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Abstract. In this article, we explore certain almost conformal Ricci solitons in f (R)-gravity by assuming the potential

vector field as a concircular vector field. We also study the almost conformal gradient-Ricci solitons and the almost

conformal ω-Ricci solitons in f (R)-gravity. Furthermore, it is shown that an almost conformal ω-Ricci soliton and an

almost conformal ω-Ricci-Yamabe soliton establish Poisson’s equation. At the last, some examples are constructed.

1. Introduction

In 1982, Hamilton [1] gave the concept of Ricci flow. The Ricci soliton (RS) is a natural gener-

alization of Einstein metric, which are self-similar solutions of Hamilton’s Ricci flow [2]. It often

arises as limits of dialations of singularities in the Ricci flow. Sinha and Sharma [3] began the study

of RS in contact manifolds. Later on, Bejan and Crasmareanu [4], Cǎlin and Crasmareanu [5]

examined RS in contact metric manifolds. The Ricci flow and RS equations are, respectively,

mentioned below:
∂g
∂t

+ 2S = 0, (1.1)

and

£F g + 2S = −2ρg, (1.2)

where, £F is the Lie derivative along the soliton vector field F , S is the Ricci tensor, g is the

Riemannian metric and ρ is a real scalar. For further study, see [6–10].
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The idea of almost Ricci soliton (ARS) was proposed by Pigola et.al. in 2011 [11], where the

authors modified the definition of RS by imposing the restriction on ρ to be a variable function. In

other words, we say that an n-dimensional Riemannian manifold (Mn, g) admits anARS, if there

exists a potential vector field F and a smooth soliton function ρ: Mn
→ R obeying:

S+
1
2

£F g = −ρg. (1.3)

Equation (1.3) is referred as the fundamental equation of an ARS (Mn, g,F ,ρ). An ARS is

expanding if ρ > 0, steady if ρ = 0, or shrinking if ρ < 0; otherwise, it is said to be indefinite. In

case, F is gradient of a smooth function −ψ: Mn
→ R, the metric is named the gradient almost

Ricci soliton (GARS). In this case, (1.3) leads to

S−∇
2ψ = −ρg, (1.4)

where, ∇2ψ denotes the Hessian of ψ.

In 2005, Fischer [12] gave the idea of conformal Ricci flow by preserving the constant scalar

curvature r of evolving metric and is presented by

∂g
∂t

+ 2S = −(P+
2
n
)g, r = −1, (1.5)

here, P is scalar non-dynamical field.

In [13], the authors proposed the idea of conformal Ricci soliton (CRS). The equation of CRS is

defined as:

£F g + 2S = −[2ρ− (P+
2
n
)]g. (1.6)

The conformal Ricci flow equations are analogous to the Navier-Stokes equations in fluid mechan-

ics and due to this analogy, P is named a conformal pressure, as for the real physical pressure it

serves to maintain the incompressibility of the fluid. Equation (1.6) is the generalization of (1.2)

and it also satisfies (1.5).

An advance class of geometric flows, namely, Ricci-Yambe flow of type (a, b) was proposed by

the authors in [14], the solution of this flow is named Ricci-Yamabe soliton (RYS) if it depends only

on one parameter family of diffeomorphism and scaling and is defined as

£ζg + 2aS+ [2ρ− bR]g = 0, (1.7)

here a and b are scalars. ARYS is called a Yamabe soliton [2]; Ricci soliton [1]; σ-Einstein soliton [15];

or Einstein soliton [16] if b = 1, a = 0; b = 0, a = 1; b = −2σ, a = 1; or b = −1, a = 1, respectively.

Pseudo-Riemannian geometry is an extended case of Riemannian geometry. A Lorentzian

manifold is an exclusive case of a pseudo-Riemannian manifold in which (1, n−1) is the signature of

metric. Spacetime is a 4-dimensional time-oriented Lorentzian manifold of signature (−,+,+,+).

The formalization of Riemann’s work appeared explicitly in 1913, the work of Weyl and the

applications of these ideas were made to the theory of relativity in 1915 by Einstein, who used the

idea of Riemannian manifolds to generate his theory of general relativity (GTR).
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f (R)-gravity generalizes GTR. In fact, f (R)-gravity is a set of theories, each one is defined by a

different function f of the Ricci scalar R. In 1970, f (R)-gravity was first introduced by Buchdahl [17].

