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Abstract. In this paper, we define the windowed Kontorovich-Lebedev-Clifford transform and introduce the corre-

sponding Weyl transform. Furthermore, we examine the boundedness of the windowed Kontorovich-Lebedev-Clifford

in Lebesgue spaces and establish some of its fundamental properties. We also provide criteria for the boundedness and

compactness of the Weyl transform in Lebesgue spaces.

1. Introduction

The classical Weyl transform, initially introduced by Weyl [1] within the framework of quantum

mechanics, has been extensively studied and referred to as the Weyl transform in the literature,

including Wong’s work [2]. This operator is a specific instance of pseudo-differential operators

in the context of partial differential equations [1], and it has demonstrated significant utility in

addressing various mathematical problems, including regularity issues, spectral asymptotics, and

elliptic theory.

For 1 ≤ p ≤ 2, Wong [2] analyzed the boundedness of the Weyl transform for symbol functions

residing in certain Lα spaces of integrable functions. On the other hand, Simon [3] established that

for p > 2, the Weyl transform of a function in Lα is not typically bounded. These results, along

with related findings, are discussed in [1]. Furthermore, foundational tools such as the Wigner

transform and the Fourier-Wigner transform were pivotal in studying the Weyl transform. When

the symbol belongs to the L2 space, Weyl [1] characterized the transform as a Hilbert-Schmidt

operator. In addition, Zhao and Peng [4] investigated the interplay between wavelet and Weyl

transforms using the spherical mean operator. Rachdi and Trimeche [3] analyzed the Fourier-

Wigner transform involving the spherical mean operator R and studied the Weyl transform in this
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context. Additionally, Verma and Prasad [5] explored the Weyl operator within the framework of

the Mehler-Fock transform.

This paper is organized as follows: Section 2 introduces the essential preliminaries and nota-

tions, including the definitions of function spaces, the Kontorovich-Lebedev-Clifford transform

and its inverse formula, Lebesgue spaces, Parseval and Plancherel relations, generalized trans-

lation operators, and convolution operators. Section 3 delves into the study of the Windowed

Kontorovich-Lebedev-Clifford transform, incorporating the generalized translation operator and

the Kontorovich-Lebedev-Clifford transform, while exploring some fundamental properties and

providing estimates in Lebesgue spaces. Section 4 is dedicated to constructing the Weyl transform

associated with the Windowed Kontorovich-Lebedev-Clifford transform. This section also derives

estimates based on different symbol classes.

2. Kontorovich-Lebedev-Clifford Transform Harmonic Analysis

• Lα (R+, dµ) , 1 ≤ α ≤ ∞, is the usual Lebesgue space with measure

dµ(a1) =
1
2

a1
−1 da1,

and satisfies the norm

‖h1‖Lα(R+,dµ) =


(∫
∞

0 |h1(a1)|
αdµ(a1)

) 1
α < ∞, for 1 ≤ α < ∞,

ess sup
x∈I

|h1(a1)| < ∞, for α = ∞.

• Similarly, we define the space

Lα (R+, dv) , 1 ≤ α ≤ ∞,

which is equipped with the measurable functions on R+ = (0,∞) and measure

dv(λ) =
4
π2 sinh(2π

√

λ) dλ,

and satisfies the norm

‖h1‖Lα(R+,dv) =


(∫
∞

0 |h1(λ)|αdv(λ)
) 1
α < ∞, for 1 ≤ α < ∞,

ess sup
λ∈R+

|h1(λ)| < ∞, for α = ∞.

• Lα (R+ ×R+, dµ⊗ dv) is the space of measurable functions on R+ ×R+, satisfying

‖h1‖Lα(R+×R+,dµ⊗dv) =

(∫
∞

0

∫
∞

0
|h1(a1,λ)|αdµ(a1)dv(λ)

) 1
α

< ∞, 1 ≤ α < ∞,

‖h1‖L∞(R+×R+,dµ⊗dv) = ess sup
(a1,λ)∈R+×R+

|h1(a1,λ)| < ∞, α = ∞.
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Consequently, the following notation for their respective inner products will be adopted:

〈h1, h2〉L2(R+,dµ) =

∫
∞

0
h1(a1)h2(a1) dµ(a1), h1, g ∈ L2(R+, dµ).

