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Abstract. This paper presents a new mathematical model for the transmission of avian influenza virus dynamics with

education-structured susceptible and isolation-structured infectious human populations in the presence of vaccination.

Several dynamical systems methodologies are employed to analyse the avian influenza in human-bird interacting

populations. The fundamental properties exhibited by the model are assessed through the theory of positivity and

boundedness of solutions. The effective reproduction number, Re, that measures the spread potential of the influenza

infection is calculated using the next generation matrix approach. Metzler matrix approach and Lyapunov function

are employed to investigate the global asymptotic dynamics of the model about its influenza-free and endemic states,

respectively. Furthermore, the model is extended to accommodate four time-dependent control interventions, such

as public awareness campaign, vaccination, treatment with anti-viral drugs, and birds culling strategy. By applying

Pontryagin’s maximum principle, the optimal control quadruple are characterized. Specifically, combinations of any

three of the control interventions are explored in forestalling the transmission of avian influenza in the population. The

findings of the study do not only reveal various parameters of the model to be targeted for prevention and control of the

disease, but also show the importance of consolidating control efforts in the fight against the avian influenza disease.

1. Introduction

Influenza viruses are a group of ribonucleic acid (RNA) viruses responsible for certain respi-

ratory infections in humans, avians, and other animals. The origin of these viruses is rooted in
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their evolution and adaptation across different species. Influenza viruses are part of the Orthomyx-
oviridae family, characterized by segmented RNA genomes. There are four types of influenza

viruses namely, Influenza A which is known for its ability to infect a wide range of hosts and it

is sub-classified into hemagglutinin (H) and neuraminidase (N) subtypes based on two surface

proteins [1]. The variability in these proteins is the source of the different subtypes, such as H1N1,

H3N2, and H5N1; Influenza B, which primarily infects humans and does not have subtypes, but

tends to cause localized epidemics rather than pandemics; Influenza C has a more stable genome

and typically causes mild respiratory illness, primarily in children; and Influenza D which is less

common and mainly affects cattle. Influenza viruses have a zoonotic origin, implying transmission

between animals and humans [2]. Influenza A viruses, in particular, have a wide host range, in-

cluding avians, pigs, horses, seals, and humans. Wild avians, especially aquatic avians like ducks,

are considered the primary natural reservoir for influenza A. These avians harbor a wide variety

of asymptomatic influenza strains [1, 3].

Influenza viruses have a segmented RNA genome with eight separate pieces of genetic material.

This structure allows for genetic re-assortment when two different influenza viruses infect the same

host cell. This can result in a new virus strain with a mix of genetic material from each parent

virus, potentially leading to significant changes in virulence and transmissibility. Influenza viruses

spread through respiratory droplets when an infected person coughs, sneezes, or talks [3, 4]. The

virus can also survive on surfaces for a limited time, leading to fomite transmission. This high

transmissibility combined with the virus’s ability to mutate and adapt, contribute to the widespread

and recurring nature of influenza outbreaks [5]. Antigenic shift and drift are two key processes

serving as a steering wheel for the evolution and diversity of influenza viruses in the population.

On the one hand, antigenic drift involves gradual mutations in the viral genome, particularly

in the genes encoding the surface proteins hemagglutinin (HA) and neuraminidase (NA). These

mutations allow the virus to evade the host’s immune system over time, leading to seasonal

influenza outbreaks. While antigenic shift on the other hand occurs when two different influenza

A viruses infect the same host cell and exchange genetic segments, resulting in a new viral subtype.

This process can lead to significant changes in the virus’s surface proteins, sometimes resulting

in pandemics when the new subtype is highly transmissible and the population lacks immunity

against it [6, 7].

In summary, the origin of influenza viruses lies in their ability to mutate and re-assort among

different species. These processes enable the viruses to evolve and adapt, leading to seasonal

outbreaks and occasionally, pandemics when significant changes occur. Therefore, understanding

this origin helps in designing effective interventions for monitoring, preventing and vaccinating

against the viral infection. To this end, quite a number of medical efforts have been put in

place to understand the intricacies associated with the evolution of avian influenza in human

population. In addition to these medical efforts, several authors in the literature have used

mathematical modelling tools to study influenza virus dynamics, see for instance, [8–22] and some
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of the references therein. In [9], the influence of psychological effect on the spread dynamics of

avian influenza virus was investigated using a deterministic mathematical model with saturated

incidence. A mathematical model featuring psychological effect, saturation inhibition effect and

nonlinear treatment was proposed to study the transmission dynamics of avian influenza in

[11]. The impact of matching and mismatching between vaccine strains and circulating strains

of influenza in annual hajj exercise was studied in [12]. Baba and associates [13] stressed on the

impact of resistant and non-resistant strains on the transmission dynamics of influenza.

In another development, Barik and his colleagues in [14] designed an optimal control frame-

work for the dynamics of avian influenza in different geographical areas. Du et al. [15] applied

mathematical modelling to the co-dynamics of influenza and COVID-19 in human population

using a system of ordinary differential equations. The authors in [17] applied mathematical mod-

elling to the study of a within-host influenza dynamics. In attempt to understand the mechanisms

behind the dynamics of avian influenza with special interest in proffering effective control strate-

gies that could be adopted in setting the viral infection to extinction in the population, authors

in [18] designed an optimal control framework featuring three time-dependent control interven-

tion strategies representing public awareness programs, treatment, and psychological support to

stem the transmission dynamics of avian influenza virus in the population. Recently, authors

in [19] conducted a robust comparative study on the evolution of avian influenza in chicken farms

with vaccination and seasonality effects. While the study of avian influenza virus in a live avian

market was conducted in [20] by fitting the model to real data of avian influenza virus from a

field experiment in Bangladesh. In a similar and more recent development, Andreu-Vilarroig and

colleagues [21] studied the transmission dynamics of avian influenza with variation in vaccinated

and non-vaccinated populations purposely to gain further insights into the spread dynamics of

the infection.