It has now become a popular research field after Starobinsky on cosmic inflation. According to

cosmic inflation theory, the early universe expanded exponentially fast for a fraction of a second

after the Big Bang.

This paper is constructed in the following manner: Section 1 contains introduction, in which

some useful concepts and their brief histories are given. Section 2 contains preliminaries, related

to f (R)-gravity. Section 3 studies almost conformal RS in PFST under f (R)-gravity. Section 4

covers almost conformal gradient RS in f (R)-gravity. In Sections 5 and 6, we establish Poisson’s

equation through the almost conformal ω-RS and the almost conformal ω-Ricci-Yamabe solitons

in f (R)-gravity. Examples are too added in Section 6. In the last Section 7, we have given some

discussion on our study.

2. Preliminaries

In this section, we give 4-dimensional spacetime continuum satisfying f (R)-gravity [18,19]. We

set

H =

∫
1
k2 [Lm + f (R)]

√
−gd4x, (2.1)

here, H and Lm denote modified Einstein-Hilbert action term and the scalar field’s matter La-

grangian density, respectively. Also, f (R) stands for the function of Ricci scalar, k2 =
8πG

c4
, G is

Newton’s gravitational constant, c denotes the speed of light, g is determinant, and d4x stands for

the volume element.

The stress energy momentum tensor of matter is defined by

Trs =
−2δ(

√
−gLm)

√
−gδgrs . (2.2)

The perfect fluid type Trs for a unit time like vector ωr is given by

Trs = pgrs + (γ+ p)ωrωs, (2.3)

where p is the isotropic pressure; grs is a metric tensor; r, s are constants; ω is a 1-form; and γ is the

energy density. Assuming Lm depends on grs only, the field equations of f (R)-gravity after taking

the variation of relation (2.1) w.r.t. grs is given by

∂ f (R)
∂R

Rrs + grs�
∂ f (R)
∂R

=
1
2

f (R)grs +∇r∇s
∂ f (R)
∂R

+ k2
Trs, (2.4)

here Rrs denotes for the local components of S and � ≡ ∇r∇
r indicates d’Alembert operator, ∇r

indicates the covariant derivative. The relation (2.4) can be weaken by changing f (R) by R.

Choosing R = constant, relation (2.4) turns to

Rrs −
R

2
grs =

k2

∂ f (R)
∂R

T
e f f
rs , (2.5)
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where,

T
e f f
rs = Trs +

f (R) − R
∂ f (R)
∂R

2k2 grs.

The Ricci tensor in a perfect fluid spacetime (PFST ) satisfying f (R)-gravity is given by

S(U, V) = αω(U)ω(V) + βg(U, V), (2.6)

here, U, V are vector fields, α =
k2(p + γ)

∂ f (R)
∂R

, and β =
f (R) + 2k2p

2
∂ f (R)
∂R

.

From (2.6), the Ricci operator Q is given by

QU = αω(U)ζ+ βU, (2.7)

where, 1-form ω is related to the velocity vector field ζ and g(QU, V) = S(U, V). Apart from the

above, if p is the function of γ, then PFST is isentropic. Again, the PFST represents stiff matter

era, when p = γ. The PFST is called the dust matter era, when p = 0. The PFST is dark matter

era, when p = −γ. If p =
γ

3
, then it is radiation era [20].

3. Almost Conformal RS in f (R)-Gravity

In 1939, the concept of concircular vector field on (Mn, g) was given by Fialkow [21]. The

concircular vector field ϕ is defined by the relation

∇Xϕ = νX,

here, ∇: the Levi-Civita connection; ν: a non-trivial function on (Mn, g); and X ∈ TM, TM is the

tangent bundle of (Mn, g).

Theorem 3.1. If (g, ζ, ρ) is an ACRS in a PFST obeying f (R)-gravity with a constant Ricci

scalar. If divζ = 0, then ACRS is: expanding if p <
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 , shrinking if

p >
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 and steady if p =
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 . Apart from this, the PFST
shows a dark matter era.

Proof. We consider the velocity vector field ζ, equal to the potential vector fieldF , therefore,ACRS
is defined as

(£ζg)(U, V) + 2S(U, V) + [2ρ− (P+
1
2
)]g(U, V) = 0, (3.1)

where ρ is a real valued smooth function.