Similarly, we define inner products of

L2 (R+, dv) , and for h1, h2 ∈ L2 (R+ ×R+, dµ⊗ dv) ,

〈h1, h2〉L2(R+×R+,dµ⊗dv) =

∫
∞

0

∫
∞

0
h1(a1,λ)h2(a1,λ) dµ(a1) dv(λ)

respectively.

• C∞c (R+) denotes the space of smooth compactly supported functions; it is dense in the

Banach space Lα(R+, dµ) for 1 ≤ α < ∞.

In this paper, the Kontorovich-Lebedev-Clifford Transformof a function h1 defined on R+ is

given by [11]:

K(h1)(λ) =

∫
∞

0
K2i
√
λ(2
√

a1)h1(a1)dµ(a1),λ ∈ R+, (2.1)

The inversion formula for (2.1) is given by:

h1(a1) =

∫
∞

0
K2i
√
λ(2
√

a1)K(h1)(λ)dv(λ), a1 ∈ R+. (2.2)

where Kia2(a1), y ∈ R∗+, is the Macdonald function given as (see cite emt)

Kia2(a1) =

∫
∞

0
e−a1 cosh t cos(a2t) dt, a1 ∈ R∗+.

From [12], we have ∣∣∣Kia2(a1)
∣∣∣ ≤ ∫

∞

0
e−a1 cosh t dt = K0(a1).

Moreover, K2i
√
λ(2
√

a1) satisfies (see [10])∣∣∣K2i
√
λ(2
√

a1)
∣∣∣ ≤ C′(a4)a

−a4
4

1 [sinh(2π
√

λ)]−
1
2 , 0 < a4 <

1
2

.

Remark 2.1. Let Γ =
{
K(h1) | h1 ∈ C∞c R+

}
. Then Γ is dense in L2 (R+, dv).

Thus, the KLC transform acts as an isometric isomorphism operator from

L2 (R+, dµ) to L2 (R+, dv).

The Parseval and Plancherel’s formulas are as follows [11]:∫
∞

0
K (h1) (λ)K (h2)(λ) dv(λ) =

∫
∞

0
h1(a1)h2(a1) dµ(a1), (2.3)

∫
∞

0

∣∣∣K (h1) (λ)
∣∣∣2 dv(λ) =

∫
∞

0

∣∣∣h1(a1)
∣∣∣2 dµ(a1),
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respectively.This shows that the Kontorovich-Lebedev-Clifford transform preserves the scalar

product.

Theorem 2.1. For h1 ∈ Lα(R+, dµ), 1 ≤ α ≤ 2, and 1
α +

1
β = 1, we have K(h1) ∈ Lβ (R+, dv), and it

holds that:

‖K(h1)‖Lβ(R+,dv) ≤ ‖h1‖Lα(R+,dµ). (2.4)

Also, for F ∈ Lα (R+, dv), 1 ≤ α ≤ 2, and 1
α +

1
β = 1, we have K−1(F) ∈ Lβ(R+, dµ), and the inequality∥∥∥K−1(F)

∥∥∥
Lβ(R+,dµ) ≤ ‖F‖Lα(R+,dv)

holds true.

Proof. By Plancherel’s formula (2.3), we have

‖K(h1)‖L2(R+,dv) = ‖h1‖L2(R+,dµ). (2.5)

Next, using the definition of the Kontorovich-Lebedev-Clifford transform and From the pro-

preties of K2i
√
λ(2
√

a1) there exits C1 > 0 such that:

K0(2
√

a1) ≤ C1,

we get

‖K(h1)‖L∞(R+,dv) ≤ C1‖h1‖L1(R+,dµ). (2.6)

Thus, from (2.5), (2.6), and the Riesz-Thorin theorem [2], we arrive at

‖K(h1)‖Lβ(R+,dv) ≤ ‖h1‖Lα(R+,dµ), h1 ∈ C∞c R+.

By the density of C∞c (R+) in Lα(R+dµ), a limiting argument can be used to complete the proof

that the Kontorovich-Lebedev-Clifford transform is a bounded linear operator from Lα(R+dµ) into

Lβ (R+, dv). Hence, (2.4) holds true.