It should be mentioned that in developing countries, the level of acquaintance of individuals

with opportunistic infections such as the viral infection under study is very important in designing

control measures that would assist in completely eradicating the infection in the population. Most

studies on the dynamics of avian influenza virus in the literature did not consider classification

of their mathematical models into different categories based on their level of acquaintance with

the virus. This study, therefore, proposes a new mathematical model focusing on the stratifica-

tion of the total human population into different classifications to gain further insights into the

transmission dynamics of avian influenza in human population. The susceptible human popu-

lation is sub-classified into informed and uninformed susceptible individuals and the infectious

population is stratified into isolated and non-isolated infectious individuals. The organization of

the other aspects of the study are structured as follows: Section 2 presents the mathematical for-

mulation of the avian influenza model. Robust qualitative analysis of the autonomous nonlinear

avian influenza model is conducted in Section 3. Section 4 is concerned with the analysis of the
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non-autonomous version of the nonlinear avian influenza model with discussion. And Section 5

concludes the study.

2. Avian InfluenzaModel

It is important to bear in mind that the transmission dynamics of avian influenza virus stems

from the interaction between human and avians populations. To this end, the total human popu-

lation, Nh(t), is compartmentalized into six mutually exclusive populations, namely uninformed

susceptible represented by Su(t) (those who are not educated or informed about the disease and

are prone to contracting the viral infection), informed susceptible population denoted by Si(t)
(individuals who are educated and fully informed about the disease but still have the likelihood of

contracting the viral infection), population of vaccinated informed individuals represented by V(t)
(population of informed susceptible individuals who are vaccinated against the viral infection),

non-isolated infectious population designated by I1h(t) (population of actively infected individ-

uals who are not in isolation), population of infectious individuals in isolation duly represented

by I2h(t) (population of symptomatically infectious individuals who are in isolation, but have the

likelihood of not spreading the infection instantaneously due to restriction in their interaction),

and recovered class delineated by R(t) (population of infectious individuals who recovered after

receiving anti-influenza viral treatment). Thus, the total human population is given by

Nh(t) = Su(t) + Si(t) + V(t) + I1h(t) + I2h(t) + R(t). (2.1)

The uninformed susceptible population is assumed to increase at a recruitment rate, represented

by Λh, and the population is reduced by a force of infection βh(I1h + Ib +θI2h), where βh is the effec-

tive contact rate, and θ ∈ (0, 1) is the modification parameter measuring the degree of infectivity in

isolated infectious human over non-isolated actively infected humans. Therefore, it makes sense

to assume that the infectious individuals in isolation transmit infection at a more reduced rate com-

pared to non-isolated infectious individuals. Moreover, the uninformed susceptible population

becomes fully acquainted (informed) individuals at a rate α. The population is further diminished

by natural mortality at a rate µ. Therefore, the dynamics of the uninformed susceptible population

with time is given by

dSu

dt
= Λh − βh (I1h + Ib + θI2h) Su − (α+ µh)Su. (2.2)

The population of educated or informed susceptible individuals is built up by the progression of

uninformed susceptible individuals due to proper education at a rate α. The population is reduced

by the force of infection at a modified rate (1 −ψ)βh(I1h + Ib + θI2h), where (1 −ψ) > 0 measures

the level of adherence to educational informations acquired during sensitization on the disease.

In attempt to curb the spread of the viral infection, the population is further downsized at per

capita vaccination rate σ and natural death rate µ. Therefore, the rate of change of the informed
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susceptible individuals is given by

dSi

dt
= αSu− (1−ψ)βh (I1h + Ib + θI2h) Si − (σ+ µh)Si. (2.3)

Following effective sensitization of the susceptible class, a fraction, denoted by σ, of the informed

susceptible individuals gets vaccinated and directly join the vaccinated class. The vaccinated

population is diminished at the per capita natural mortality rate µ. Thus, the rate of change of the

population is given by

dV
dt

= σSi − µhV. (2.4)

The population of the non-isolated infectious individual is generated by the forces of infection

βh(I1h + Ib + θI2h) and (1−ψ)βh(I1h + Ib + θI2h). The population diminishes by isolation of infec-

tious human at a rate ρ and further reduces by the spontaneous recovery of infectious human at a

rate τ1. The population is also reduced by natural mortality at rate µ. Therefore, the rate of change

of the non-isolated infectious human is given by

dI1h

dt
= βh (I1h + Ib + θI2h) Su + (1−ψ)βh (I1h + Ib + θI2h) Si − (ρ+ τ1 + µh)I1h. (2.5)

As a consequence of isolation of infectious human at a rate ρ, the population of infectious human

in isolation is developed. The population reduces due to recovery at a rate τ2, and further reduced

at the per capita natural mortality rate µ. Therefore, the evolution of infectious human in isolation

is given by
dI2h

dt
= ρI1h − (τ2 + µh)I2h. (2.6)

The population of recovered human is generated by the recovery of non-isolated and isolated

infectious humans, respectively, at rates τ1 and τ2. The population is reduced by the per capita

natural mortality rate µ. Hence, the rate of change of the recovered population is given by

dR
dt

= τ1I1h + τ2I2h − µhR. (2.7)

Since the transmission dynamics of avian influenza virus involves the interaction between

human and avian or bird populations, the total bird population represented by Nb(t) is stratified

into the populations of susceptible Sb(t) and infectious birds Ib(t). So that the total bird population

is expressed as

Nb(t) = Sb(t) + Ib(t). (2.8)

The susceptible bird population is assumed to increase at a recruitment rate, represented by

Λb. Following effective contact with infectious bird, the population is reduced by a mass action

incidence function βbSbIb, where βb is the transmission probability of infection from an infectious

bird to a susceptible bird. The population is further downsized by the natural mortality rate µb.

