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Abstract. In this article, we study g-frames in Hilbert C*-modules and investigate conditions under which the sum of
two g-frames (or a g-frame and a g-Bessel sequence) remains a g-frame. We also address the stability of g-frames under
certain perturbations and provide illustrative examples in the context of C*-algebras. Our results unify and extend
many of the existing theorems on g-frames, focusing on the invertibility of associated operators as a key condition for

guaranteeing that sums of g-frames preserve the g-frame property.

1. INTRODUCTION

Frames for classical Hilbert spaces were introduced by Duffin and Schaeffer [5] in 1952 to research
certain difficult nonharmonic Fourier series problems, following the fundamental paper [4] by
Daubechies, Grossman and Meyer, frame theory started to become popular, especially in the
more specific context of Gabor frames and wavelet frames. Wenchang Sun [24] introduced the
generalized frame, or g—frame, for a Hilbert space. Recently, D. Li and J. Leng [11] introduced
Operator representations of g—frames in Hilbert spaces. Controlled g—frames in Hilbert C*-
modules have been investigated by N. K. Sahu [23]. The notion of Approximate Oblique Dual
g—frames for Closed Subspaces of Hilbert Spaces can be found in [3]. Inspired by aspects of frames
and g—frames, We give new results on g—frames for Hilbert C*—~modules. For more detailed
information on frame theory, readers are recommended to consult: [2,6,8,10,12,13,15-22].

Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take

values in a C*-algebra rather than in the field of complex numbers.
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Let’s now review the definition of a Hilbert C*-module, the basic properties and some facts

concerning operators on Hilbert C*-module.

Definition 1.1. [7] Let A be a unital C*— algebra and H be a left A— module, such that the linear
structures of A and H are compatible. H is a pre-Hilbert A module if H is equipped with an A—valued
inner product -,y : H X H — A such that is sesquilinear, positive definite and respects the module
action. In the other words,

1-(,x)a>0,Vx e Hand (x,x)a = 0if and only if x = 0.

2 -ax+y,2)a =alx,2)a +y,z)a foralla € Aand x,y,z € H

3 -, Pa =y, x)yforallx,y € H.
For x € H, we define ||x|| = ||, x);;H%. If H is complete with ||.||, it is called a Hilbert A—module or a
Hilbert C*—module over ‘A. For every a in C*—algebra A, we have |a| = (a*a)% and the A—valued norm on
H is defined by |x| = (x, x}%qfor xeH.

Lemma 1.1. [14] Let H be a Hilbert A-module. If T~ € End’;(H), then
(Tx, Tx)a < IT1Px, ), Vx € H.

Lemma 1.2. [1] Let ‘H and K two Hilbert A-modules and T~ € End"(H,K). Then the following
statements are equivalent

(1) 7T is surjective.

(2) 7 is bounded below with respect to norm, i.e., there is m > 0 such that m||x|| < ||7*x|| for all x € K.

(3) T is bounded below with respect to the inner product, i.e., there is m" > 0 such that m’{x,x) <
(T*x,Tf) forall x € K.

Throughout the paper, let © be a finite or countably index set and we consider H, K be two
Hilbert A-modules. Amap 7 : H — K is said to be adjointable if there existsamap 7" : K — H
such that (T x, y)a = (x, 7 *y)a for all x € H and y € K. Let H; be a family of Hilbert A-modules
indexed by C € O, the collection of all adjointable A-linear maps from H to H; is denoted by
End’, (H,H;) and End’y(H, H) is abbreviated to End’y(H).

Definition 1.2. [7] A collection {x¢}cco C H is called a frame for H. If there exist two positive constants
A and B such that for all x € ‘H,
A,0)a < Y (6 xda(ie ¥)a < B, fa, (11)

CeO®

Definition 1.3. [9] A sequence (Y € End 4 (H, H;) : C € O} is said a g—frame for H with respect to
{H; : C € ©}. If there exist two positive constants A and B such that for x € H,
A x)a< Y (Fox, ¥eha < Bz, (1.2)
(e®
The numbers A and B are called lower and upper bounds of the g—frame, respectively. If A = B = v, the
g—frame is v—tight. If A = B = 1, it is called a g-Parseval frame. If olny the right-hand inequality (1.2)
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is satisfied, the family {¥Y¢ € Endz(H, H;) : C € O} is called a g—Bessel sequence for H with g—Bessel
bound B.

