(x)−m22(y)
22 ; 1

)
× q(x, y)

= π(y)min
(
1; βm1(x)−m1(y)

1 β
m2(x)−m2(y)
2 γ

m11(x)−m11(y)
11 γ

m12(x)−m12(y)
12 γ

m22(x)−m22(y)
22

)
q(x, y)

= π(y)a(y, x)q(x, y)

And since q (x, y) = q (y, x), then:

π (x) a (x, y) q (x, y) = π (y) a (y, x) q (y, x)

, We obtain: ∫
Ω

1B(x,y)π (x)PMH (x, y) dx

=

∫
Ω

1B(x,y)π (y) a (y, x) q (y, x) dx +
∫
Ω

1B(y,y)π (y)

1−
∫
Ω

a (y, z) q (y, z) dz

 dy



8 Int. J. Anal. Appl. (2025), 23:82

=

∫
Ω

1B(x,y)π (y)PMH (y, x) dy

So π (x)PMH (x, y) = π (y)PMH (y, x), and therefore, the chain is π-reversible.

• π-stationarity: The transition PMH is π-stationary if:

∀x, y ∈ Ω; A, B ∈ A :
∫
Ω

1B(x,y)π (x)PMH (x, A) dx =

∫
Ω

1B(x,y)π (x) dx

Let x ∈ Ω and B ∈ A. We then have:∫
Ω

1B(x,y)π (x)PMH (x, y) dx =

∫
Ω

1B(x,y)π (x)


∫
Ω

a (x, y) q (x, y) dy

 dx

+

∫
Ω

1B(x,y)π (x)


∫
Ω

1− a (x, z) q (x, z) dz

 δx (y) dx

=

∫
Ω

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dydx +
∫
Ω

1B(x,x)π (x) dx−
∫
Ω

∫
Ω

π (x) a (x, z) q (x, z) dzdx

=

∫
Ω

1B(x,x)π (x) dx

So the chain admits π as a stationary distribution.

• π-irreducibility: The transition PMH is π-irreducible if:

∀A ∈ A,π (A) > 0 ⇒ ∃t , Pt
MH (x, A) > 0

Let A be a Borel set fromA, and for t = 1 we have:∫
Ω

1B(x,A)PMH (x, A) dx =

∫
Ω

1B(x,A)a (x, A) q (x, A) dx

+

∫
Ω

1B(x,A)

1−
∫
Ω

a (x, z) q (x, z) dz

 δx (A) dx

=

∫
Ω

1B(x,A)a (x, A) q (x, A) dx +
∫
Ω

1B(x,x)

1−
∫
Ω

a (x, z) q (x, z) dz

 dx

=

∫
Ω

1B(x,A)a (x, A) q (x, A) dx + 1−
∫
Ω

∫
Ω

a (x, z) q (x, z) dzdx

Since:

a(x, A) = min
(
1; βm1(A)−m1(x)

1 βm2(A)−m2(x)
2 γm11(A)−m11(x)

11 γm12(A)−m12(x)
12 γm22(A)−m22(x)

22

)
and

a(x, z) = min
(
1; βm1(z)−m1(x)

1 βm2(z)−m2(x)
2 γm11(z)−m11(x)

11 γm12(z)−m12(x)
12 γm22(z)−m22(x)

22

)
Then we have four possible cases:



Int. J. Anal. Appl. (2025), 23:82 9

◦ if a (x, A) = 1 and

a(x, z) = βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22

then: ∫
Ω

1B(x,A)PMH (x, A) dx =

∫
Ω

1B(x,A)q (x, A) dx + 1

−

∫
Ω

∫
Ω

βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22 q (x, z) dzdx

=

∫
Ω

1B(x,A)q (x, A) dx + 1

−βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m12(x)
22 > 0

◦ if a(x, z) = βm1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22 and

a (x, z) = 1 then: ∫
Ω

1B(x,A)PMH (x, A) dx

=

∫
Ω

1B(x,A)β
m1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22 q (x, A) dx

+1 −
∫
Ω

∫
Ω

q (x, z) dzdx

=βm1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22

∫
Ω

1B(x,A)q (x, A) dx > 0

◦ if a(x, z) = βm1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22 and

a(x, z) = βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22 then:∫

Ω

1B(x,A)PMH (x, A) dx

=

∫
Ω

1B(x,A)β
m1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22 q (x, A) dx + 1

−

∫
Ω

∫
Ω

βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22 q (x, z) dzdx

= βm1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22

∫
Ω

1B(x,A)q (x, A) dx + 1

− βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22

∫
Ω

∫
Ω

q (x, z) dzdx

= βm1(A)−m1(x)
1 βm2(A)−m2(x)

2 γm11(A)−m11(x)
11 γm12(A)−m12(x)

12 γm22(A)−m22(x)
22

∫
Ω

1B(x,A)q (x, A) dx + 1
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−βm1(z)−m1(x)
1 βm2(z)−m2(x)

2 γm11(z)−m11(x)
11 γm12(z)−m12(x)

12 γm22(z)−m22(x)
22 > 0

So
∫

Ω 1B(x,A)PMH
t (x, A) dx > 0 ∀ t ≥ 0, then PMHest π-irreducible.