Therefore, the rate of change of susceptible bird population is given by

dSb

dt
= Λb − βbSbIb − µbSb. (2.9)



6 Int. J. Anal. Appl. (2025), 23:81

Following effective contact with infectious bird, the population of infectious bird is built by a

mass action incidence function βbSbIb, and the population is downsized by the natural mortality

rate µb. Thus, the evolution of infectious birds population is given by

dIb

dt
= βbSbIb − µbIb. (2.10)

The schematic diagram depicting the flow between the human and bird compartments is given in

Figure 1. As a consequence of the foregoing assumptions and coupling all the equations together,

the eight-dimensional system of nonlinear ordinary differential equations describing the time

evolution of avian influenza virus in human-bird interacting populations is obtained as follows.

dSu

dt
= Λh − βh (I1h + Ib + θI2h) Su − (α+ µh)Su,

dSi

dt
= αSu− (1−ψ)βh (I1h + Ib + θI2h) Si − (σ+ µh)Si,

dV
dt

= σSi − µhV,

dI1h

dt
= βh (I1h + Ib + θI2h) (Su + (1−ψ)Si) − (ρ+ τ1 + µh)I1h,

dI2h

dt
= ρI1h − (τ2 + µh)I2h,

dR
dt

= τ1I1h + τ2I2h − µhR,

dSb

dt
= Λb − βbSbIb − µbSb,

dIb

dt
= βbSbIb − µbIb,

(2.11)

with non-negative initial conditions,

Su(0) = Su0 , Si(0) = Si0 , V(0) = V0, I1h(0) = I1h0 ,

I2h(0) = I2h0 , R(0) = R0, Sb(0) = Sb0 , Ib(0) = Ib0 .
(2.12)

Complete descriptions of the variables and parameters associated with the system (2.11) are

provided in Table 1 and Table 2, respectively.

3. Analysis of the InfluenzaModel

This section is dedicated to the qualitative analysis of the nonlinear mathematical model de-

scribing the transmission dynamics of avian influenza virus in the population.
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Figure 1. The schematic flow of avian influenza virus transmission in human-bird

interacting populations, where f1 = (1−ψ)βh.

Table 1. Description of variables of the avian influenza model.

Description

Su(t) Population of uniformed susceptible humans

Si(t) Population of informed susceptible humans

V(t) Population of vaccinated humans

I1h(t) Population of non-isolated infectious humans

I2h(t) Population of isolated infectious humans

R(t) Population of recovered humans

Nh(t) Total human population

Sb(t) Population of susceptible birds

Ib(t) Population of infectious birds

Nb(t) Total bird population

3.1. Positivity of solutions. Since the nonlinear mathematical model (2.11) involves the dynamics

of avian influenza virus in human-bird interacting populations, it is imperative to establish that

all the state variables of the model are non-negative. Noting that the model parameters are

non-negative.
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Table 2. Description of parameters of the avian influenza model.

Description

Λh Recruitment rate of human population

Λb Recruitment rate of bird population

βh Transmission probability of infection in humans

βb Transmission probability of infection in birds

µh Natural mortality rate of humans

µb Natural mortality rate of birds

α Progression rate of uninformed susceptible to informed class

τ1 Spontaneous recovery rate in I1h

θ Modification parameter due to infectiousness in I2h

ψ Rate of adherence to precautionary education

τ2 Recovery rate due to treatment

σ Vaccination rate of informed susceptible individuals

ρ Progression rate of non-isolated infectious human to isolation

Theorem 3.1. Given that Su0 ≥ 0, Si0 ≥ 0, V0 ≥ 0, I1h0 ≥ 0, I2h0 ≥ 0, R0 ≥ 0, Sb0 ≥ 0, Ib0 ≥ 0, then
the solution set, {Su, Si, V, I1h, I2h, Sb, Ib}, of the avian influenza model (2.11) remains non-negative for all
times, t > 0.

Proof. The first compartment of the avian influenza model (2.11) yields the following differential

inequality
dSu

dt
≥ −(βh (I1h + Ib + θI2h) + (α+ µh))Su. (3.1)

So that
d
dt

[
Su exp

(∫ t

0
βh (I1h(ϕ) + Ib(ϕ) + θI2h(ϕ)) dϕ+ (α+ µh)t

)]
> 0. (3.2)

It therefore follows that,

Su ≥ Su0 exp
[
−

(∫ t

0
βh (I1h(ϕ) + Ib(ϕ) + θI2h(ϕ)) dϕ+ (α+ µh)t

)]
> 0,∀t > 0. (3.3)

It can be shown through similar procedure that the remaining state variables of the avian influenza

model (2.11) are non-negative for all times. Hence, the solution set is non-negative ∀ t > 0. �

3.2. Equilibria and effective reproduction number.

3.2.1. Disease-free and effective reproduction number. In the absence of infection cases in human and

bird populations, the influenza-free (disease-free) steady state of the avian influenza model (2.11),

represented by E0, is given by

E0 = (S0
u, S0

i , V0, 0, 0, 0, S0
b, 0), (3.4)

where

S0
u =

Λh

α+ µh
, S0

i =
αΛh

(σ+ µh)(α+ µh)
, V0 =

σαΛh

µh(σ+ µh)(α+ µh)
, S0

b =
Λb

µb
.
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In what follows, the effective reproduction number, Re, of the influenza model (2.11), which is

an important metric for measuring the spread strength of diseases epidemiologically, is calculated

using the well-known next generation operator [24, 25]. Two important matrices F (of the new

infection terms) and V (of the transition terms) evaluated at the influenza-free equilibrium point

(3.4), respectively, are given by

F =



βh(Λhk2 + (1−ψ)αΛh)

k1k2

θβh(Λhk2 + (1−ψ)αΛh)

k1k2

βh(Λhk2 + (1−ψ)αΛh)

k1k2

0 0 0

0 0
βbΛb

µb


and

V =


k3 0 0

−ρ k4 0

0 0 µb

 ,

where k1 = (α+ µh), k2 = (σ+ µh), k3 = (ρ+ τ1 + µh), k4 = (τ2 + µh). It follows that the spectral

radius of FV−1 is the effective reproduction number given by

Re = max {Rh, Rh} , (3.5)

where

Rh =

{
(k2 + (1−ψ)α)(Λhβhk4 + θρβhΛh)

k1k2k3k4

}
,

and

Rb =
βbΛb

µ2
b

.

Then, the following local stability result due to Theorem 2 of [24], holds.

Lemma 3.1. The influenza-free steady state, represented by E0, of the influenza model (2.11) is locally
asymptotically stable if Re < 1, and unstable if Re > 1.