Let (¥ € Endy(H, H;) : C € O} be a g—Bessel sequence for H. We define the analysis 77, the
synthesis operator 7 and the g—frame operator S as follows: 7* : H — P cco Ho, T7x = {¥exlceo,
T - @C€® He = H, T ({ydeeo) = L ¥iy and S : H — H is given by Sx = } ¥} ¥cx for all

(e®

(e®
x e H.

2. MaiIN Resurt

Proposition 2.1. Let {¥; € Endg(H, H;) : C € O} be a g—Bessel sequence for H with the g—frame
operator S. Then, (¥ ¢}ceo is a g—frame for H with respect to {H¢)ceo if and only if S > al for some o > 0.

Proof. Suppose {¥¢}cco is a g—frame for H, we have for some a > 0,
alx, x)q < Z(‘I’Cx,‘i’cx)g{, Vx e H.
Ce®
For any x € H, we have
Y (Fox, ¥orya =) (¥r¥ex,x)a = (Sx, 1)z
(€=C) (O
Therefore, al < S.

Suppose {¥¢}cco is a g—Bessel sequence for H and there exists some @ > 0 such that S > al.

Thus, we have
<0(IX, x>ﬂ < <le x>ﬂ

for all x € H, this implies

(alx, xya < () ¥r¥ex, ).
Ce®
Then, the lower condition holds:
alx, x)q < Z(‘I’Cx, Yx)a, VxeH.
Ce®
O

Corollary 2.1. The g—Bessel sequence {¥¢ € Endgz(H, Hc) : C € O} with the g—frame operator S is a
g—frame for H if and only if S > 0.

Lemma 2.1. Let {Y¢ € End(H, H;) : C € O} be a g—Bessel sequence for H, with the synthesis operator
T and the g—frame operator S. Then T~ is surjective if only if S > 0.

Proof. Let {Y¢ € Endq(H, H;) : C € O} be a g—Bessel sequence for H. Assume that 7" is surjective,
by Lemma 1.2 there is @ > 0 such that for any x € H,

(Tx, T x)7 > al{x, X)A.
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Therefore
(TTf, a2 f, a

Hence S > al. So by Proposition 2.1 and Corollary 2.1 we conclude that S > 0.
Conversely suppose that the g—frame operator S > 0, by Corollary 2.1 {¥; € End;(H, H;) : C €

©} is a g—frame for H. According to Theorem 3.2 in [25], we conclude that 7 is surjective. m]

Theorem 2.1. Let {¥; € End i (H, H) : C € O} be a g—frame for H with bounds A, B, with the g—frame
operator S. If A € End’y(H) such that (I+ A)*S(I+ A) > S. Then {Y¢ + Y Alceo is a g—frame for H.

Proof. Assume that {¥¢}cce be a g—frame and A € End’,(H) is bounded. We have for any x € H,

A{x,x)q < Z(‘I’Cx,‘l’cx)y{ < B{x,x)#

(e®
and
(Ye+AY)x, Yo+ AY)x0)a = (Yex, Yexya + (YeAx, Yo Axya + (Fex, YeAx)a
+(YcAx, ¥Yex)a
<2((Yex, Yex)a + (YeAx, Y Ax)7)
Therefore

Y ((Fo+ A¥O)x, (¥ + A¥)0a < 2| Y (Fox, ¥erya+ Y (FeAx, ¥eAx)
Ce® eO® [€=C)

< 2B(1 + IAIP){x, x)a.

Thus, {¥¢ + ¥ Alcco is a g—Bessel sequence. Since {¥¢}cc is a g—frame for H, by Proposition 2.1,
for some o > 0, we have S > al. Also, for every x € H, we get
Y (Yo A¥)' (Yo + A¥e) = ) (¥i¥e + ¥i¥eA + AY ¥+ ATYIYA)
(e® e®
=S+ SA+AS+ASA

= (I+A)S(I+A)

Then,

P=S+SA+AS+ANSA=(I+A)SI+A)=S
Hence the operator P is the g—frame operator of {Y; + Y A}cco. So, P > al for some a > 0. Using
proposition 2.1 we obtain {¥; + Y Alcco is a g—frame for H with respect to {H;}cco. m]

Theorem 2.2. Let ¥ = (¥(}ce@ and A = {A¢)cco are two g—Bessel sequences for H with the synthesis
operators T, T and the g—frame operators Sy, S, respectively. If M, N € Endy(H), then the following
conditions are equivalents:

(1) {¥cM + A¢Nlceo is a g—frame for H.