Since π is the invariant distribution of PMH, it is also an invariant distribution for P. Indeed,

πPMH = π, and by induction on the integer, πPMH = π, we obtain:

πPMH = πP2
MH = πP3

MH = . . . = πPn
MH = π

So, πP = π. By construction of P = Pn
MH, the π-irreducibility of PMH implies the π-irreducibility

of P. If P is π-irreducible and has an invariant distribution π, then P is positive recurrent, and π

is the unique invariant distribution of P. By construction of P = Pn
MH, we have πP = π. If P is

π-irreducible and has an invariant distribution π, then P is positive recurrent, and π is the unique

invariant distribution of P [9] (see proposition 1).

Furthermore, the chain created by the construction algorithm will also be aperiodic as long as

there exists at least one pair of configurations (x, y) such that a (x, y) < 1, because then we have

P (x, x) > 0. It is quickly evident that the chain is aperiodic, as the event X(N+1) = X(N) is

possible practically at any time. Indeed, each state can be visited in two consecutive iterations, so

P1 (x, x) > 0, making their period 1.

Since the chain generated by the algorithm is irreducible and aperiodic, its transition kernel P is

primitive (a characterization of a primitive Markov Kernel more common in probability theory is

to say that it is irreducible and aperiodic). �

Theorem 5.1. The Markov chain (XN)N ≥ 0 obtained from the proposed construction algorithm is geomet-
rically ergodic, and its kernel P simulates a marked point process with two types of density:

π (x) = αβm1(x)
1 βm2(x)

2 γm11(x)
11 γm12(x)

12 γm22(x)
22

In other words, vPm converges to π as m tends to infinity, where v is the initial distribution, and we have:

lim
m→∞

‖vPm
−π‖ = 0

Proof. Let v be an initial distribution, for any integer m and for all x ∈ Nl f , we have:∥∥∥vPm (x, .) −π
∥∥∥ = ‖vPm

−πPm
‖ ≤ 2C (Pm) ≤ 2(C (P))m

Where C (P) is the Dobrushin contraction coefficient of P [10].

According to Proposition 1, the kernel P is primitive, so 0 ≤ C (P) < 1 [11] (see lemma 4.2.3

p.72). Therefore, as m tends to infinity, ‖vPm
−π‖ →

m→∞
0. Thus, the chain is uniformly ergodic and

converges to the distribution defined in (3.1). �

6. Numerical Results and Quality of the Proposed Designs

In this section, we will conduct a comparison of the point distributions in the proposed computer

experiment design using established criteria. This evaluation aims to assess the effectiveness of

the experimental space coverage and the uniformity of point distribution.

The criteria used for this comparison include:
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• Minimum Distance Criterion (Mindist) [12]: This criterion aims to maximize the minimum

distance between any two points in the design. The larger the minimum distance, the more

evenly spread the points are, leading to better space coverage.

Mindist = min
i

min
j,i

d(xi, x j)

where d(xi, x j) represents the Euclidean distance between points xi and x j. A higher value

of Mindist indicates a more regular dispersion of points.

• Discrepancy Criterion (Disc) [13]: The discrepancy measures the difference between the

empirical distribution of the points in the design and a uniform distribution. Unlike the

previous criterion, discrepancy does not rely on the distance between points but instead

evaluates how well the points approximate a uniform distribution. We use the L2-norm

discrepancy.

Disc =
(1
3

)p
−

21−p

n

n∑
i=1

p∏
j=1

(
1−

(
x j

i

)2)
+

1
n2

n∑
i=1

n∑
k=1

p∏
j=1

(
1−max

(
x j

i , x j
k

))
A lower discrepancy value indicates that the points are closer to a uniform distribution.

• Coverage Criterion (Cov) [14]: This criterion measures the difference between the points of

the design and those of a regular grid. For a perfect regular grid, this criterion is zero. The

goal is to minimize the coverage criterion to approach a regular grid, while still maintaining

a uniform distribution, especially when projected onto factorial axes:

Cov =
1
δ̄

√√
1
n

n∑
i=1

(δi − δ̄)
2

where δi = min
i, j

d(xi, x j) and δ̄ = 1
n
∑n

i=1 δi. A lower coverage value implies that the points

are closer to a regular grid, ensuring effective space-filling while maintaining uniformity.