It is worth mentioning that, the effective reproduction number, Re, of the influenza model (2.11)

measures the spread potential of influenza when a typical infectious individual is introduced

into a susceptible and vaccinated populations [25, 26]. Epidemiologically, Lemma 3.1 implies that

elimination of influenza virus infection is achievable in the population provided the initial sizes

of the active influenza cases can be brought to the basin of attraction of the influenza-free steady

state, such that Re < 1.
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3.2.2. Endemic equilibrium (EE). Let the influenza-present (endemic) steady state of the model

system (2.11) be delineated by E∗∗ = (S∗∗u , Si
∗∗, V∗∗, I∗∗1h, I∗∗2h, R∗∗, S∗∗b , I∗∗b ) and the forces of infection at

steady states be represented by λ∗∗h = βh(I∗∗1h + I∗∗b + θI∗∗2h) and λ∗∗b = βbI∗∗b . Solving the influenza

model (2.11) simultaneously in terms of λ∗∗h and λ∗∗b gives

S∗∗u =
Λh

λ∗∗h + k1
,

S∗∗i =
αΛh

(λ∗∗h + k1)[(1−ψ)λ∗∗h + k2]
,

V∗∗ =
σαΛh

µh(λ∗∗h + k1)[(1−ψ)λ∗∗h + k2]
,

I∗∗1h =
λ∗∗h Λh[(1−ψ)(λ∗∗h + α) + k3]

k3(λ∗∗h + k1)[(1−ψ)λ∗∗h + k2]
,

I∗∗2h =
λ∗∗h Λh[(1−ψ)(ρλ∗∗h + α) + ρk3]

k3k4(λ∗∗h + k1)[(1−ψ)λ∗∗h + k2]
,

R∗∗ =
λ∗∗h Λh([(1−ψ)(λ∗∗h + 1) + k2])(τ1k4 + τ2ρ)

µhk3k4(λ∗∗h + k1)[(1−ψ)λ∗∗h + k2]
,

S∗∗b =
Λb

λ∗∗b + µb
,

I∗∗b =
λ∗∗b Λb

µb(λ∗∗b + µb)
.

It follows, using I∗∗1h, I∗∗b , and I∗∗2h in λ∗∗h , that the non-trivial equilibria of the influenza model (2.11)

satisfies the cubic polynomial

a1(λ
∗∗)3 + a2(λ

∗∗)2 + a3λ
∗∗ + a4 = 0, (3.6)

where the coefficients a1, a2, a3, and a4 are given as follows

a1 = µbk3k4(1−ψ),

a2 = µbk1k3k4(k2 + (1−ψ)) −Λhβhµb(k4 + θρ)(1−ψ) + βhk3k4µ2
b(1−Rb)(1−ψ),

a3 =
µb

k1k2k3k4
(1−Rh) + k3k4µ2

b(1−Rb)(k2 + k1(1−ψ)),

a4 = k1k2k3k4µ2
b(1−Rb).
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It is imperative to mention that the cubic polynomial (3.6) demonstrates the likelihood of multiple

endemic steady states for the influenza model. It can be seen that the coefficient a1 of the cubic

polynomial remains positive with non-negative parameters, while coefficients a3 and a4 remain

negative whenever Rh > 1 and Rb > 1. Then, by Descartes’ rule of signs [27, 28], the polynomial

will always have a positive root, regardless of the signs of the coefficient a2, whenever Rh > 1 and

Rb > 1. Hence, the avian influenza model (2.11) has a unique influenza-present steady state at the

threshold Re = max{Rh,Rb} > 1.

3.3. Global asymptotic dynamics of influenza model. This subsection seeks to explore the be-

havior of the dynamics of the avian influenza model (2.11) as its solution tends to the influenza-free

and influenza-present equilibria.

3.3.1. Global stability of influenza-free equilibrium. Using the approach in [29–31], the system (2.11)

can be re-written as
dX
dt

= F(X, Z),

dZ
dt

= G(X, Z), G(X, 0) = 0,

(3.7)

where X ∈ R5
+ and Z ∈ R3

+. It is worth mentioning that X = (Su, Si, V, R, Sb) forms the component

of the uninfected populations, while Z = (I1h, I2h, Ib) represents the infected populations. The

avian influenza-free equilibrium of the model system (2.11) is delineated by E0 = (X0, 0), such

that its global asymptotic stability is established provided the following properties are met.

(P1): For
dX
dt

= F(X, 0), X∗ is globally asymptotically stable,

(P2): G(X, Z) = AZ− Ĝ(X, Z), Ĝ(X, Z) ≥ 0, for (X, Z) ∈ R8
+,

where A = ∂G/∂Z is a Metzler matrix with non-negative off diagonal elements evaluated at (X0, 0).

Theorem 3.2. The influenza-free equilibrium point, E0 = (X0, 0), of the avian influenza model (2.11) is
globally-asymptotically stable if the conditions (P1) and (P2) are satisfied.

Proof. The functions F(X, Z) and G(X, Z) are obtained from (3.7) as follows:

F(X, Z) =



Λh − βh (I1h + Ib + θI2h) Su − (α+ µh)Su

αSu− (1−ψ)βh (I1h + Ib + θI2h) Si − (σ+ µh)Si

σSi − µhV
τ1I1h + τ2I2h − µhR
Λb − βbSbIb − µbSb


, (3.8)

and

G(X, Z) =


βh (I1h + Ib + θI2h) (Su + (1−ψ)Si) − (ρ+ τ1 + µh)I1h

ρI1h − (τ2 + µh)I2h

βbSbIb − µbIb

 . (3.9)
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Then, dX/dt = F(X, 0) implies that

dSu

dt
= Λh − (α+ µh)Su,

dSi

dt
= αSu− (σ+ µh)Si,

dV
dt

= σSi − µhV,

dR
dt

= −µhR,

dSb

dt
= Λb − µbSb.

(3.10)

Now, solving system (3.10) simultaneously yields

Su(t) =
Λh

(α+ µh)
+

(
Su(0) −

Λh

α+ µh

)
e−(α+µh)t,

Si(t) =
αΛh

(σ+ µh)(α+ µh)
+

α

(σ− α)
(e−(α+µh)t − e−(σ+µh)t)

(
Su(0) −

Λh

α+ µh

)

+

(
Si(0) −

αΛh

(σ+ µh)(α+ µh)

)
e−(σ+µh)t,

V(t) =
σαΛh

µh(σ+ µh)(α+ µh)
+

σα

µh(σ− α)
(e−(α+µh)t − e−(σ+µh)t)

(
Su(0) −

Λh

α+ µh

)

+

(
V(0) −

Λh

(α+ µh)

)
e−µht +

(
Si(0) −

Λh

α+ µh

)
(e−µht

− e−(σ+µh)t),

R(t) = R(0)e−µht,

Sb(t) =
Λb

µb
+

(
Sb(0) −

Λb

µb

)
e−µbt.