(2) M*Ty + NT a is surjective.

() S = M'S¢M + M TyT (N + NTAT$M + N*SAN > 0.
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Then, S is the g—frame operator of {¥:M + A¢N}cco.

Proof. Let Dy, D, be g—Bessel bounds of ¥ and A, respectively. Since M, N are bounded, for any

x € H, we have

N ((FM + AN)x, (T M+ AN)x) A <2| Y (AN, ANx) A+ Y (FcMx, M)z
[€SC) e® e®

< 2(D1IMI + DlINIP){x, ).

Then, {¥:M + A¢N}cco is a g—Bessel sequence for H.
If 7 is the synthesis operator of {Y:M + A¢N}cco, then we have

T x ={(YM+ AcN)xlceo = ToMx + T Nx, Vx € H.
ie. T = MTy+ NT,.
By Lemma 2.1, the conditions (1) and (2) are equivalents. Moreover, we have
S =TT = M'SgM + MT¥T;N + N'TATGM + N*SpN > 0.
Therefore, the conditions (2) and (3) are equivalent.

O

Corollary 2.2. Let ¥ = {Y¢}cco and A = {Ac}ceo are two g—Bessel sequences for H with the synthesis
operators T, T and the g—frame operators Sy, Sa, respectively. If TwT , is positive, then {Y¢ + Aclceo
is a g—frame for H with respect to {H}cco.

Proof. If M = N = I in Theorem 2.2, then the g—frame operator of the g—Bessel sequence {¥Y; +
Atlceo is as follows:

S = TI}'T\; + T\FTE + TATI;
= Sy +7~1{I7-Z +TA7~1;I +Sp > 0.
O

Let¥ = {Y¢)cco and A = {A¢}cco are two g—Bessel sequences for H. In the following theorems,
We give sufficient conditions for the sequences {O¢}cece and {6¢}cce Which imply {0 Y ¢ + 6cAc)ceco
is a g—frame for H.

Theorem 2.3. Let {Y; € End’y(H, Hc) : C € O} be a g—frame for H with bound D and D', let {A¢}cco
be a g—Bessel sequence for H with Bessel bound Da. Suppose that {O¢}cco and {Oclcco are two sequences
from the algebra A such that 0 < A < |0¢?,16¢> < B < oo. If BDp < AD, then {6:¥¢ + 6:A¢)ceo is a
g—frame for H with respect to {Hc}cco.

Proof. We have for any x € ‘H,

Y (0¥ +6cA)x, (0c¥c + 6cA)xha < 2| ) (OcA, 5chxda+ Y (Oc¥cx, 0¥ )z
Ce® €O €O
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< ZB(DA + D')(x, X)A.

And for every x € H, we obtain

1Y ((0c¥c +0cA0)x, (0¥ + oA Al 2 1| Y (OF)x, (0¥ )x)All

CeO® (€O
DN CIEACTEPE
(e®
( VAD — +/BD,)|Ix]|.
Therefore {0:¥ ¢ + 0cAc}ceo is a g—frame for H with respect to {Hc}cco- m]

Theorem 2.4. Let ¥ = {Y(}ceo and A = {Ac)ceo be two g—frames for H with the synthesis operators
Tw, Ta, respectively. Suppose that {Oc}cco and {Oc}ceo are two sequences from the algebra A such that
0 <A <6, 16¢/* < B < oo. If T¢T, is positive, then {0c¥ ¢ + 6¢Ac)cee is a g—frame for H with respect
to {H¢}ceo-

Proof. As in the proof of Theorem 2.3 {0:Y + 6:A¢}cco is a g—Bessel sequence for H with respect
to {Hlceo. For every x € H