• R Criterion: The R criterion is the ratio between the maximum and minimum distance

between points in the experimental design. For a perfect regular grid, R = 1. Thus, the

closer R is to 1, the closer the points are to a regular grid:

R =

max
i∈{1,...,n}

δi

min
i∈{1,...,n}

δi

where δi = min
i, j

d(xi, x j). A value of R closer to 1 suggests that the points are more

equidistant, promoting a more regular distribution.

The Table 1 presents a comparison based on the discrepancy criterion between the plans pro-

posed in this work (denoted TMD: Two Mark Designs) and low-discrepancy sequences (Halton

sequence [15], Sobol sequence [16], and Faure sequence [17]). It is interesting to observe that the

proposed plans have low discrepancy, comparable to that of low-discrepancy sequences.

In this article, the constructed designs are also compared with commonly used designs in

computer experiments, excluding low-discrepancy sequences. To provide meaningful results, the
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Table 1. The values of discrepancy for the proposed designs TMD, Halton

sequences, Sobol sequences and faure sequence for different dimensions.

Number of

Factors

Number of

Points
TMD

Halton

Sequence

Sobol

Sequence

Faure

Sequence

4 32 0.0016252 0.001779 0.000843 0.001641

7 64 0.00009093 0.00048 0.000224 0.000480

10 128 0.000004925 0.000109 0.0000605 0.000109

comparison criteria were computed for a set of 80 distinct designs. This ensures a robust and

thorough evaluation of the different methodologies in terms of quality and efficiency. The designs

analyzed in this section are as follows:

• Random Designs (RD): These designs are generated by distributing points according to

a uniform distribution over the hypercube [0, 1]p, ensuring a random distribution in the

parameter space.

• Latin Hypercube Designs (LH): LH designs are experimental design techniques that aim

to sample the parameter space efficiently and uniformly, optimizing the coverage of the

studied dimensions [18].

• Maximin Latin Hypercube Designs (mLHS): These optimal designs are based on the

Maxmin criterion, which seeks to maximize the minimum distance between points in the

design space, ensuring better dispersion of the points [19].

• Maximum Entropy Designs (Dmax): Designs constructed to maximize the determinant of

a covariance matrix. These designs are often employed in kriging to fit response surfaces,

assuming an underlying model [20].

• Strauss Designs (SD): These designs, derived from a Strauss process, incorporate repulsion

between points to optimize the coverage of the parameter space [2].

• Marked Strauss Designs: These designs are generated from a marked Strauss process,

incorporating point repulsion and associating each point with a specific mark to minimize

the prediction error function [3].

• Connected Component Designs (CCD): These designs are developed from a Markov

point process with connected components, characterized by more or less regular spatial

distributions without constraints on the parameters [5].

• Proposed Designs (TMD).

Figures 3,4 and 5 highlight several important points. Among the evaluated design methods,

maximum entropy designs, Latin hypercube sampling (LHS) designs, Maximin Latin hypercube

designs, connected component designs, and Two-Type designs all achieve favorable results based

on the discrepancy criterion. It is fascinating that Two-Type designs, which are part of this list, also

stand out for their excellent performance according to the R-criterion. This dual satisfaction of both
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Figure 3. Box plots of quality criteria calculated for 100 designs with 30 points in 5

dimensions

Figure 4. Box plots of quality criteria calculated for 100 designs with 50 points in 7

dimensions.

criteria by Two-Type designs underscores their robustness and efficiency in various experimental

scenarios. It reinforces the idea that adapting designs to specific evaluation criteria is essential for

optimizing overall experimental performance.
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Figure 5. Box plots of quality criteria calculated for 100 designs with 100 points in

10 dimensions.

7. Conclusion

The design of the experiment method provides a powerful and versatile framework for exper-

imenters across various fields to plan and optimize their experimental processes. By integrating

two-type marked point processes with the Markov Chain Monte Carlo (MCMC) method, re-

searchers can now develop innovative designs for computer experiments that are informed by

the underlying principles of pairwise interaction models. This combination not only enhances

the precision and adaptability of the experimental setup but also offers substantial flexibility. The

ability to manipulate the law governing the interaction model, for example by enforcing specific

properties like space-filling, opens up new possibilities for fine-tuning experiment designs. Con-

sequently, this approach provides a robust tool for experimenters aiming to refine their models,

ensuring more accurate, reliable, and insightful results in complex experimental scenarios.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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