(3.11)

Without minding the sizes of (Su(0), Si(0), V(0), R(0), Sb(0)) as t → ∞, it is perceived that

(Su, Si, V, R, Sb) → (S0
u, S0

i , V0, R0, S0
b). Therefore, X0 is globally asymptotically stable, satisfying

condition (P1). Furthermore, an M-matrix with non-negative off diagonal entries is given by

A =


βh(S0

u + (1−ψ)S0
i ) − k3 θβh(S0

u + (1−ψ)S0
i ) βh(S0

u + (1−ψ)S0
i )

ρ −(τ2 + µh) 0

0 0 (βbS0
b − µb)

 . (3.12)
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Then, Ĝ(X, Z) = AZ−G(X, Z) yields

Ĝ(X, Z) =


βh(I1h + I2h + Ib)(S0

u − Su) + (1−ψ)βh (I1h + Ib + θI2h) (S0
i − Si)

0

βbIb
(
S0

b − Sb
)

 . (3.13)

It is apparent that Ĝ(X, Z) ≥ 0, since 0 ≤ Su ≤ S0
u, 0 ≤ Si ≤ S0

i , and 0 ≤ Sb ≤ S0
b. Thus, condition

(P2) is preserved. Hence, it is sufficient to conclude that the influenza-free equilibrium, E0, of the

influenza model (2.11) is globally-asymptotically stable. This completes the proof. �

Consequently, from the epidemiological viewpoint, Theorem 3.2 implies that, avian influenza

virus infection could be eliminated from the population regardless of the initial numbers of non-

isolated and isolated infectious humans and infectious birds if Re < 1. See Figure 2 for pictorial

representation of the convergence of trajectories of non-isolated and isolated infectious humans

and infectious birds to the influenza-free equilibrium point asymptotically at various initial sizes.

This practically implies that elimination of influenza is achievable in the population.
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Figure 2. Convergence of trajectories of active infectious humans (isolated and non-

isolated) and infectious birds at different values of initial data. Parameter values

given in Table 3 are used, so that Rh = 0.2033 < 1 and Rb = 0.5556 < 1.
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3.3.2. Global stability of endemic equilibrium.

Theorem 3.3. The unique influenza-present (endemic) equilibrium point, E∗∗, of the avian influenza
model (2.11) is globally asymptotically stable if the effective reproduction number, Re, is more than unity.

Proof. Consider a quadratic Lyapunov function defined by (see, [31, 32])

L = 1
2

[
(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)

]2

+ 1
2

[
(Sb − S∗∗b ) + (Ib − I∗∗b )

]2
.

(3.14)

Taking the time derivative of the Lyapunov function (3.14) gives

L̇ = [(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)]

×
d
dt
(Su + Si + V + I1h + I2h + R) + [(Sb − S∗∗b ) + (Ib − I∗∗b )] ×

d
dt
(Sb + Ib),

= [(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)]

×(Λh − µ(Su + Si + V + I1h + I2h + R)) + [(Sb − S∗∗b ) + (Ib − I∗∗b )]

×(Λb − µb(Sb + Ib)),

L̇ ≤ −µh[(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)]

×

(
(Su + Si + V + I1h + I2h + R) −

Λh

µh

)
− µb[(Sb − S∗∗b ) + (Ib − I∗∗b )]

×

(
(Sb + Ib) −

Λb

µb

)
.

(3.15)

Now, using the limiting values N∗∗h = Λh/µh and N∗∗b = Λb/µb, respectively, it follows that (3.15)

becomes

L̇ ≤ −µh[(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)]

×[(Su + Si + V + I1h + I2h + R) − (S∗∗u + S∗∗i + V∗∗ + I∗∗1h + I∗∗2h + R∗∗)]

−µb

[
(Sb − S∗∗b ) + (Ib − I∗∗b )

]
× [(Sb + Ib) − (S∗∗b + I∗∗b )],

= −µh

[
(Su − S∗∗u ) + (Si − S∗∗i ) + (V −V∗∗) + (I1h − I∗∗1h) + (I2h − I∗∗2h) + (R−R∗∗)

]2

−µb

[
(Sb − S∗∗b ) + (Ib − I∗∗b )

]2
.

(3.16)
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Clearly, the continuously differentiable function L defined in (3.14) is a Lyapunov function

since its time-derivative is negative semi-definite, implying that, L̇ ≤ 0. Moreover, L̇ = 0, if

Su = S∗∗u , Si = S∗∗i , V = V∗∗, I1h = I∗∗1h, I2h = I∗∗2h, R = R∗∗, Sb = S∗∗b , and Ib = I∗∗b . Then, the largest

invariance set for which L̇ = 0 is the singleton {E∗∗}. It therefore follows by invoking the spirit

of LaSalle’s invariance principle [33], that the influenza-present equilibrium point, E∗∗, is globally

asymptotically stable. This wraps up the proof. �

The global asymptotic stability of endemic equilibrium, E∗∗, presented in Theorem (3.3) indicates

that the spread of influenza infection will persist in the population whenever the associated

effective reproduction number,Re, transcends unity, notwithstanding the initial sizes of the isolated

and non-isolated human and bird populations of the system (2.11). This result is quantitatively

buttressed as presented in Figure 3.

0 20 40 60 80 100 120 140 160 180 200

time (days)

0

0.5

1

1.5

2

2.5

3

I 1
h
(t

)

10
5

(a)

0 20 40 60 80 100 120 140 160 180 200

time (days)

0

1

2

3

4

5

6

I 2
h
(t

)

10
4

(b)

0 20 40 60 80 100 120 140 160 180 200

time (days)

0

2

4

6

8

10

12

14

I b
(t

)

10
4

(c)

Figure 3. Convergence of trajectories of infectious (isolated and non-isolated) hu-

mans and infectious birds at different values of initial data. Parameter values given

in Table 3 are used except that Λh = 700 and Λb = 10000, so that Rh = 4.7437 > 1

and Rb = 5.556 > 1.

4. Analysis of Optimal Control Problem

In an attempt to fight against the evolution of avian influenza transmission in the population,

an optimal control framework is designed such that the constant parameter, ψ, which measures
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Table 3. Description and values of parameters of the model.