Z((Qc‘ﬂ: + 5(:Ac)x, (QC‘PC + 6@A(7)x>y{ = Z<6CAer OcAcx)a + Z(Q(}Y(:x, OcYcx)a

Ce® [€<C) €G]
+ Z<6C‘FCx/ 5cAcx>gﬂ + Z<5cAcx, QCTCx>ﬂ
(€O (e®

> A [Z(Acx, M)A+ Y (Yo, ¥ox)

[€=C) [=5C)

+minflocOcl, 10cocl [Z(‘ch M)A+ Y (Bex, ¥ex)m
[€S(C) [€=C)

=A Z(Acx, Acx)a + Z(Tcx, Yox)a

[€<(S) €O

+ minlI0cOcl 0cocl) ((T¥ T3, 10 + (TaTix,10).

Then, we have

Y {(Oc¥c +5cAo)x, (0¥ + 6cA))A = A [Z(‘ch, Yooa+ Y (Acx, A(;xm) > Aa + B){x, ).
Ce® Q) €(C)

Where a and f is a lower g—frames bounds of ¥ and A respectively. m]
Corollary 2.3. Let ¥ = {Y¢)ceo and A = {Ac)ceo are two tight g—frame for H with the synthesis

operators Ty, T respectively. If Ty T = 0, then {Y¢ + Aclceo is a tight g—frame for H with respect to
{Hc}ceo.
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Proof. Using the proof of Theorem 2.4, for every x € H we have

Z( (Yo +A0x, (Yo +Ag)x)a = Z(Acx Acx)a+ Z(‘ch Y)a)
Ce® [€<C)] [€<C)]

= (a1 + a2){x, X)a.
Where Y (Ycx, Yex)a = a1{x, x)z and Y, (Acx, Acx)a = ax{x, x)A. O
CeO® (O
Theorem 2.5. Let ¥ = {Y¢}cco be a g—frame for H and A = {A¢}cco be a g—Bessel sequence for H with

the synthesis operators T, T, respectively and TwT , is positive. If A € Endz(H) is an isometry, then
(Y + Aclceo is a g—frame for H with respect to {Heolcco-

Proof. Similar to the proof of Theorem 2.2, let A be alower g—frame bound of ¥ and {(¥: + A¢) A}ceo
is a g—Bessel sequence for H with respect to {H;}co. For every x € H, we have

Y (¥ + DA, (Fc + D) A)a = Y (AcAx, AcAxda+ Y (FcAx, FeAx)

Ce® Ce® Ce®
4 Z(‘I’CAx, AcAx)a + Z(ACAx, Y Ax)a
Ce® (cO®

=Y (AcAx, AcAN) A+ ) (FcAx, ¥ Az
CeO (O

+ (T\IJ‘TZAX, AxX)q + <7~A7~1*PAX, AX) 7.
So,

Z< Yo+ ADA, (Fc + A)A)g > Z(‘I’CAx Y Axya > AllAx|? = Ax, x)a,
Ce® Ce®
O

Theorem 2.6. Let ¥ = {¥; € End;(H, H) : C € O} be a g—frame for H with bounds D and D’, let
{Aclceo be a g—Bessel sequence for H with Bessel bound Dy. If M,N € Endg(H) such that for any
x € H, |INx|| > Allx|| for some A > 0 and D < D, then {¥:M + A¢N}cee is a g— frame for H with respect
to {Hc}ceo.

Proof. Similar to the proof of Theorem 2.2, {(¥; + A¢)M}ceo is a g—Bessel sequence for H with
respect to {H¢}cco. For any x € H, we obtain

1 1 1
[ z (Yo +A)M, (Yo +Ag)Myallz = || E (YMx, ¥ Mx)all2 - || z (AcNx, AcNx) 7|2
ce® Ce® Ce®

> \/BIIMxII— VD4 lIN|
— V/Da)IINx|
> A( \/_ VDa)lIxll.
Therefore, A2( VD — v/Djy)? is a lower g—frame bound for {(¥; + A )M} co. =
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Corollary 2.4. Let {Y¢ € End 4 (H, H) : C € O} be a g—frame for H with bound D and D', let {A¢}cco
be a g—Bessel sequence for H with Bessel bound D. If Dy < D, then, {¥¢ + A¢lceo is a g—frame for H
with respect to {Hc}cco-

Theorem 2.7. Let ¥ = {Y(}ceo be a ay—tight g—frame for H and A = {A¢)ceco be a ar—tight g—frame
for H with the synthesis operators Ty, Ty, respectively, and TwTy = 0. If M,N € End’,4(H), then
{(YcM + AcN}ceo is a a—tight g—frame for H with respect to {Hcco}ceo if and only if a;M*M + aoN*N =
al, for some a > 0.

