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Abstract. Dengue, caused by the dengue virus (DENV), is a serious vector-borne disease mainly prevalent in tropical

areas. In certain cases, it can lead to death, especially when a person is infected a second time, resulting in a secondary

infection. This research begins by presenting an in-host model for secondary DENV infection under the effect of two

types of cytotoxic T lymphocytes (CTLs), non-specific and strain-specific CTLs. The first model is incorporating two

distinct discrete-time delays. Additionally, the model is refined by integrating two forms of distributed time delays to

provide a more realistic representation of secondary DENV infection dynamics. The main objective is to examine the

dynamic behavior of both models, including the non-negativity and boundedness of solutions. A qualitative stability

analysis is conducted for their steady states, revealing that the uninfected steady state in both models remains globally

asymptotically stable when the basic reproduction number (R0) is below one but becomes unstable when R0 exceeds

this threshold. Additionally, an infected steady state emerges and is globally asymptotically stable when R0 is greater

than one. The stability conditions for the two steady states are determined using the Lyapunov method. To confirm

the qualitative results, comprehensive numerical simulations are conducted, offering valuable biological insights. To

assess the influence of specific parameters, we conduct a sensitivity analysis on the model. The results indicate that

the infection rate and viral production rate significantly impact the sensitivity of R0, ultimately affecting the dynamics

of DENV. These insights could contribute to the development of antiviral treatments aimed at inhibiting viral entry

and replication. Furthermore, the study explores the impact of time delays on DENV infection dynamics, highlighting

that prolonged delays can mimic the effects of antiviral treatments. A sufficiently long delay slows down the virus’s

progression, aiding in its control and eventual eradication. These findings suggest potential strategies for developing

new treatments that could extend the viral replication or maturation.
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1. Introduction

Vector-borne viral infections are diseases transmitted to humans through the bite of infected

mosquitoes. Common examples include dengue fever, zika virus, west nile virus, and chikun-

gunya. The transmission typically occurs when an infected vector feeds on a human, introducing

the virus into the bloodstream. These viruses are often RNA-based and replicate in both the vector

and the human host. Upon entering the human body, the virus can infect various organs and tis-

sues, leading to symptoms ranging from mild fever to severe complications such as neurological

disorders or hemorrhagic fever.

Dengue which is caused by dengue virus (DENV) is one of the most widespread vector-borne

viral infections, especially in tropical and subtropical regions. The risk of dengue outbreaks has

risen significantly in recent years [1], largely due to the effects of climate change and global warming

[2], [3]. In 2024, more than 14 million people worldwide were diagnosed with dengue, with over

10,000 fatalities linked to the disease [4]. Dengue symptoms can involve an intense headache, a high

fever reaching 40◦C, skin rash, muscle and joint discomfort, nausea, eye pain, swollen lymph nodes,

and episodes of vomiting [5]. Dengue infection causes severe harm to public health, society, and the

economy, particularly in low-income countries worldwide. Currently, no antiviral medications

have been approved for the treatment of dengue infections [6]. Understanding the virology,

transmission dynamics, and environmental factors that influence DENV is essential for developing

effective prevention strategies, including vector control, vaccines, and antiviral treatments. DENV

is a single-stranded RNA virus belongs to the Flavivirus genus and the Flaviviridae family and

is mainly spread by blood-feeding mosquitoes of the Aedes genus [7], [8]. The DENV has four

distinct serotypes (DENV 1-4), each exhibiting a 30-35% variation in amino acid composition [7].

Typically, infection with one serotype provides long-term immunity against that specific strain

but does not offer protection against the others [9]. Moreover, a second infection with a different

serotype tends to result in a more severe illness [10]. At the onset of a primary infection, the virus

enters the bloodstream, targeting monocytes and beginning its replication process [11].