Parameters Values References

Λh 30 [8, 38]

Λb 1000 [8, 38]

βh 6× 10−7 [8, 38]

βb 2× 10−6 [8, 38]

µh
1

70×365 [8, 38]

µb 0.06 Assumed

α 0.002 Assumed

τ1 0.05 [8, 38]

θ 0.55 Assumed

ψ 0.007 Assumed

τ2 0.07 Assumed

σ 0.005 Assumed

ρ 0.02 Assumed

the rate of adherence to precautionary education on influenza becomes a time-dependent control,

0 ≤ ψ(t) ≤ 1, while the constant vaccination rate, σ, becomes a time-dependent control 0 ≤ σ(t) ≤ 1.

Other two time-dependent control interventions including, anti-viral treatment, 0 ≤ Uh(t) ≤ 1,

and culling (removal of sick or infected birds from the flock), 0 ≤ Ub(t) ≤ 1, are incorporated.

Consequently, the autonomous system of equations describing the transmission dynamics of avian

influenza given in (2.11) is transformed to non-autonomous system given by

dSu

dt
= Λh − βh (I1h + Ib + θI2h) Su − (α+ µh)Su,

dSi
dt

= αSu− (1−ψ(t))βh (I1h + Ib + θI2h) Si − (σ(t) + µh)Si,

dV
dt

= σ(t)Si − µhV,

dI1h
dt

= βh (I1h + Ib + θI2h) Su + (1−ψ(t))βh (I1h + Ib + θI2h) Si − (ρ+ τ1 + µh)I1h,

dI2h
dt

= ρI1h − (τ2 + c0Uh(t) + µh)I2h,

dR
dt

= τ1I1h + (τ2 + c0Uh(t))I2h − µhR,

dSb
dt

= Λb − βbSbIb − µbSb,

dIb
dt

= βbSbIb − µbIb −Ub(t)Ib.

(4.1)
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The control dynamical system (4.1) is analysed via the optimal control theory using the well-

known Pontryagin’s Maximum Principle [34–37]. Of particular interest is to find an optimal

solution for problem of minimizing the populations of isolated and non-isolated infectious humans

and birds, while minimizing the associated cost of the intervention implementation. Thus, the

performance index, J, needed to execute this over a fixed time window [0, T f ] is given by

J =

∫ T f

0

(
A1I1h + A2I2h + A3Ib +

1
2
(B1ψ

2(t) + B2σ
2(t) + B3U2

h(t) + B4U2
b(t))

)
dt, (4.2)

where, Ai, (i = 1, 2, 3) are the positive weight constants for non-isolated infectious human, isolated

infectious human, and infectious birds, respectively. Bi, (i = 1, 2, 3, 4), are the balancing weight

constants for the control interventions ψ(t), σ(t), Uh(t) and Ub(t), respectively. The costs of imple-

menting each of the control interventions are, respectively, represented by 1/2B1ψ2(t), 1/2B2σ2(t),
1/2B3U2

h(t), and 1/2B4U2
b(t). It should be mentioned that the cost functions are in quadratic form

as used in the previous studies on optimal control in the literature [38–41]. As a consequence of

the foregoing, it becomes essential to seek an optimal control quadruple, (ψ∗, σ∗, U∗h, U∗b) such that

J(ψ∗, σ∗, U∗h, U∗b) = min{J(ψ, σ, Uh, Ub) : (ψ, σ, Uh, Ub) ∈ U}, (4.3)

subject to the state system (4.1), where the control set is given by a Lebesgue measurable U =

{(ψ(t), σ(t), Uh(t), Ub(t)) : 0 ≤ ψ(t), σ(t), Uh(t), Ub(t) ≤ 1, and t ∈ [0, T f ]}.

4.1. Characterization of Optimal Control. The Hamiltonian, H, needed for the characterization
of the optimal control quadruple (ψ∗, σ∗, U∗h, U∗b) for the minimization problem (4.3) is given by

H = A1I1h + A2I2h + A3Ib + 1/2(B1ψ2(t) + B2σ2(t) + B3U2
h(t) + B4U2

b(t))

+λ1(Λh − βh (I1h + Ib + θI2h) Su − (α+ µh)Su)

+λ2(αSu− (1−ψ(t))βh (I1h + Ib + θI2h) Si − (σ(t) + µh)Si, )

+λ3(σ(t)Si − µhV)

+λ4(βh (I1h + Ib + θI2h) Su + (1−ψ(t))βh (I1h + Ib + θI2h) Si − (ρ+ τ1 + µh)I1h)

+λ5(ρI1h − (τ2 + c0Uh(t) + µh)I2h)

+λ6(τ1I1h + (τ2 + c0Uh(t))I2h − µhR)

+λ7(Λb − βbSbIb − µbSb),

+λ8(βbSbIb − µbIb −Ub(t)Ib),

(4.4)
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where λi, i = 1, 2, ..., 8, are called adjoint variables corresponding to the state variables Su, Si, V,

I1h, I2h, R, Sb, and Ib of the avian influenza system (4.1). Then, the following existence result is

claimed.

Theorem 4.1. Given an optimal control (ψ∗(t), σ∗(t), U∗h(t), U∗b(t)) and solutions of the corresponding
state system (4.1) satisfying (4.3), then there exist adjoint variables λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8

satisfying the adjoint system given by

dλ1

dt
= βh (I1h + Ib + θI2h) (λ1 − λ4) + α(λ1 − λ2) + µhλ1

dλ2

dt
= (1−ψ(t))βh (I1h + Ib + θI2h) (λ2 − λ4) + σ(t)(λ2 − λ3) + µhλ2

dλ3

dt
= µhλ3

dλ4

dt
= βhSu(λ1 − λ4) + (1−ψ(t))βhSi(λ2 − λ4) + ρ(λ4 − λ5) + τ1(λ4 − λ6) + µhλ4 −A1

dλ5

dt
= βhθSu(λ1 − λ4) + (1−ψ(t))βhθSi(λ2 − λ4) + (τ2 + c0Uh(t))(λ5 − λ6) + µhλ5 −A2

dλ6

dt
= µhλ6

dλ7

dt
= βbIb(λ7 − λ8) + µbλ7

dλ8

dt
= βhSu(λ1 − λ4) + (1−ψ(t))βhSi(λ2 − λ4) + βbSb(λ7 − λ8) + (µb + Ub(t))λ8,

(4.5)

with transversality conditions

λi(T f ) = 0, i = 1, 2, ..., 8, (4.6)

and control characterizations

ψ(t)∗ = min
{

max
{

0,
βh (I1h + Ib + θI2h) Si(λ4 − λ2)

B1

}
, 1

}
,

σ(t)∗ = min
{

max
{

0,
Si(λ2 − λ3)

B2

}
, 1

}
,

Uh(t)∗ = min
{

max
{

0,
c0I2h(λ5 − λ6)

B3

}
, 1

}
,

Ub(t)∗ = min
{
max

{
0,
λ8Ib

B4

}
, 1

}
.