In view of explicit form of the Lie-derivative, the above relation takes the form

g(∇Uζ, V) + g(U,∇Vζ) + 2S(U, V) + [2ρ− (P+
1
2
)]g(U, V) = 0. (3.2)
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Putting the value of S(U, V) from (2.6) into (3.2), we have

g(∇Uζ, V) + g(U,∇Vζ) + 2αω(U)ω(V) + 2βg(U, V) + [2ρ− (P+
1
2
)]g(U, V) = 0. (3.3)

Contracting the above relation w.r.t. U and V, we have∑
εig(∇eiζ, ei) +

∑
εig(ei,∇eiζ) + 2α

∑
εiω(ei)ω(ei)

+2β
∑

εig(ei, ei) + [2ρ− (P+
1
2
)]
∑

εig(ei, ei) = 0.

On simplification, the above relation reduces to

2divζ− 2α+ 8β+ 4[2ρ− (P+
1
2
)] = 0. (3.4)

Setting U = V = ζ in (3.3) and using ∇ζζ = 0, we obtain

2α− 2β− [2ρ− (P+
1
2
)] = 0. (3.5)

Adding equations (3.4) and (3.5), we have

2divζ+ 6β+ 3[2ρ− (P+
1
2
)] = 0. (3.6)

Since, divζ = 0, then (3.6) leads to

ρ =
P

2
+

1
4
− β. (3.7)

Inserting the value of β from (2.6) into (3.7), we have

ρ =
P

2
+

1
4
−

f (R) + 2k2p

2
∂ f (R)
∂R

. (3.8)

From the relation (3.8), we conclude thatACRS is: expanding if p <
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 , steady

if p =
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 , and shrinking if p >
(1 + 2P)

∂ f (R)
∂R

− 2 f (R)

4k2 .

Now, (3.7), together with (3.5) gives α = 0. The relation α = 0 implies that p = −γ, i.e., PFST is

dark matter era. �

Theorem 3.2. Let (g,F ,ρ) be an ACRS in PFST under f (R)-gravity. If the potential vector field is

concircular, equal to the velocity vector field, then theACRS is: steady if p =
(P+

1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 ,

expanding if p <
(P+

1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 , or shrinking if p >
(P+

1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 .

Proof. We consider the potential vector field F , equal to the velocity vector field ζ. Therefore,

ACRS in PFST is given by

(£ζg)(U, V) + 2S(U, V) + [2ρ− (P+
1
2
)]g(U, V) = 0, (3.9)
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which can be written as

g(∇Uζ, V) + g(U,∇Vζ) + 2S(U, V) + [2ρ− (P+
1
2
)]g(U, V) = 0.

As, ζ is a concircular vector field, the above relation gives

S(U, V) = [
1
2
(P+

1
2
) − ρ− ν]g(U, V). (3.10)

Now, from f (R)-gravity, we have the relation

S(U, V) = αω(U)ω(V) + βg(U, V). (3.11)

Comparing equations (3.10) and (3.11), we have

αω(U)ω(V) + βg(U, V) = [
1
2
(P+

1
2
) − ρ− ν]g(U, V). (3.12)

Contracting the relation (3.12) w.r.t. U and V, we have

−α+ 4β = 4[
1
2
(P+

1
2
) − ρ− ν]. (3.13)

Putting U = V = ζ, in the relation (3.12), it yields

α− β = −[
1
2
(P+

1
2
) − ρ− ν]. (3.14)

Solving (3.13) and (3.14) for ρ, we have

ρ =
1
2
(P+

1
2
) −

f (R) + 2k2p

2
∂ f (R)
∂R

− ν. (3.15)

Thus, the soliton is steady: if p =
(P+

1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 , expanding if p <

(P+
1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 , or shrinking if p >
(P+

1
2
− 2ν)

∂ f (R)
∂R

− f (R)

2k2 . �

Now, P + 1
2 = 0 gives the subsequent corollary:

Corollary 3.1. Let (g,F ,ρ) be an RS in PFST under f (R)-gravity. If the potential vector field is

concircular, equal to the velocity vector field, then the RS is: expanding if p < −
2ν
∂ f (R)
∂R

+ f (R)

2k2 , steady

if p = −
2ν
∂ f (R)
∂R

+ f (R)

2k2 , or shrinking if p > −
2ν
∂ f (R)
∂R

+ f (R)