Proof. According to the proof of Theorem 2.2 {(¥¢ + A¢)M}eo is a g—Bessel sequence for H. Since
T9T, =0, forany x € H, we get }.cp Y7 Acx = 0.

For every x € H, we have

Y (¥eMx, ANx) 7 = Y (Mx, Vi ANz = (Mx, Y ¥iANX)7 = 0.
Ce® (eO [@=0)

We obtain,

Y (FM+ AN)x, (FcM+ AN))A = Y (ANx, ANz + ) (FcMix, ¥cMx)a
Ce® Ce® ce®

Then, we get

Y (AN, ANx) A+ ) (FcMx, ¥cMxya = anlIMxiP + cal N
Ce® (e®

= (a1 M'Mx, x) 74 + (aaN"Nx, x) 7
= (yM'Mx + a;N*Nx, x) 7
= (alx, x)#

= a{x, x)A.
O

Corollary 2.5. Let ¥ = {Y}cco be a ay—tight g—frame for H and A = {Ac}ceo be a ar—tight g—frame for
H for H with the synthesis operators Ty, Ty, respectively. If TwT y = 0, then {Y¢ + A¢lceo is a a—tight
g—frame for H with respect to {Hcecolceco if and only if a1 + ap = a.

In what follows we study the stability of g—frames for Hilbert C*—module H under some of

perturbations.

Proposition 2.2. Let ¥ = {Y(}cco be a g—frame for H with bounds C, D and A = {A¢}ceo. Let {Oc)cco
and {5} ceo are two sequences from the algebra A such that 0 < A < |0¢,16c/*> < B < o0and 0 < aq, a2 < 1
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such that for any x € H, we have

1 1
2 2

||Z<QCTCX/9CTCX>5’(”—||Z<5CACX/5CACx>ﬂ|| <m IIZ<9c‘ch,9c‘ch>ﬂll
[€5S) (O [€=¢)

NI=

+ a2 ||2<5cAcx,6cAcx>ﬂ||) :
Ce®

Then {A¢)ceo is a g—frame for H.

Proof. For any x € H,

1 1
2 2
Il Z(QCTCX, QC‘YCXMII] <1l Z(GC‘I’CX, O cx)all =i Z@:Acx, 6CACx>ﬂ||)
CcO® (e® (c®

1
2
+ IIE <6CACX/5CACx>ﬂ”)

Ce®

1
3
[ z (OcAcx, 5cAcx>ﬂ||)

1
2

<m (H Z(QGPCJC, GC\FCXX?(H) +

Ce®

CeO®

+

2
[ Z((SCACX, 5CACX>§‘I||] .

Ce®
Then, we obtain

1
2

<(1+a) (Z(écAcx, 6CACx>ﬂ] .

Ce®

(1 - 0(1) (Z(@chx, Qc‘YCx>gq

Ce®

So, we have

CA(1—a1) (6, x)m < B(1+a2)

Z(Acx, A@C)y{) .

Ce®
CA(1-a)?

B(1+ay)?
On the other hand, for any x € H we get

This implies that }'-ce(Acx, Acx)a > (x,x)q, VYx € H.

2

Z<QCTCXI QCTCX>3{
ce®

(1-a) [Z(écAcx/ 5CACx>§‘I) <(1+a)

Ce®

So, we obtain

A(l-ay)? [Z(Acxr ACX>§‘I) < (x,x)aDB (1+ a2).
Ce®

BD (1 + a)?

Therefore, ). co{Acx, Acx)a < )2 (e, x)q, Vx € H.