Proceeding as above, for F ∈ Lα (R+, dv), 1 ≤ α ≤ 2, and 1
α +

1
β = 1, we have K−1(F) ∈ Lβ(R+dµ),

and it follows that: ∥∥∥K−1(F)
∥∥∥

Lβ(R+,dµ) ≤ ‖F‖Lα(R+,dv).

�

The translation operator is one of the fundamental operators in time-frequency analysis. Similar

to the work presented in [9] [5], the generalized translation or shift operator corresponding to the

Kontorovich-Lebedev-Clifford transform for h1 ∈ C∞c R+ is defined as:

h1(a1, a2) = (Ta1h1) (a2) = (Ta2h1) (a1) =

∫
∞

0
D(a1, a2, a3)h1(a3) dµ(a3), (2.7)

From [11], we have

4
π2

∫
∞

0
K2i
√
λ(2
√

a1)K2i
√
λ(2
√

a2)K2i
√
λ(2
√

a3) sinh(2π
√

λ) dλ = D(a1, a2, a3),
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where D(a1, a2, a3) is given as

D(a1, a2, a3) =
1
2

exp
[
−

a1a2 + a2a3 + a3a1
√

a1a2a3

]
, a1, a2, a3 ∈ R+,

which is symmetric in a1, a2 and a3. we have a product of Macdonald functions as [12]

K2i
√
λ(2
√

a1)K2i
√
λ(2
√

a2) =
1
2

∫
∞

0
K2i
√
λ(2
√

a3)D(a1, a2, a3)a3
−1 da3 = K(D(a1, a2, .))(λ),

Also from [7] [11] [12], we have few estimates that will be useful in further calculations∫
∞

0
D(a1, a2, a3) dµ(a3) = 2K0

(
2
√

a1 + a2

)
≤ K0(2

√
a1) or K0(2

√
a2).

0 < D(a1, a2, a3) ≤
e−2
√

a1

2∫
∞

0
D(a1, a2, a3)a3

−1 da3 = 2K0(2
√

a1 + a2).

By the definition of the translation operator and the above equality, we have:

K (Ta1h1) (λ) = K2i
√
λ(2
√

a1)K(h1)(λ), (2.9)

Theorem 2.2. Let h1 ∈ Lα(R+, t−1dt), 1 ≤ α ≤ ∞. Then for all a1 > 0, Ta1(h1) ∈ Lα(R+, a1
−1da1) and

‖Ta1(h1)‖Lα(R+,dµ) ≤ K0(2
√

a1)‖h1‖Lα(R+,dµ) ≤ C1‖h1‖Lα(R+,dµ). (2.10)

Proof. Using ((2.7)), Holder’s inequality, we have for all a1 > 0,

|Ta1(h1)(a2)|
α
≤

(1
2

)α ∫
∞

0
|h1(a3)|

αD(a1, a2, a3)a3
−1 da3

(∫
∞

0
D(a1, a2, a3)a3

−1 da3

) α
β

≤

(1
2

)α
(2K0(2

√
a1))

α
β

∫
∞

0
|h1(a3)|

αD(a1, a2, a3)a3
−1 da3, a2 > 0,

if 1 < α < ∞ and 1
α +

1
β = 1. Therefore, by the symmetry of D(a1, a2, a3),∫

∞

0
|Ta1(h1)(a2)|

αa2
−1 da2 ≤

(1
2

)α
(2K0(2

√
a1))

α
β

∫
∞

0
|h1(a3)|

α

∫
∞

0
D(a1, a2, a3)a2

−1 da2a3
−1 da3

≤

(1
2

)α
(2K0(2

√
a1))

α
β+1

∫
∞

0
|h1(a3)|

αa3
−1 da3.

Then

‖Ta1(h1)‖Lα(R+,dµ) ≤ K0(2
√

a1)‖h1‖Lα(R+,dµ) ≤ C1‖h1‖Lα(R+,dµ).