2k2 .
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4. Almost Conformal Gradient RS (ACGRS) in f (R)-Gravity

Theorem 4.1. For a constant Ricci scalar, we assume that PFST satisfies f (R)-gravity and admits an

ACGRS. If the potential vector field, equal to the velocity vector field with divζ = 0 and ζ(−β−ρ+
1
2
P) =

0, then either energy density is constant; or the soliton is; steady if γ =
f (R) −

∂ f (R)
∂R

(P+
1
2
)

2k2 , expanding

if γ >
f (R) −

∂ f (R)
∂R

(P+
1
2
)

2k2 , or shrinking if γ <
f (R) −

∂ f (R)
∂R

(P+
1
2
)

2k2 .

Proof. Let ζ = −Dψ, then (3.9) becomes

g(∇UDψ, V) −S(U, V) − [ρ−
1
2
(P+

1
2
)]g(U, V) = 0.

The above relation gives,

∇UDψ = QU + [ρ−
1
2
(P+

1
2
)]U, (4.1)

for every U.

Since,

K(U, V)Dψ = [∇U,∇V]Dψ−∇[U,V]Dψ,

where, K is Riemann curvature tensor.

Thus, in view of (4.1), we have

K(U, V)Dψ = (∇UQ)V + [∇Uρ−
1
2
(∇UP)]V − (∇VQ)U − [∇Vρ−

1
2
(∇VP)]U. (4.2)

Since, from f (R)-gravity, we have

S(U, V) = αω(U)ω(V) + βg(U, V). (4.3)

From the above relation (4.3), it follows that

QV = αω(V)ζ+ βV.

Differentiating covariantly above relation w.r.t. U, it gives

(∇UQ)V = U(α)ω(V)ζ+ α[(∇Uω)(V)ζ+ω(V)∇Uζ] + U(β)V.

Applying U↔ V in the above equation, we have

(∇VQ)U = V(α)ω(U)ζ+ α[(∇Vω)(U)ζ+ω(U)∇Vζ] + V(β)U.

Now, from the above last two relations, (4.2) gives

K(U, V)Dψ = U(α)ω(V)ζ+ α[(∇Uω)(V)ζ+ω(V)∇Uζ]

+U(β)V + [∇Uρ−
1
2
(∇UP)]V −V(α)ω(U)ζ

−α[(∇Vω)(U)ζ+ω(U)∇Vζ] −V(β)U − [∇Vρ−
1
2
(∇VP)]U. (4.4)
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Contracting the above relation w.r.t. U∑
εig(K(ei, V)Dψ, ei) =

∑
εig(Dβ, ei)g(V, ei) +

∑
εig(Dα, ei)g(ζ, ei)ω(V)

+α[
∑

εi(∇eiω)(V)g(ζ, ei) +ω(V)
∑

εig(∇eiζ, ei)]

+
∑

εig(Dρ, ei)g(V, ei) −
1
2

∑
εig(DP, ei)g(V, ei)

−V(β)
∑

εig(ei, ei) −V(α)
∑

εig(ei, ζ)g(ei, ζ)

−α[
∑

εi(∇Vω)(ei)g(ζ, ei) +
∑

εig(ei, ζ)g(∇Vζ, ei)]

−[∇Vρ−
1
2
(∇VP)]

∑
εig(ei, ei).

After simplification, the above relation gives

S(V, Dψ) = −3V(β) + V(α) + ζ(α)ω(V) + α(∇ζω)(V) + αω(V)divζ− 3V(ρ) +
3
2

V(P). (4.5)

Replacing U→ V and V → Dψ in equation (4.3), we have

S(V, Dψ) = αω(V)ω(Dψ) + βg(V, Dψ). (4.6)

Comparing equations (4.5) and (4.6), we get

αω(V)ω(Dψ) + βg(V, Dψ) = −3V(β) + V(α) + ζ(α)ω(V)

+α(∇ζω)(V) + αω(V)divζ− 3V(ρ) +
3
2

V(P),

which by taking V = ζ, we lead to

(β− α)ζ(ψ) = ζ(−3β− 3ρ+
3
2
P) − αdivζ.

If, ζ(−β− ρ+
1
2
P) = 0 and divζ = 0, then

(β− α)ζ(ψ) = 0.

The above relation implies that either β = α, or, ζ(ψ) = 0. Now, we have

Case I: If β = α = constant, then γ =
f (R)
2k2 = constant.