Studying the interactions between viruses, host cells, and immune cells through experiments

can be costly. As a result, mathematical models of viral infections have emerged as valuable tools

for analyzing the dynamic behavior of viruses and their interactions with target and immune

cells. Moreover, models can provide insight into how prior infections influence disease severity

and assess the effectiveness of interventions like vaccines or antiviral therapies [12]. Over the

past few years, various mathematical models have been designed to describe within-host DENV

infection. While some models focus on capturing the dynamics of primary DENV infection (see,

e.g., [9], [13], [14]- [23]), others are tailored to represent secondary DENV infection [24]- [29]. DENV

infection models have been constructed by integrating different immune responses, including:

• Antibody-mediated immunity, which relies on B cells producing antibodies to neutralize

DENV particles (see e.g., [19], [24], [25], [26], [28], [30]).
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• Cell-mediated immunity, driven by cytotoxic T lymphocytes (CTLs) that eliminate DENV-

infected monocytes (see e.g., [14], [15], [16], [18], [20], [31]).

• A combination of antibody-mediated and cell-mediated immunity, which incorporates both

B cell and CTL responses (see e.g., [9], [20], [21], [22], [27], [29]).

• A combination of innate and cell-mediated immunity, where the innate immune system

provides an immediate defense before CTLs take action (see e.g., [17]).

• A combination of innate and antibody immunity, integrating the rapid innate response

with antibody production to combat DENV (see e.g., [13]).

A primary dengue infection results in lifelong immunity to the initial virus strain [14]. However,

upon subsequent infection with a different serotype, two types of CTL responses are triggered:

non-specific CTLs carried over from the first infection and strain-specific CTLs that target the

newly encountered serotype [14]. In [14], a target cell-limited model was proposed to describe

secondary DENV infection, incorporating both non-specific and strain-specific CTLs:

dM(t)
dt

= −αM(t)V(t)︸       ︷︷       ︸
infection rate

, (1.1)

dE(t)
dt

= αM(t)V(t)︸       ︷︷       ︸
formation rate of infected monocytes

− µE(t)︸︷︷︸
mortality rate

− κ1E(t)TN(t)︸         ︷︷         ︸
killing rate by non-specific CTLs

, (1.2)

− κ2E(t)TS(t)︸        ︷︷        ︸
killing rate by strain-specific CTLs

, (1.3)

dV(t)
dt

= ηE(t)︸︷︷︸
burst size

− βV(t)︸︷︷︸
clearance rate of DENV

, (1.4)

dTN(t)
dt

= ξ︸︷︷︸
production of non-specific CTLs

+ γ1E(t)TN(t)︸         ︷︷         ︸
proliferation of non-specific CTLs

− νTN(t)︸ ︷︷ ︸
mortality rate

, (1.5)

dTS(t)
dt

= ξ︸︷︷︸
production of strain-specific CTLs

+ γ2E(t)TS(t)︸        ︷︷        ︸
proliferation of strain-specific CTLs

− νTS(t)︸ ︷︷ ︸
death rate

. (1.6)

This model was developed based on the following principles:

P1 It was presumed that CTLs targeting the primary DENV infection are generated through

immunological memory.

P2 It considers five distinct populations: uninfected monocytes (M), DENV-infected mono-

cytes (E), free DENV particles (V), non-specific CTLs (TN), and strain-specific CTLs (TS).

P3 Uninfected monocytes, the primary targets of DENV, are infected by DENV at a rate of

αMV.



4 Int. J. Anal. Appl. (2025), 23:88

P4 DENV-infected monocytes are eliminated by non-specific CTLs and strain-specific CTLs at

rates κ1ETN and κ2ETS, respectively. Studies have shown that during heterologous dengue

virus infections, non-specific CTLs respond are less effective at eliminating infected cells

(i.e. κ1 < κ2) [14], [32].

P5 The production of DENV particles is given by linear function, ηE.

P6 CTLs are generated through self-regulated mechanisms as well as a predator-prey-like

interaction model. Non-specific CTLs and strain-specific CTLs are generated at the same

rate, ξ, and their expansion follows the rates γ1ETN and γ2ETS, respectively.