�

The shift operator associated with the Kontorovich-Lebedev-Clifford transform provides a con-

volution structure as follows [11]:

(h1 ∗ h2)(a1) =

∫
∞

0
(Ta1h1) (a3)(h2a3) dµ(a3) =

∫
∞

0

∫
∞

0
D(a1, a2, a3)h1(a2)h2(a3) dµ(a2) dµ(a3),

for h1, h2 ∈ C∞c (R+).
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The Convolution Theorem is the mathematical tool that provides the foundation for signal

filtering. The Kontorovich-Lebedev-Clifford transform of the Kontorovich-Lebedev-Clifford con-

volution is the product of the Kontorovich-Lebedev-Clifford transforms, that is,

K (h1 ∗ h2) (λ) = K (h1) (λ)K (h2) (λ).

3. Windowed Kontorovich-Lebedev-Clifford Transform

Following the framework established for the windowed Kontorovich-Lebedev transform [8], the

windowed Mehler-Fock transform [5], and the Weyl operator associated with the index Whittaker

transform [9], we introduce the windowed Kontorovich-Lebedev-Clifford transform. In this sec-

tion, we present the formal definition of this transform and outline the principal results achieved

in this paper.

Definition 3.1. For h1, h2 ∈ C∞c (R+), the Windowed Kontorovich-Lebedev-Clifford is defined as

WK (h1, h2) (a1,λ) =
∫
∞

0
h1(a2) (Ta1h2) (a2)K2i

√
λ(2
√

a2) dµ(a2).

Using the Kontorovich-Lebedev-Clifford transform and (2.7) , it is represented as

WK (h1, h2) (a1,λ) = K [h1 (Ta1h2)] (λ). (3.1)

By invoking (2.7), we readily obtain

WK (h1, h2) (a1,λ) =
(
h2 ∗K2i

√
λ(·) f

)
(a1).

Theorem 3.1. For h1, h2 ∈ C∞c (R+), 1 ≤ α ≤ 2, and 1
α +

1
β = 1, we have

∥∥∥WK (h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖Lα(R+,dµ) ‖h2‖Lβ(R+,dµ) .

Moreover, the transform WK can be extended to a bounded operator from Lα(R+dµ) × Lβ(R+dµ) to
Lβ (I ×R+, dµ⊗ dv).

Proof. For h1, h2 ∈ C∞c (R+), invoking (3.1) and (2.4), we have

∥∥∥WK (h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) =

(∫
∞

0

∫
∞

0

∣∣∣K [h1 (Ta2h2)] (λ)
∣∣∣β dµ(a2) dv(λ)

) 1
β

≤


∫
∞

0

(∫
∞

0

∣∣∣h1(a1) (Ta2h2) (a1)
∣∣∣α dµ(a1)

) β
α

dµ(a2)


1
β

.

Now, applying Minkowski’s inequality and theorem (2.2) , we readily obtain

∥∥∥WK (h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖Lα(R+,dµ) ‖h2‖Lβ(R+,dµ) .
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Thus, WK can be extended to a bounded operator from Lα(R+, dµ) × Lβ(R+, dµ) to

Lβ (R+ ×R+, dµ⊗ dv). Therefore, the proof is complete. �

Theorem 3.2. Let h2 ∈ L1(R+, dµ) such that c = 2K0(2
√

a2 + a3)
∫
∞

0 h2(a3) dµ(a3) , 0. Then for all
h1 ∈ (L1

∩ L2)(R+, dµ), we have

K (h1) (λ) =
1
c

∫
∞

0
WK (h1, h2) (a1,λ) dµ(a1). (3.2)

Moreover,

h1(a2) =
1
c

∫
∞

0
K2i
√
λ(2
√

a3)

[∫
∞

0
WK (h1, h2) (a1,λ) dµ(a1)

]
dv(λ). (3.3)

Proof. The result follows from (3.1), Fubini’s theorem, and the fact that∫
∞

0
(Ta1h2) (a2) dµ(a1) = 2K0(2

√
a2 + a3)

∫
∞

0
(h2a3) dµ(a3) = c.