Case II: If β , α, so ζ(ψ) = g(Dψ, ζ) = 0.

Differentiating the relation g(Dψ, ζ) = 0 covariantly w.r.t. U, we have

(∇U g)(Dψ, ζ) + g(∇UDψ, ζ) + g(Dψ,∇Uζ) = 0.

Using (∇U g)(Dψ, ζ) = 0, the above equation reduces to

g(∇Uζ, Dψ) = −g(∇UDψ, ζ).

Relation (4.1), together with above relation, provides

g(∇Uζ, Dψ) = [(α− β) +
1
2
(P+

1
2
) − ρ]ω(U).
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Replacing U→ ζ in the above relation, we have

g(∇ζζ, Dψ) = [(α− β) +
1
2
(P+

1
2
) − ρ]ω(ζ).

The equation (2.6) and above relation, taken together, we obtain

ρ =
2k2γ− f (R) +

∂ f (R)
∂R

(P+
1
2
)

2
∂ f (R)
∂R

.

This completes the proof. �

We know [22], the energy equation of the perfect fluid for the velocity vector field F is given as

F (γ) = −(p + γ)divF . (4.7)

Hence, from case I, γ = constant. Therefore, either p + γ = 0 or divF = 0.

This leads to the following corollary:

Corollary 4.1. Let PFST obeying the f (R)-gravity and admit an AGCRS with the constant Ricci
scalar such that ζψ = 0. If potential vector field, equal to velocity vector field with divζ = 0 and

ζ(−β − ρ+
1
2
P) = 0, then either perfect fluid has vanishing expansion scalar, or the spacetime is dark

matter era.

5. Almost Conformal ω-RS (ACωRS) in f (R)-Gravity

An ACωRS is the generalization of ACRS and is defined by [23]

£F g + 2S+ 2[ρ−
1
2
(P+

2
n
)]g + 2µω⊗ω = 0.

where ρ and µ are smooth functions. Please also see [24–26]

Theorem 5.1. Let thePFST obeying f (R)-gravity with the constant Ricci scalar R and admit an ACωRS
(g, ζ,ρ,µ). If the velocity vector ζ is equivalent to the potential vector field F and ω is dual of gradient ζ,
then the Poisson equation satisfying by ψ is

∆ψ =
3
2
[(P− 2ρ+

1
2
) −

2k2p + f (R)
∂ f (R)
∂R

].

Moreover, if div ζ=0, then the soliton functions ρ and µ are given by

ρ =
1
2
(P+

1
2
) −

f (R) + 2k2p

2
∂ f (R)
∂R

,

and

µ = −
k2(p + γ)

∂ f (R)
∂R

,

respectively.
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Proof. We consider the potential vector field F , equivalent to the velocity vector field ζ. Therefore,

an ACωRS in PFST is given by

1
2
(£ζg)(U, V) +S(U, V) + [ρ−

1
2
(P+

1
2
)]g(U, V) + µω(U)ω(V) = 0. (5.1)

The above relation yields

S(U, V) = −
1
2
[g(∇Uζ, V) + g(U,∇Vζ)] − [ρ−

1
2
(P+

1
2
)]g(U, V) − µω(U)ω(V). (5.2)

From f (R)-gravity,

S(U, V) = αω(U)ω(V) + βg(U, V). (5.3)

Comparing equations (5.2) and (5.3), it gives

αω(U)ω(V) + βg(U, V) = −
1
2
[g(∇Uζ, V) + g(U,∇Vζ)]

−[ρ−
1
2
(P+

1
2
)]g(U, V) − µω(U)ω(V). (5.4)

Assuming, U = V = ζ, using ω(ζ) = g(ζ, ζ) = −1, the above relation yields

α− β = [ρ−
1
2
(P+

1
2
)] − µ. (5.5)

Contracting over U and V, the relation (5.4) provides,

−α+ 4β = −divζ− 4[ρ−
1
2
(P+

1
2
)] + µ. (5.6)

Adding two preceding equations, we get

ρ =
1
2
(P+

1
2
) − β−

1
3

divζ. (5.7)

Now, using divζ = div (grad ψ) and β =
f (R) + 2k2p

2
∂ f (R)
∂R

, the above relation gives

∆ψ =
3
2
[(P− 2ρ+

1
2
) −

2k2p + f (R)
∂ f (R)
∂R

]. (5.8)