P7 The mortality rates of M, E, V, TN and TS are expressed as linear functions of their respective

concentrations, represented by σM, µE, βV, νTN, and νTS, respectively.

In model (1.1)-(1.6), the following points were noted: (i) The regeneration and death of unin-

fected monocytes are not considered. However, several DENV infection models in the literature

include these factors (e.g., [24], [26], [27], [28]), (ii) both non-specific CTLs and strain-specific CTLs

share the same regeneration rate, ξ, however, these rates could differ in other models, and (iii)

the mortality rates of non-specific CTLs and strain-specific CTLs are assumed to be equal, though

they may not necessarily be the same. To overcome such points Raezah et al. [33] developed the

following model:

dM(t)
dt

= ρ− σM(t) − αM(t)V(t), (1.7)

dE(t)
dt

= αM(t)V(t) − µE(t) − κ1E(t)TN(t) − κ2E(t)TS(t), (1.8)

dV(t)
dt

= ηE(t) − βV, (1.9)

dTN(t)
dt

= ξ1 + γ1ETN
− ν1TN, (1.10)

dTS(t)
dt

= ξ2 + γ2ETS
− ν2TS, (1.11)

where ρ and σM represent the regeneration and death rates of the uninfected monocytes, respec-

tively. Models (1.1)-(1.6) and (1.7)-(1.11) do not incorporate time delays in the infection process

or viral maturation. However, time delays are crucial for accurately capturing the progression

of infections, particularly in relation to how the virus infects host cells and matures over time.

In our proposed model, we introduce time delays to account for these natural lags in the infec-

tion and maturation processes. This modification provides a more precise representation of the

time-dependent dynamics of the infection.

The objective of this paper is to develop two models for secondary DENV infection, incorpo-

rating both non-specific and strain-specific CTLs. We introduce two types of time delays into

the models, with the second model being an extension of the first, incorporating two classes of

distributed time delays. The study includes an analysis of both the basic and global properties
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of the models, sensitivity analysis, and validation of the theoretical results through numerical

simulations.

2. DENV InfectionModelWith Discrete-Time Delays

In this section we study the dynamics of DENV infection model with discrete-time delays.

2.1. Model formulation. This section provides a detailed explanation of the proposed model. The

model includes two types delay parameters τ1 and τ2 are defined as: τ1 is the time from the DENV

particles contacting uninfected monocytes to become DENV-infected monocytes. τ2 is the time of

maturation of new produced virions. We formulate a DENV dynamics model with discrete-time

delays, represented as a system of five delay differential equations (DDEs):

dM(t)
dt

= ρ− σM(t) − αM(t)V(t), (2.1)

dE(t)
dt

= e−m1τ1αM(t− τ1)V(t− τ1) − µE(t) − κ1E(t)TN(t) − κ2E(t)TS(t), (2.2)

dV(t)
dt

= e−m2τ2ηE(t− τ2) − βV, (2.3)

dTN(t)
dt

= ξ1 + γ1ETN
− ν1TN, (2.4)

dTS(t)
dt

= ξ2 + γ2ETS
− ν2TS. (2.5)

Here, mi, i = 1, 2 are positive constants and the factor e−miτi indicates the likelihood of a cell or

virion surviving during the delay period [t− τi, t].
The initial conditions for system (2.1)-(2.5) are given as:

M(θ) = ϕ1(θ), E(θ) = ϕ2(θ), V(θ) = ϕ3(θ), TN(θ) = ϕ4(θ), TS(θ) = ϕ5(θ),

ϕi(θ) ≥ 0, θ ∈ [−τ∗, 0] , ϕi(θ) ∈ C ([−τ∗, 0] , R≥0) , i = 1, 2, · · · , 5,
(2.6)

where τ∗ = max {τ1, τ2} , and C is the Banach space of continuous functions mapping from [−τ∗, 0]

to R≥0 with the norm ∥∥∥ϕi
∥∥∥ = sup

−τ∗≤θ≤0

∣∣∣ϕi(θ)
∣∣∣ for ϕi ∈ C, i = 1, 2, · · · , 5.