Further, using the inverse Kontorovich-Lebedev-Clifford transform (2.3) in (3.2), we obtain

(3.3). �

Theorem 3.3. For h1, h2, h ∈ L2(R+, dµ), we have

〈
WK (h1, h2) ,WK (h, h2)

〉
=

∫
∞

0
h1(a1)S(a1)h̄(a1) dµ(a1) = 〈h1S, h〉 .

where

S(a1) =

∫
∞

0

∣∣∣(Ta1h2) (a2)
∣∣∣2 dµ(a2). (3.4)

Proof. Using Plancherel’s relation (2.5) and (3.1), we have

〈
WK(h1, h2),WK(h, h2)

〉
=

∫
∞

0

∫
∞

0
h1(a1) (Ta2h2) (a1)h(a1) (Ta2h2) (a1)dµ(a1)dµ(a2)

=

∫
∞

0
h1(a1)h(a1)

∫
∞

0

∣∣∣(Ta2h2) (a1)
∣∣∣2 dµ(a2)dµ(a1)

= 〈h1S, h〉 ,

where S(a1) is defined as(3.4). This completes the proof.

�

Theorem 3.4. If α ∈ [2,∞], h1, h2 ∈ C∞c R+, then

∥∥∥WK(h1, h2)
∥∥∥

L2(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖L2(R+,dµ) ‖h2‖L2(R+,dµ) . (3.5)

Moreover, WK can be extended to a bounded operator from L2(R+, dµ) × L2(R+, dµ) to
Lα (R+ ×R+, dµ⊗ dv).
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Proof. For α = 2, by Theorem (3.1), we have

∥∥∥WK(h1, h2)
∥∥∥

L2(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖L2(R+,dµ) ‖h2‖L2(R+,dµ) . (3.6)

For α = ∞, by Theorem (2.1) , the Holder inequality, and theorem(2.2), we get

∥∥∥WK(h1, h2)
∥∥∥

L∞(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖L2(R+,dµ) ‖h2‖L2(R+,dµ) . (3.7)

Then, by(3.6), (3.7), and the Riesz-Thorin theorem [2], we yield (3.5). Since C∞c R+ is dense in

L2(R+dµ), a limiting argument completes the proof. �

Theorem 3.5. Let us fix β and α satisfying β ≥ 2 and β′ ≤ α ≤ β, where β′ and α′ are the conjugate
exponents of β and α, respectively. Then

WK : Lα
′

(R+, dµ) × Lα
′

(R+, dµ)→ Lβ (R+ ×R+, dµ⊗ dν)

is bounded.
In particular,

∥∥∥WK(h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) ≤ C′ ‖h1‖Lα′ (R+,dµ) ‖h2‖Lα(R+,dµ) .

where C′ is some constant.

Proof. Invoking Theorem (3.1), we have

∥∥∥WK(h1, h2)
∥∥∥

L2(R+×R+,dµ⊗dv) ≤ C1 ‖h1‖L2(R+,dµ) ‖h2‖L2(R+,dµ) . (3.8)

Using the propreties of K2i
√
λ(2
√

a1) there exits C1 > 0 such that:

sup
(a1,λ)∈R+×R+

∣∣∣K2i
√
λ(2
√

a1)
∣∣∣ ≤ C1, ∀x > 1,λ > 0,

also noting theorem (2.2),we have

∥∥∥WK(h1, h2)
∥∥∥

L∞(R+×R+,dµ⊗dv) = sup
(y,λ)∈R+×R+

∣∣∣∣∣∫ ∞

0
h1(a1) (Ta1h2) (a2)K2i

√
λ(2
√

a1)dµ(a1)

∣∣∣∣∣
≤ C1 sup

(y,λ)∈R+×R+

∫
∞

0

∣∣∣h1(a1) (Ta1h2) (a2)
∣∣∣ dµ(a1)

≤ C1 sup
(y,λ)∈R+×R+

‖h1‖Lk′ (R+dµ)

∥∥∥(Ta2h2)
∥∥∥

Lk(R+dµ)

[
k ≥ 1;

1
k
+

1
k′

= 1
]

≤ C2
1 ‖h1‖Lk′ (R+,dµ) ‖h2‖Lk(R+,dµ) . (3.9)

Now, let k = ∞ in (3.9). Then by (3.8) and the interpolation of multipliers of multiple linear

maps [12], we obtain the desired result.