For divζ = 0, the relations (5.5) and (5.7) provides, ρ =
1
2
(P +

1
2
) −

2k2p + f (R)

2
∂ f (R)
∂R

and µ =

−
k2(p + γ)

∂ f (R)
∂R

, where α =
k2(p + γ)

∂ f (R)
∂R

and β =
2k2p + f (R)

2
∂ f (R)
∂R

being used. This completes the proof. �

For µ = 0, an ACωRS reduces an ACRS. In this case, from the relation µ = −
k2(p + γ)

∂ f (R)
∂R

, it

follows that p = −γ. Thus, we state :

Corollary 5.1. Let the PFST with divζ = 0 obeying f (R)-gravity with the constant Ricci scalar R and
admit an ACRS. Then, the PFST is dark matter era.
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6. Almost Conformal ω-Ricci-Yamabe Solitons (ACωRYS) in f (R)-Gravity

Theorem 6.1. Let the PFST obeying f (R)-gravity with the constant Ricci scalar R and admit an
ACωRYS (g, ζ, a, b,ρ,µ). If the velocity vector field ζ is equivalent to the potential vector field F
and ω is the g-dual of the gradient vector field ζ = grad ψ, then the Poisson equation satisfying by ψ is

∆ψ = −3[µ+ a
k2(p + γ)

∂ f (R)
∂R

].

Proof. As a generalization of (1.7), we define an ACωRYS by the equation

£ζg + 2aS+ [2ρ− bR− (P+
2
n
)]g + 2µω⊗ω = 0, (6.1)

here a and b are scalars. Please also see [27–30].

For n = 4, equation (6.1) becomes

g(∇Uζ, V) + g(U,∇Vζ) + 2aS(U, V) + [2ρ− bR− (P+
1
2
)]g(U, V) + 2µω(U)ω(V) = 0. (6.2)

The relation (2.6), together with above relation, gives

g(∇Uζ, V) + g(U,∇Vζ) + [2aβ + 2ρ − bR − (P +
1
2
)]g(U, V) + 2(aα + µ)ω(U)ω(V) = 0. (6.3)

Using U = V = ζ, then the above equation reduces to

2a[α− β] − [2ρ− bR− (P+
1
2
)] + 2µ = 0. (6.4)

Contracting equation (6.3) over U and V, we have

2divζ+ 2a[−α+ 4β] + 4[2ρ− bR− (p +
1
2
)] − 2µ = 0. (6.5)

Adding the relations (6.4) and (6.5), we obtain

ρ =
1
2
(P+

1
2
) −

1
3

divζ+
(3b− 2a)k2p + (2b− a) f (R) − bγ

2
∂ f (R)
∂R

. (6.6)

Putting the value of ρ in (6.4), we have

µ = −
1
3

divζ− a
k2(p + γ)

∂ f (R)
∂R

. (6.7)

Since, ∆ψ = div(gradψ), therefore, equation (6.8) gives

∆ψ = −3[µ+ a
k2(p + γ)

∂ f (R)
∂R

]. (6.8)

This completes the proof. �
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For the smooth functions Ψ and θ in f (R)-gravity, the almost conformal ω-Ricci Yamabe soliton

satisfies Poisson’s equation if Ψ = θ holds. In case Ψ = 0, Poisson’s equation transforms into

Laplace’s equation.

For µ = 0, an almost conformal ω-Ricci Yamabe soliton (g, ζ, a, b,ρ,µ) reduces to the almost

conformal Ricci Yamabe soliton (g, ζ, a, b,ρ).

Now, for µ = 0 and a = 0, (6.8) reduces to ∆ψ = 0. Thus, we state:

Corollary 6.1. ThePFST obeying f (R)-gravity with the constant Ricci scalar R and admitting an almost
conformal Yamabe solitons satisfies Laplace’s equation.

Next, for µ = 0 and p = −γ, (6.8) reduces to ∆ψ = 0. Thus, we state:

Corollary 6.2. Let the PFST obeying f (R)-gravity with the constant Ricci scalar R and admitting an
almost conformal Yamabe soliton. If PFST is the dark matter era, then the almost conformal Yamabe
soliton satisfies Laplace’s equation.