The system (2.1)-(2.5), along with the initial conditions given in (2.6), has a unique solution [34], [35].

The values of parameters of model (2.1)-(2.5) are given in Table 1.

2.2. Preliminaries. This section addresses the non-negativity and ultimately boundedness of the

solutions for system (2.1)-(2.5). We also illustrate the existence of steady states for the system and

identify the threshold parameters. Let’s use the following notations:(
M, E, V, TN, TS

)
=

(
M, E, V, TN, TS

)
(t),

Mτ1 = M(t− τ1), Vτ1 = V(t− τ1), Eτ2 = E(t− τ2).
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Table 1. Model parameters.

Parameter Value Source Parameter Value Source

ρ 107 [23] γ1 4.44× 10−4 [14]

σ 0.14 [23] [14] γ2 1.53× 10−3 [14]

α Varied ν1 0.5 [14] [37]

µ 0.14 [23] [14] ν2 0.5 [14] [37]

η 104 [23] [14] [36] ξ1 30 [14] [37]

β 3.48 [23] [14] ξ2 30 [14] [37]

κ1 2.77× 10−6 [14] κ2 1.04× 10−5 [14]

mi 1

Lemma 2.1. The solutions of system (2.1)-(2.5) with the initial conditions (2.6) are nonnegative and
ultimately bounded.

Proof. Let’s demonstrate the non-negativity of the solutions for the system (2.1)-(2.5). Obviously,

Eqs. (2.1), (2.4), and (2.5) give

dM
dt
|M=0 = ρ > 0,

dTN

dt

∣∣∣TN=0 = ξ1 > 0,
dTS

dt

∣∣∣TS=0 = ξ2 > 0.

Hence M(t) > 0, TN(t) > 0 and TS(t) > 0 for any t ≥ 0. Additionally, we have

E(t) = e−
∫ t

0 (µ+κ1TN(x)+κ2TS(x))dxϕ2(0) + αe−m1τ1

∫ t

0
e−

∫ t
θ(µ+κ1TN(x)+κ2TS(x))dxM(θ− τ1)V(θ− τ1)dθ ≥ 0,

V(t) = e−βtϕ3(0) + ηe−m2τ2

∫ t

0
e−β(t−θ)E(θ− τ2)dθ ≥ 0,

for any t ∈ [0, τ∗]. Therefore, through recursive argumentation, we conclude that

(M, E, V, TN, TS)(t) ≥ 0 for any t ≥ 0. Hence, M, E, V, TN and TS are nonnegative.

Next, let’s establish the ultimate boundedness of the solution (M, E, V, TN, TS). From Eq. (2.1)

we have,

lim
t→∞

sup M(t) ≤
ρ

σ
= ω1.

To prove the ultimate boundedness of E(t), TN(t), and TS(t), we define

` = e−m1τ1Mτ1 + E +
κ1

γ1
TN +

κ2

γ2
TS,
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then

d`
dt

= e−m1τ1
dMτ1

dt
+

dE
dt

+
κ1

γ1

dTN

dt
+
κ2

γ2

dTS

dt

= e−m1τ1 [ρ− σMτ1 − αMτ1Vτ1 ] + e−m1τ1αMτ1Vτ1 − µE− κ1ETN

− κ2ETS +
κ1

γ1

[
ξ1 + γ1ETN

− ν1TN
]
+
κ2

γ2

[
ξ2 + γ2ETS

− ν2TS
]