∥∥∥WK (h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) ≤ C′ ‖h1‖Lα′ (R+,dµ) ‖h2‖Lα(R+,dµ) ,α ≥ 2 (3.10)
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Again using (3.9) with k = α and (3.10), by the interpolation of multiplier maps , we get

∥∥∥WK (h1, h2)
∥∥∥

Lα(R+×R+,dµ⊗dv) ≤ C′ ‖h1‖Lα′ (R+,dµ) ‖h2‖Lα(R+,dµ) , p ≥ 2

For α < 2, let k = 1 in (3.9) . Then by (3.10) , we get

∥∥∥WK (h1, h2)
∥∥∥

Lβ(R+×R+,dµ⊗dv) ≤ C′ ‖h1‖Lα′ (R+,dµ) ‖h2‖Lα(R+,dµ) (3.11)

By (3.9) with k = α and (3.11), we obtain

∥∥∥WK (h1, h2)
∥∥∥

Lα(R+×R+,dµ⊗dv) ≤ C′ ‖h1‖Lα′ (R+,dµ) ‖h2‖Lα(R+,dµ) ,α < 2, 2 ≤ β ≤ ∞.

Therefore, we finish the proof. �

4. Weyl Operator Associated with theWindowed Kontorovich-Lebedev-Clifford Transform

In this section, we examine the Weyl transform in the context of the windowed Kontorovich-

Lebedev-Clifford transform. Specifically, we establish the boundedness and compactness of the

Weyl transform when the symbol φ belongs to the space Lα (R+ ×R+, dµ⊗ dv), where α ∈ [1, 2].

The results presented here provide a deeper understanding of the operator-theoretic properties of

the Weyl transform in this framework.

Definition 4.1. Let the symbol φ ∈ C∞c (R+ ×R+, dµ⊗ dv), and h1, h2 ∈ C∞c (R+). The Weyl transform
Aφ is defined by

〈
Aφh1, h2

〉
=

∫
∞

0

∫
∞

0
φ(a1,λ)WK (h1, h2) (a1,λ) dµ(a1) dν(λ). (4.1)

Theorem 4.1. Let φ ∈ C∞c (R+ ×R+, dµ⊗ dv), and h1 ∈ C∞c R+. Then, we have(
Aφh1

)
(a1) =

∫
∞

0
Υ(a1, a2)h1(a2) dµ(a2),

where

Υ(a1, a2) =

∫
∞

0
(Th2φ) (a1,λ)K2i

√
λ(2
√

a2) dv(λ).

Proof. Invoking (2.7) and Fubini’s theorem, we have〈
Aφh1, h2

〉
=

∫
∞

0

∫
∞

0
φ(a1,λ)

[∫
∞

0
h1(a2) (Ta2h2) (a1)K2i

√
λ(2
√

a2) dµ(a2)

]
dµ(a1)dv(λ)

=

∫
∞

0

∫
∞

0

[∫
∞

0
(Ta2φ) (a1,λ)K2i

√
λ(2
√

a2) dv(λ)
]

h1(a2)h2(a1) dµ(a1)dµ(a2)

Thus,
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(
Aφh1

)
(a1) =

∫
∞

0
Υ(a1, a2)h1(a2) dµ(a2),

where

Υ(a1, a2) =

∫
∞

0
(Th2φ) (a1,λ)K2i

√
λ(2
√

a2) dv(λ).

This completes the proof. �

Theorem 4.2. Let Υ ∈ C∞c (R+ ×R+, dµ⊗ dv). Then, for all h1 ∈ C∞c (R+),

Aφ : L2(R+, dµ)→ L2(R+, dµ)

is a Hilbert-Schmidt operator and, consequently, it is compact. Moreover, for φ ∈

Lα (R+ ×R+, dµ⊗ dv) ,α ∈ [1, 2], the operatorAφ can be extended to a bounded operator from L2(R+, dµ)
to itself.

Proof. From Theorem (4.1) and by the L2-boundedness of the translation operator in (2.2), and

Theorem (2.1), it follows that Υ(a1, a2) ∈ L2(R+ ×R+, dµ dµ). Hence, we have

∥∥∥Aφ

∥∥∥
2 ≤

(∫
∞

0

∫
∞

0
|Υ(a1, a2)|

2 dµ(a1) dµ(a2)

∫
∞

0

∣∣∣h1(a1)
∣∣∣2 dµ(a1)

) 1
2

= ‖Υ‖2‖h1‖2.