(1—0(1
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Theorem 2.8. Let ¥ = {¥(}cco be a g—frame for H with bounds C, D and A = {A¢}ceco. Let {Oc)ceo and
{0c}ceo are two sequences from the algebra A such that 0 < A < 02, 62 <B<ooand 0 < ay,ap < 1such
that for any x € H,

Z((chfc - 5cAC)x, (QCIPC - 5cAC)x>y{ <m (Z(@ﬁfcx, QCTCJO?I) + az(z<5cAcx, 6cAcx>ﬂ)
Cc® (O (€O

then {Ac}ceo is a g—frame for H with respect to {Hceoceco-
Proof. For x € H, we have

() (0c¥cx, 0. c0a)® < I1Y_(Oc¥c = 6cA0)x, (0¥ e — 0cA)D)allE + 11 ) (6cAc, dcAcx)all?

Ce® [€=C) (€O
1
< (@l ) (0¥ cx, 0c¥cx)all + aall Y (OcAcx, dcAcx)all)?
CeO® (e®
1
+ (1) (6cAcx, ScAcx)al)?
Ce®
1 1
< (@l ) (Oc¥cx, 0¥ cx)all)® +2(eall Y (OcAcx, dcAcal)?.
(€=C) (e®

Then, for any x € H we get

(1= V@) (1) (O ex, 0¥ c)all)? < (1-2va)ll Y (6chex, dcAcx)al)t.

Ce® (e®
We obtain,
CA(1+2vaz)?
A ,A > ; , Vx e H.

| Xceo{Acx, Acx)all B(1= va)? (x,x)z, Vx

Similarly, for any x € H,
DB(1 + 2 +az)?

. Arx, A > ; ,V¥x € H. O
| LccolBDex, Acx)all C= a2 (x,x)a, Vx

Theorem 2.9. Let ¥ = {Y¢}ceo be a g—frame for H with bounds C, D (D > 1) and assume that
A = {A¢}ceo is a family so that for any | C © with |]| < oo, we have

N C
1) (F5¥c = Ao)xdl < Slixdl, Var e H.
CeJ

2
Then {Ac)ceo is a g—frame for H with bounds %(D;— L ), = ED .

Proof. For any x € H we have

1), ¥i¥edl= sup I} ¥¥ex yhal

CeJ yeHIYI=T - Cef

= sup IIZ(‘Y(,X,‘YCy)ﬂ”
yeHllyll=1 ‘tef

1 1
< sup ||§ <‘F(;x,‘1’(;x)gq||2||§ My, Yoy all?
yeH IlylI=1 “cef CeJ
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1
< VDI ) (¥ex, ¥ex)all®
CeJ
< DIl

So we obtain
| z A A < (E + D)llxI.
¢ ‘D

ce]
Hence, the series } @ AtAcx converge. We define

K(x) = Z ApAcx, Vx € H.

Ce®
This operator is well defined and bounded on H and ||K]|| < % + D.
Also for x e H
1Y Acxl? = 1Y (Acx, Acx)all
Ce® €O
< 1K1

That is {A¢}cco is a g—Bessel sequence for H. If S is the g—frame operator of {¥}.co, we get for all
xeH
ISx - Kl <
< ol

1 1
Then, |lx - KS x| < Bllxll = I -KS < D < 1. Hence, KS™! is invertible and so is K.

Therefore, {A}: is a g—frame for H. Also, we have for x € H
_ _ _ 1 D+1
1| < (1g-1 I« =
1K= < ISTMSK < & (= )-

Therefore, %(?), % -+ D are bounds for {A¢}¢. m]
Corollary 2.6. Let ¥ = {Y¢}cco bea g—frame for H with bounds C,D (0 < a < D). Suppose A = {A¢}cco
such that for x € H,
1Y (¥:¥c - A Al < alldl.
Ce®

Then {A¢}ceo is a g—frame for H with respect to {H}cco.
Proof. Similarly the proof of the Theorem 2.9, if we take
K(x) = Z AtAcx, Yx € H.

Ce®
Then {A¢}ceo is a g—Bessel sequence for H, we have

1152 = Kxll < allx]].

Then
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1
llx = KS™ x| < allSHIlIxl < azllxl, Vx e H.
This implies that
I —KS < 1.

So, K571 is invertible and K is also invertible.