= e−m1τ1 [ρ− σMτ1 ] − µE +
κ1

γ1

[
ξ1 − ν1TN

]
+
κ2

γ2

[
ξ2 − ν2TS

]
= e−m1τ1ρ− σe−m1τ1Mτ1 − µE +

κ1ξ1

γ1
−
κ1ν1

γ1
TN +

κ2ξ2

γ2
−
κ2ν2

γ2
TS

= e−m1τ1ρ+
κ1ξ1

γ1
+
κ2ξ2

γ2
−

[
σe−m1τ1Mτ1 + µE +

κ1ν1

γ1
TN +

κ2ν2

γ2
TS

]
≤ ρ+

κ1ξ1

γ1
+
κ2ξ2

γ2
− ε

[
e−m1τ1Mτ1 + E +

κ1

γ1
TN +

κ2

γ2
TS

]
= ρ+

κ1ξ1

γ1
+
κ2ξ2

γ2
− ε`,

where ε = min{σ,µ, ν1, ν2}. It follows that,

lim
t→∞

sup `(t) ≤
ρ

ε
+
κ1ξ1

εγ1
+
κ2ξ2

εγ2
= ω2

and then lim
t→∞

sup E(t) ≤ ω2, lim
t→∞

sup TN(t) ≤ ω3, and lim
t→∞

sup TS(t) ≤ ω4 where ω3 =
γ1ω2
κ1

and

ω4 =
γ2ω2
κ2

. Finally, from Eq. (2.3), we obtain

dV
dt

= e−m2τ2ηEτ2 − βV

≤ e−m2τ2ηω2 − βV

≤ ηω2 − βV,

and hence lim
t→∞

sup V(t) ≤ ω5 where ω5 =
ηω2
β . Based on Lemma 2.1 we can demonstrate that the

set

Ω =
{
(M, E, V, TN, TS) ∈ C5

≥0 : ‖M‖ ≤ ω1, ‖E‖ ≤ ω2, ‖V‖ ≤ ω5, ‖TN
‖ ≤ ω3, ‖TS

‖ ≤ ω4

}
is positively invariant with respect to system (2.1)-(2.5). �

Lemma 2.2. For the DENV dynamics system (2.1)-(2.5), there exists a threshold parameter R0 > 0 such
that

(i): If R0 ≤ 1, then there is a unique uninfected steady state SS0,
(ii): If R0 > 1, then there is an infected steady state SS1 in addition to SS0.
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Proof. The steady statesSS = (M, E, V, TN, TS) of system (2.1)-(2.5) can be computed by solving

the following system of algebraic equations:

0 = ρ− σM− αMV, (2.7)

0 = e−m1τ1αMV − µE− κ1ETN
− κ2ETS, (2.8)

0 = e−m2τ2ηE− βV, (2.9)

0 = ξ1 + γ1ETN
− ν1TN, (2.10)

0 = ξ2 + γ2ETS
− ν2TS. (2.11)

Eqs. (2.7), (2.9), (2.10) and (2.11) give

M =
ρ

σ+ αV
, V =

ηe−m2τ2E
β

,

TN =
ξ1

ν1 − γ1E
, TS =

ξ2

ν2 − γ2E
.

(2.12)

By substituting into Eq. (2.8), we obtain−µ+ ηαρe−(m1τ1+m2τ2)

βσ+ ηαe−m2τ2E
+

κ1ξ1

γ1E− ν1
+

κ2ξ2

γ2E− ν2

 E = 0. (2.13)

Eq. (2.13) presents two possibilities: the first is E = 0, which leads to the infection-free steady state

SS0

(
M0, 0, 0, TN

0 , TS
0

)
, where M0 =

ρ
σ , TN

0 = ξ1
ν1

and TS
0 = ξ2

ν2
. The other possibility is that E , 0 and

−µ+
ηαρe−(m1τ1+m2τ2)

βσ+ ηαe−m2τ2E
+

κ1ξ1

γ1E− ν1
+

κ2ξ2

γ2E− ν2
= 0

which leads to
c3E3 + c2E2 + c1E + c0

(βσ+ ηαe−m2τ2E) (γ1E− ν1) (γ2E− ν2)
= 0, (2.14)

where

c3 = µηαγ1γ2e−m2τ2 ,

c2 = −κ2ξ2ηαγ1e−m2τ2 − κ1ξ1ηαγ2e−m2τ2 + µγ1γ2βσ− ηαγ1γ2ρe−(m1τ1+m2τ2)