Since C∞c (R+) is dense in L2(R+, dµ), it follows thatAφ can be extended to a bounded operator

from L2(R+, dµ) to L2(R+, dµ).
In particular, Υ(a1, a2) ∈ L2(R+ ×R+, dµ dµ) implies that Aφ : L2(R+, dµ) → L2(R+, dµ) is a

Hilbert-Schmidt operator. Consequently, it is compact. By the density of C∞c (R+ ×R+, dµ⊗ dv)
in L2 (R+ ×R+, dµ⊗ dv), the proof is complete. �

We denote by Z(E, F) (or Z(E) if E = F) the space of bounded linear operators from a Banach

space E into a Banach space F.

Theorem 4.3. Let φ ∈ Lα (R+ ×R+, dµ⊗ dv), α ∈ [1, 2]. Then the operatorAφ is a bounded operator on
L2(R+dµ), and hence ∥∥∥Aφ

∥∥∥
Z(L2)

≤ C1‖φ|Lα(R+×R+,dx⊗dv)

Proof. Using Theorem (3.1) , Definition (4.1), and the density of C∞c (R+ ×R+) in

L2 (R+ ×R+, dµ⊗ dv), as well as the density of C∞c R+ in L2(R+dµ), the proof follows. �

Theorem 4.4. The Weyl operatorAφ with symbol φ ∈ Lβ (R+ ×R+, dµ⊗ dv) is bounded on Lα(R+dµ)
if β ≤ 2 and β ≤ α ≤ β′, with the corresponding norm estimate

∥∥∥Aφ

∥∥∥
Z(Lα) ≤ C′‖φ|Lβ(I×R+,dx⊗dv)
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Proof. (i) Let us assume α , 1 and α , ∞. In this case, the boundedness follows from Definition

(4.1) and Theorem (3.5). We have

∥∥∥Aφ

∥∥∥ = sup
‖h1‖Lα(R+ ,dµ)=‖h2‖Lα′ (R+ ,dµ)=1

∣∣∣∣∣∫ ∞

0

∫
∞

0
φ(a1,λ)WK (h1, h2) (a1,λ) dµ(a1) dv(λ)

∣∣∣∣∣
≤ sup
‖h1‖Lα(R+ ,dµ)=‖h2‖Lα′ (R+ ,dµ)=1

(∫
∞

0

∫
∞

0
|φ(a1,λ)|β dµ(a1) dv(λ)

) 1
β

×

(∫
∞

0

∫
∞

0

∣∣∣WK (h1, h2) (a1,λ)
∣∣∣β′ dµ(a1) dν(λ)

) 1
β′

≤ C′‖φ‖Lβ(R+×R+,dµ⊗dv) ‖h1‖Lα(R+,dµ) ‖h2‖Lα′ (R+,dµ)

(ii) If α = 1, then β = 1, and by using Theorem (3.5), we readily obtain

∥∥∥Aφ

∥∥∥ = sup
‖h1‖L∞(R+ ,dµ)=‖h2‖L1(R+ ,dµ)=1

∣∣∣∣∣∫ ∞

0

∫
∞

0
φ(a1,λ)WK (h1, h2) (a1,λ) dµ(a1) dv(λ)

∣∣∣∣∣
≤ sup
‖h1‖L∞(R+ ,dµ)=‖h2‖L1(R+ ,dµ)=1

∣∣∣∣∣∫ ∞

0

∫
∞

0
φ(a1,λ)

∥∥∥WK (h1, h2)
∥∥∥
∞

dµ(a1) dv(λ)
∣∣∣∣∣

≤ C′‖φ‖L1(R+×R+,dµ⊗dv)

(iii) If α = ∞, then we must have β = 1 too. Using the same arguments, we can obtain that

∥∥∥Aφ

∥∥∥ ≤ C′‖φ‖L1(R+×R+,dµ⊗dv).

Using the boundedness of the Weyl operator, we can easily deduce that the bounded operator

is also compact. �

Theorem 4.5. In the same hypotheses as in Theorem (4.4) , the Weyl operator is compact on Lα(R+, dµ).
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