(4.7)
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Proof. The adjoint equations in (4.5) are generated by partially differentiating the Hamiltonian (4.4)

with respect to the corresponding state variables as follows

dλ1

dt
= −

∂H

∂Su
, λ1(T f ) = 0;

dλ2

dt
= −

∂H

∂Si
, λ2(T f ) = 0;

dλ3

dt
= −

∂H

∂V
, λ3(T f ) = 0;

dλ4

dt
= −

∂H

∂I1h
, λ4(T f ) = 0;

dλ5

dt
= −

∂H

∂I2h
, λ5(T f ) = 0;

dλ6

dt
= −

∂H

∂R
, λ6(T f ) = 0;

dλ7

dt
= −

∂H

∂Sb
, λ7(T f ) = 0;

dλ8

dt
= −

∂H

∂Ib
, λ8(T f ) = 0.

In addition, the optimal control characterization (4.7) is derived by solving for ψ∗(t), σ∗(t), U∗h(t),
and U∗b(t), respectively, from the optimality conditions

∂H

∂ψ
= B1ψ∗ + βh (I1h + Ib + θI2h) Si(λ2 − λ4) = 0,

∂H

∂σ
= B2σ∗ + Si(λ3 − λ2) = 0,

∂H

∂Uh
= B3U∗h + c0I2h(λ6 − λ5) = 0,

∂H

∂Ub
= B4U∗b − λ8Ib = 0.

(4.8)

It therefore follows by invoking the spirit of standard arguments involving the bounds on con-

trols [42, 43] that

ψ∗ =


Ψ∗1, for 0 < Ψ∗1 < 1

0, for Ψ∗1 ≤ 0

1, for Ψ∗1 ≥ 1,

σ∗ =


Ψ∗2, for 0 < Ψ∗2 < 1

0, for Ψ∗2 ≤ 0

1, for Ψ∗2 ≥ 1,

U∗h =


Ψ∗3, for 0 < Ψ∗3 < 1

0, for Ψ∗3 ≤ 0

1, for Ψ∗3 ≥ 1,

and

U∗b =


Ψ∗4, for 0 < Ψ∗4 < 1

0, for Ψ∗4 ≤ 0

1, for Ψ∗4 ≥ 1,

where

Ψ∗1 =
βh (I1h + Ib + θI2h) Si(λ4 − λ2)

B1
,

Ψ∗2 =
Si(λ2 − λ3)

B2
,

Ψ∗3 =
c0I2h(λ5 − λ6)

B3
,

Ψ∗4 =
λ8Ib

B4
.

This completes the proof. �
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Figure 4. Effect of transmission probability of influenza infection in human on the

evolution of non-isolated infectious, isolated infectious, and vaccinated classes.

4.2. Simulations and discussions. Here, numerical simulations are performed using the param-

eter values that correspond to the asymptotic stability of influenza-present equilibrium (see, Fig-

ure 3). The influence of certain epidemiological parameters of the model are examined. In

particular, the effect of transmission probability, βh, of infection in human is examined on the be-

havior of infectious (isolated and non-isolated) and recovered humans, accordingly as presented

in Figure 4. It is observed that the magnitudes of non-isolated and isolated infectious humans

and recovered population increase with time as transmission probability, βh, increases, implying

that influenza virus disease will be more prevalent if efforts are not put in place to hamper its

transmission probability.

In a similar manner, Figure 5 showcases the effect of transmission probability, βb, of infection in

birds on the population of non-isolated and isolated infectious human and infectious birds. It can be

seen that increase in transmission probability of influenza in birds increases the populations of non-

isolated and isolated infectious humans and infectious birds. This suggests that, the elimination

of influenza in the population will be difficult if its transmission in the avian population is not

hindered. In another perspective, the influence of progression rate of uninformed susceptible to

informed class on the populations of non-isolated and isolated infectious and vaccinated humans

is depicted in Figure 6. It is easy to see that increase in the progression of individuals to the

informed class as a result of public awareness campaign leads to a corresponding reduction in
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Figure 5. Effect of transmission probability of influenza infection in birds on the

evolution of non-isolated and isolated infectious humans and infectious birds.

the populations of non-isolated and isolated infectious humans and vaccinated human. This

corroborates the importance of disease awareness programs or public enlightenment campaigns

in battling the spread of influenza in the population.

In another dimension in Figure 7, it is shown that the bird (avian) reproduction number, Rb,

increases from 0.5 to 4.0 as the recruitment rate into the bird population increases in the interval

1000 ≤ Λb ≤ 8000, while increase in the value of natural mortality for birds in the interval

0.06 ≤ µb ≤ 0.1 leads to a corresponding decrease in the value of avian reproduction number

from Rb = 4.0 to Rb = 0.5. Implying that while increase in recruitment of birds enhances the

potential spread of infection from influenza-free state to influenza-present state, increase in deaths

of birds slow down the spread strength of the infection. In a similar spirit, Figure 8 depicts

how both modification parameter due to infectiousness in isolated infectious individuals, θ, and

spontaneous recovery rate, τ1, affect human reproduction number, Rh. One sees that an increase

in the value of θ increases the value of Rh, thereby making the transmission of influenza infection

more rampant in the population, while an increase in the value of τ1 decreases the value of Rh,

suggesting elimination of influenza in the population if effective treatment is available.