− µηαγ2ν1e−m2τ2 − µηαγ1ν2e−m2τ2 ,

c1 = −κ2ξ2γ1βσ− κ1ξ1γ2βσ+ κ2ξ2ηαν1e−m2τ2 − µγ2βσν1 + ηαγ2ρν1e−(m1τ1+m2τ2) + κ1ξ1ηαν2e−m2τ2

− µγ1βσν2 + ηαγ1ρν2e−(m1τ1+m2τ2) + µηαν1ν2e−m2τ2 ,

c0 = κ2ξ2βσν1 + κ1ξ1βσν2 + µβσν1ν2 − ηαρν1ν2e−(m1τ1+m2τ2).

Define a function Γ(E) = c3E3 + c2E2 + c1E + c0, then

Γ(0) = −βσ (κ2ξ2ν1 + κ1ξ1ν2 + µν1ν2)

 ηαρe−(m1τ1+m2τ2)

µσβ
(
κ1ξ1
ν1µ

+ κ2ξ2
ν2µ

+ 1
) − 1

 ,
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Γ
(
ν1

γ1

)
=
κ1ξ1γ2 (βσγ1 + αν1ηe−m2τ2)

γ1

(
ν2

γ2
−
ν1

γ1

)
Γ
(
ν2

γ2

)
=
κ2ξ2γ1 (βσγ2 + αν2ηe−m2τ2)

γ2

(
ν1

γ1
−
ν2

γ2

)
,

lim
E→∞

Γ(E) = ∞.

We have Γ(0) < 0 if the following condition is met

ηαρe−(m1τ1+m2τ2)

µσβ
(
κ1ξ1
ν1µ

+ κ2ξ2
ν2µ

+ 1
) > 1. (2.15)

Observe that
ν2
γ2
> ν1

γ1
=⇒ Γ

(
ν1
γ1

)
> 0 and Γ

(
ν2
γ2

)
< 0,

ν2
γ2
< ν1

γ1
=⇒ Γ

(
ν1
γ1

)
< 0 and Γ

(
ν2
γ2

)
> 0.

Hence,

Γ
(
min

{
ν1

γ1
,
ν2

γ2

})
> 0 and Γ

(
max

{
ν1

γ1
,
ν2

γ2

})
< 0.

If condition (2.15) is satisfied, then Γ(0) < 0 and Eq. (2.14) has three positive roots

E1 ∈

(
0, min

{
ν1

γ1
,
ν2

γ2

})
,

Ē ∈
(
min

{
ν1

γ1
,
ν2

γ2

}
, max

{
ν1

γ1
,
ν2

γ2

})
,

Ẽ ∈
(
max

{
ν1

γ1
,
ν2

γ2

}
,∞

)
.

From Eq. (2.12), we observe that the solution Ē results in TN < 0 or TS < 0. Furthermore, Ẽ leads

to both TN < 0 and TS < 0. Therefore, the only viable solution is E1 which gives

M1 =
ρ

σ+ αV1
> 0, V1 =

ηe−m2τ2E1

β
> 0

TN
1 =

ξ1

ν1 − γ1E1
> 0, TS

1 =
ξ2

ν2 − γ2E1
> 0.

The basic reproduction number, denoted as R0, is defined as:

R0 =
ηαM0e−(m1τ1+m2τ2)

µβ
(
κ1TN

0
µ +

κ2TS
0

µ + 1
) .

In a biological context, R0 represents the average number of secondary DENV-infected monocytes

generated by a single infected monocyte cell throughout its lifespan. The infected steady state

SS1

(
M1, E1, V1, TN

1 , TS
1

)
, therefore exists if and only if R0 > 1. �
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2.3. Global stability. This section employs the Lyapunov technique and utilizes LaSalle’s invari-

ant principle, as proposed in the work of [38, 39], to examine the global asymptotic stability of the

two steady states of system (2.1)-(2.5). We define a function L(θ) = θ − 1 − lnθ. By using Zi as

the potential Lyapunov function, we identifyH ′i as the largest invariant set of

Hi =

{(
M, E, V, TN, TS

)
:

dZi

dt
= 0

}
, i = 0, 1.