Hence, g—Bessel sequence {A¢}; is a g—frame for H with respect to {H}cco.

3. ExamprLES IN C*-ALGEBRAIC SETTINGS

We now present two concrete examples showing how to realize g-frames and their sums in
explicit C*-algebraic modules. These examples illustrate that the sum of two g-frames can fail to

remain a g-frame unless certain positivity or invertibility conditions are enforced.
3.1. Example with matrix algebras.

Example 3.1. Let A = M (C) be the 2 X 2 complex matrices, which is a unital C*-algebra with the usual
operator norm and *-operation. Consider the Hilbert A-module H = A (i.e., column 2-vectors over A)
with the standard A-valued inner product

((a1,32)", (b1, b)) = ajby + asby,

where addition and multiplication are in My (C).
Define two families {A1, A2} and {©1, 02} as follows. For x € H (which is a pair (x1,%2)T with each
X € Mz (C)).’

A1(x) = (x1, O)T, Ao (x) = (O, xz)T,

O1(x) = (xz, O)T, Oy (x) = (0, xl)T.

One checks that each {A1, Az} and {®1, @y} forms a g-frame for H (they essentially “capture” each compo-
nent of (x1,x2)7 in disjoint slots).
Now consider the sum {1 + @1, Ay + @2}. One quickly sees that

(A1 +01)(x) = (xl + x2, O)T, (A2 +0Oy)(x) = (0, x2 +x1)T-

Case 1: If x1 and x are such that x; = —xp, then (A1 + ©1)(x) = 0and (Az + ©,)(x) = 0, so the sum
has no lower bound and is not a g-frame in that arrangement.

Case 2: If we modify one family by a suitable invertible multiplier L € End’g(H ) (for instance, letting L
act diagonally on the A% coordinate), then positivity or invertibility conditions can ensure no such complete
cancellation occurs, restoring a uniform lower bound.

Hence, this example demonstrates how the sums of two g-frames may fail to be a g-frame unless additional

constraints (like invertibility or positivity) are imposed, exactly as our theorems suggest.
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3.2. Example with a continuous-function algebra.

Example 3.2. Let A = C([0,1]) be the C*-algebra of continuous complex-valued functions on [0,1]. We
consider the standard free module H = A" for some m € IN. An element x € H can be viewed as a vector
(fi,---s fun)" with each fj € C([0,1]). The A-valued inner product is

xpala) = Y fil@) ga),
j=1

forx=(fi,--., fm), y = (g1,.--.,gm) in H, where ({x, y)a)(a) is a continuous function of a € [0,1].

Define, for instance, A1(x) = (f1,0,...,0), A2(x) = (0, f,0,...,0), etc. so that {AH, collectively
“read off” the coordinates. This forms a g-frame (essentially a standard basis in A™). Next, define
@1, ..., Oy similarly but perhaps with a shift: ©;(x) = (0,...,0, f;,0,...). Each family alone is a g-frame.
Houwever, if we sum them coordinate-wise, Aj + ©j, there may be points a € [0, 1] at which f;(«) and gj(a)
combine destructively (e.g. fj(a) + gj(a) = 0), losing the lower bound in the entire module.

On the other hand, if we multiply one family by an invertible element in End’y(H) (for example, a
bounded diagonal operator with no vanishing entries over [0,1]), then we can often ensure positivity of the
new g-frame operator. This aligns with Theorem 2.2, requiring that a certain operator be invertible in the

Hilbert C*-module sense.

These examples show concretely how sums of g-frames in a C*-algebraic environment can fail

or succeed depending on invertibility considerations.

4. CONCLUSION AND REMARKS

We have established several conditions under which the sum of two g-frames (or a g-frame and
a g-Bessel sequence) in a Hilbert C*-module remains a g-frame. Central to these conditions are
the invertibility or positivity of the associated operators (for instance, (I + L)*Sx(I 4+ L) or M*Tx +
N'Te). Our explicit examples in matrix algebras and continuous function algebras illustrate
how cancellation effects can destroy the uniform lower bound unless we impose these algebraic
constraints.

These results extend the known stability properties of g-frames and highlight the unifying role

of invertible operators in controlling sums of g-frames in Hilbert C*-modules.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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