Furthermore, simulations are performed to illustrate the significance of the four time-dependent

optimal control functions in the non-autonomous avian influenza dynamic system. This is done by

coupling the control dynamical system (4.1) and the adjoint system (4.5) with their corresponding
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Figure 6. Effect of progression rate uninformed to informed susceptible on the

evolution of non-isolated infectious, isolated infectious, and vaccinated classes.
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Figure 7. 2D contour plot showing the influence of birds recruitment rate and

natural mortality rate on the avian reproduction number.
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Figure 8. 3D plot showing the influence of modification parameter due to infec-

tiousness in isolated infectious human and recovery rate due to treatment on the

reproduction number of the avian influenza model.

initial (2.12) and transversality conditions (4.6) to form the optimality system. The so derived opti-

mality system is solved using the forward-backward fourth order Runge-Kutta method following

the iterative procedure made available in [44, 45]. The initial conditions of the state variables at

time, t = 0, are taken as Su(0) = 231279, Si(0) = 13000, V(0) = 6500, I1h(0) = 3000, I2h(0) =

1000, R(0) = 200, Sb(0) = 10000 and Ib(0) = 4000. The time frame for the simulation of the op-

timality system is taken as [0, 150] in days, while the values of the weight constants used in the

performance index are chosen as A1 = 10, A2 = 50, A3 = 20, B1 = 100, B2 = 200, B3 = 100,

B4 = 150 and the rate constant c0 = 0.7.

Consequently, the impact of combining any three of the control interventions are explored on the

transmission dynamics of avian influenza model (4.1). The combined effects of the interventions

ψ(t), σ(t) and Uh(t) on the incidence of non-isolated and isolated infectious populations are

depicted in Figure 9. It is observed that the sizes of non-isolated and isolated infectious classes

reduce when control interventions are maximally implemented compared to the case when control

interventions are not activated. It should be mentioned that a significant reduction is observed

in the population of infectious individuals in isolation, suggesting that isolation plays a pertinent

role in curtailing the dynamics of influenza in the population. The control profile displayed

in Figure 9(c) implies that combination of control interventions ψ(t), σ(t) and Uh(t) should be

maintained at maximum (100%) within the first 55 days, 145 days, and 150 days, respectively,

before gradually declining to zero at the final time.

In Figure 10, control interventions ψ(t), σ(t) and Ub(t) are combined to combat the transmission

dynamics of avian influenza in the population. It is easy to see that the magnitude of non-isolated

and isolated infectious human reduce significantly when control interventions are implemented.

This epidemiologically implies that the combination of the three control interventions should be
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Figure 9. Behavior of avian influenza system (4.1) in the presence of optimal com-

bination of interventions ψ(t), σ(t) and Uh(t).

encouraged to successfully fight against the spread of influenza in the population. In addition,

a drastic reduction is noticed in the population size of the infectious birds when the controls

are in place compared to the case when their is no consideration for control interventions. This

emphasizes the importance of including culling of infected birds in the fight against the spread

of the disease in avian population. The control profile given in Figure 10(d) shows that all the

interventions should be maximally maintained at 100% within the first 2 days, 10 days, and

145 days of the implementation period before retracing to zero in the final time. In a related

approach, Figure 11 shows the impact of the optimal implementation of control interventions

ψ(t), Uh(t) and Ub(t) on the infectious populations of the influenza model (4.1). One sees that

the population sizes of the infectious human and birds reduced significantly when intervention

strategies are implemented. Figure 11(d) is the pictorial representation of the control profile for the

interventions and it is shown that optimal implementation of interventions ψ(t) and Uh(t) should

be encouraged at maximum 100% throughout the entire period of implementation, while control

Ub(t) should be kept optimally within the first 10 days of implementation to guarantee optimal

result.
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Figure 10. Effect of combination of control interventionsψ(t), σ(t) and Ub(t) on the

avian influenza system (4.1).

Moreover, Figure 12 shows the most significant reduction in the numbers of populations of

non-isolated and isolated infectious humans and infectious birds accordingly, when control inter-

ventions σ(t), Uh(t) and Ub(t) are implemented. This affirms the need to combine vaccination,

anti-viral treatment and culling in order to successfully hamper the spread of avian influenza in

the population. The control profile depicting the optimal implementation of the interventions σ(t),
Uh(t) and Ub(t) shows that optimal solution is achievable if the interventions σ and Ub could be

optimally maintained at maximum 100% within the first 10 days and 120 days of implementation

before gradually reducing to zero in the final time. Whereas, control Uh(t) must be kept at the

upper bound throughout the implementation period.

5. CONCLUSION

In this study, a new deterministic mathematical model governed by a system of nonlinear

ordinary differential equations for the transmission dynamics of avian influenza virus has been

formulated and analysed. The developed model requires the interaction between human and avian

(bird) populations, therefore, the model describes how avian influenza spread affects the total hu-

man and bird populations using the concept of a simple Susceptible-Infectious-Recovered model.

The model stratified the susceptible class into the population of uninformed and informed individ-

uals and the infectious population is sub-categorized into isolated and non-isolated individuals.
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Figure 11. Behavior of the avian influenza system (4.1) in the presence of optimal

combination of interventions ψ(t), Uh(t) and Ub(t).

Thus, the total human population on the one hand is stratified into six mutually exclusive classes,

including uninformed susceptible class, informed susceptible class, vaccinated class, non-isolated

infectious population, isolated infectious compartment, and recovered class. While the total birds

population on the other hand is subdivided into susceptible and infectious compartments. The

model was qualitatively analysed based on the application of dynamical systems methodologies

and optimal control theory.

The autonomous influenza model was shown to have a globally asymptotically stable disease-

free equilibrium point when the effective reproduction number is less than unity. Moreover, the

avian influenza model was shown to have a unique endemic equilibrium point, which is globally

asymptotically stable when the effective reproduction number is more than unity.

The analysis of the control dynamical system with four time-dependent control interventions,

namely precautionary education, vaccination, treatment control with anti-viral drugs and culling of

infected birds in the flock, was explored to examine the behavior of trajectories of infectious humans

and birds in comparison with the case without controls. The combinations of any three control

strategies were considered, and it was observed that the presence of each control combination has

the ability to stem down the magnitudes of non-isolated infectious, isolated infectious individuals

as well as the infectious birds in the population at minimum cost of control implementation. In
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Figure 12. Behavior of the avian influenza model (4.1) in the presence of optimal

combination of interventions σ(t), Uh(t) and Ub(t).

particular, it was discovered that the potential spread of avian influenza could be significantly

curbed in the population if intervention efforts such as vaccination, isolation with treatment and

culling of sick birds could be combined and optimally implemented.
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