If divζ = 0, then from (6.6) and (6.8), we have

ρ =
1
2
(P+

1
2
) +

(3b− 2a)k2p + (2b− a) f (R) − bγ

2
∂ f (R)
∂R

, (6.9)

and

µ = −a
k2(p + γ)

∂ f (R)
∂R

. (6.10)

If, a = 0 and b = 1, then the relation (6.9) gives

ρ =
1
2
(P+

1
2
) +

3k2p + 2 f (R) − γ

2
∂ f (R)
∂R

. (6.11)

Thus, we state:

Corollary 6.3. If (g, ζ,ρ) is an almost conformal Yamabe soliton in a PFST obeying f (R)-gravity with

constant R, then the almost conformal Yamabe soliton is expanding if γ >
2 f (R) + (P+

1
2
)
∂ f (R)
∂R

3k2 + 1
; steady

if γ =
2 f (R) + (P+

1
2
)
∂ f (R)
∂R

3k2 + 1
; or shrinking if γ <

2 f (R) + (P+
1
2
)
∂ f (R)
∂R

3k2 + 1
.

If, a = −1 and b = 1, then the relation (6.9) gives

ρ =
1
2
(P+

1
2
) +

3 f (R) − (5k2 + 1)γ

2
∂ f (R)
∂R

. (6.12)

This leads to the following corollary:
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Corollary 6.4. Let (g, ζ,ρ) be almost conformal Yamabe solitons in a PFST obeying f (R)-gravity

with constant R, then the Einstein soliton is expanding if γ >
(P+

1
2
)
∂ f (R)
∂R

+ 3 f (R)

5k2 + 1
; steady if γ =

(P+
1
2
)
∂ f (R)
∂R

+ 3 f (R)

5k2 + 1
; or shrinking if γ <

(P+
1
2
)
∂ f (R)
∂R

+ 3 f (R)

5k2 + 1
.

Example 6.1. PFST is said to be radiation era, if p =
γ

3
. For radiation era, from equation (6.6) and (6.7)

we have, ρ =
1
2
(P+

1
2
) −

1
3

divζ+
(2b− a) f (R) − 2ak2p

2
∂ f (R)
∂R

, and µ = −[
1
3

divζ+ a
(k2 + 3p)
∂ f (R)
∂R

].

Example 6.2. PFST is said to be stiff matter era, if p = γ. For stiff matter era, from equation (6.6) and

(6.7), we have, ρ =
1
2
(P+

1
2
) −

1
3

divζ+
2(b− ak2)p + (2b− a) f (R)

2
∂ f (R)
∂R

, and µ = −[
1
3

divζ+ 2a
k2p
∂ f (R)
∂R

].

Example 6.3. PFST is said to be dark matter era, if p = −γ. For dark matter era, from equation (6.6)

and (6.7), we have, ρ =
1
2
(P+

1
2
) −

1
3

divζ+
2(ak2

− b)p + (2b− a) f (R)

2
∂ f (R)
∂R

, and µ = −
1
3

divζ.

7. Discussion

In the present paper, various metrics such as almost conformal RS, almost conformal gradient

RS, almost conformal ω-Ricci-Yamabe solitons and Poisson’s equation, obtained through almost

conformal ω-Ricci solitons and almost conformal ω-Ricci-Yamabe solitons are discussed under

f (R)-gravity. In this paper, we take PFST admitting RS with constant Ricci scalar satisfying

f (R)-gravity and the potential vector fieldF , equal to velocity vector field ξ and also observing that

the spacetime represents a dark matter era under suitable condition on the vector field F . It is also

here noticed that under the same restriction, if the spacetime admits a gradient RS, then either the

spacetime represents a dark matter era, or the perfect fluid is vanishing expansion under suitable

restriction. RS in PFST with the potential vector field as a concircular vector field, equal to the

velocity vector field under f (R)-gravity, then the solitons in PFST shows dark matter era. For

a constant Ricci scalar, PFST satisfying f (R)-gravity permits a gradient conformal RS, then the

PFST represents dark matter era. In an almost ω-Ricci solitons in f (R)-gravity, solitons reduces

to almost conformal RS. PFST obeying f (R)-gravity with the constant Ricci scalar admitting an

almost conformal ω-Ricci-Yamabe solitons establishes Poisson’s equation. Poisson’s equation is a

partial differential equation generally applicable in several fields like computer science, theoretical

physics, electrostatics, mechanical engineering, chemistry, astronomy, and other fields.
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