Theorem 2.1. The DENV dynamics system (2.1)-(2.5) is globally asymptotically stable (GAS) around the
uninfected steady state SS0

(
M0, 0, 0, TN

0 , TS
0

)
if R0 ≤ 1 and if R0 > 1 then SS0 is unstable.

Proof. Define

Z0 = M0L

( M
M0

)
+ em1τ1E +

αM0

β
V +

κ1em1τ1

γ1
TN

0 L

TN

TN
0

+ κ2em1τ1

γ2
TS

0L

TS

TS
0


+ α

∫ t

t−τ1

M(θ)V(θ)dθ+
αηM0e−m2τ2

β

∫ t

t−τ2

E(θ)dθ.

Obviously, Z0

(
M, E, V, TN, TS

)
> 0 for any

(
M, E, V, TN, TS

)
> 0 and Z0

(
M0, 0, 0, TN

0 , TS
0

)
= 0.

Calculating dZ0
dt as:

dZ0

dt
=

(
1−

M0

M

) dM
dt

+ em1τ1
dE
dt

+
αM0

β
dV
dt

+
κ1em1τ1

γ1

1−
TN

0

TN

 dTN

dt
+
κ2em1τ1

γ2

1−
TS

0

TS

 dTS

dt

+ α (MV −Mτ1Vτ1) +
αηM0e−m2τ2

β
(E− Eτ2) .

By substituting the equations from system (2.1)-(2.5), we obtain

dZ0

dt
=

(
1−

M0

M

)
(ρ− σM− αMV) + em1τ1

(
e−m1τ1αMτ1Vτ1 − µE− κ1ETN

− κ2ETS
)

+
αM0

β
(e−m2τ2ηEτ2 − βV) +

κ1em1τ1

γ1

1−
TN

0

TN

 (ξ1 + γ1ETN
− ν1TN

)
+
κ2em1τ1

γ2

1−
TS

0

TS

 (ξ2 + γ2ETS
− ν2TS

)
+ α (MV −Mτ1Vτ1) +

αηM0e−m2τ2

β
(E− Eτ2) .

Then

dZ0

dt
=

(
1−

M0

M

)
(ρ− σM) − em1τ1µE +

κ1em1τ1

γ1

1−
TN

0

TN

 (ξ1 − ν1TN
)
− κ1em1τ1TN

0 E

+
κ2em1τ1

γ2

1−
TS

0

TS

 (ξ2 − ν2TS
)
− κ2em1τ1TS

0 E +
αηM0e−m2τ2

β
E.

Using ρ = σM0, ξ1 = ν1TN
0 and ξ2 = ν2TS

0 , we get

dZ0

dt
= −

σ (M−M0)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

0

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

0

)2

TS

+

(
αηM0e−m2τ2

β
− κ1em1τ1TN

0 − κ2em1τ1TS
0 − em1τ1µ

)
E
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= −
σ (M−M0)

2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

0

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

0

)2

TS

+

αηM0e−m2τ2

β
− em1τ1µ

κ1TN
0

µ
+
κ2TS

0

µ
+ 1

 E.

It follows that

dZ0

dt
= −

σ (M−M0)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

0

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

0

)2

TS

− em1τ1µ

κ1TN
0

µ
+
κ2TS

0

µ
+ 1


 αηM0e−m2τ2

βem1τ1µ
(
κ1TN

0
µ +

κ2TS
0

µ + 1
) − 1

 E.

In conclusion, we derive

dZ0

dt
= −

σ (M−M0)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

0

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

0

)2

TS

− em1τ1µ

κ1TN
0

µ
+
κ2TS

0

µ
+ 1

 (R0 − 1)E.

Thus, when R0 ≤ 1, we deduce that dZ0
dt ≤ 0 for any M, E, I, TN, TS > 0. Moreover, dZ0

dt = 0 if

M = M0, TN = TN
0 , TS = TS

0 , and (R0 − 1)E. The system’s solutions converge to H ′0 [34], where

M = M0, TN = TN
0 , TS = TS

0 , and

(R0 − 1)E = 0. (2.16)

Two scenarios are under consideration:

(I): R0 = 1, then from Eq. (2.1) we obtain

0 =
dM
dt

= ρ− σM0 − αM0V =⇒ V(t) = 0 for any t. (2.17)

Additionally, Eq. (2.3) implies that

0 =
dV
dt

= e−m2τ2Eτ2 =⇒ E(t) = 0 for any t. (2.18)

Consequently,H ′0 = {SS0}.

(II): R0 < 1. Then from Eq. (2.16) we have E = 0 and Eq. (2.17) leads to V = 0 and hence

H
′

0 = {SS0}.

The global stability of SS0 follows from LaSalle’s invariance principle (LIP) [40]- [42].

The characteristic equation of model (2.1)-(2.5) at the steady state SS0 is given by

(x + σ)(x + ν1)(x + ν2)(h̄2x2 + h̄1x + h̄0) = 0, (2.19)

where x is the eigenvalue, and

h̄2 = σν1ν2,

h̄1 = σν1ν2(β+ µ) + κ1ξ1σν2 + κ2ξ2σν1,
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h̄0 = κ2ξ2βσν1 + κ1ξ1βσν2 + µβσν1ν2 − ηαρν1ν2e−(m̄1τ1+m̄2τ2)

= βσ (κ2ξ2ν1 + κ1ξ1ν2 + µν1ν2)

1−
ηαρe−(m̄1τ1+m̄2τ2)

µσβ
(
κ1ξ1
ν1µ

+ κ2ξ2
ν2µ

+ 1
)

= βσ (κ2ξ2ν1 + κ1ξ1ν2 + µν1ν2) (1−R0) ,

where e−m̄iτi = e−(x+mi)τi , i = 1, 2. Obviously, if R0 > 1, then h̄0 < 0. This indicates that Eq. (2.19)

has a positive real root. Consequently, SS0 is unstable. �

Theorem 2.2. The DENV dynamics system (2.1)-(2.5) is GAS around the infected steady state
SS1

(
M1, E1, V1, TN

1 , TS
1

)
if R0 > 1.

Proof. Define

Z1 = M1L

( M
M1

)
+ em1τ1E1L

( E
E1

)
+
αM1

β
V1L

( V
V1

)
+
κ1em1τ1

γ1
TN

1 L

TN

TN
1

+ κ2em1τ1

γ2
TS

1L

TS

TS
1


+ αM1V1

∫ t

t−τ1

L

(
M(θ)V(θ)

M1V1

)
dθ+

αηM1e−m2τ2

β
E1

∫ t

t−τ2

L

(
E(θ)

E1

)
dθ.

Taking the derivative ofZ1 along the solution of system (2.1)-(2.5) as:

dZ1

dt
=

(
1−

M1

M

) dM
dt

+ em1τ1

(
1−

E1

E

) dE
dt

+
αM1

β

(
1−

V1

V

) dV
dt

+
κ1em1τ1

γ1

1−
TN

1

TN

 dTN

dt

+
κ2em1τ1

γ2

1−
TS

1

TS

 dTS

dt
+ αM1V1

(
MV

M1V1
−

Mτ1Vτ1

M1V1
+ ln

(
Mτ1Vτ1

MV

))
+
αηM1e−m2τ2

β
E1

(
E
E1
−

Eτ2

E1
+ ln

(
Eτ2

E

))
.

Substituting equations of system (2.1)-(2.5), we get

dZ1

dt
=

(
1−

M1

M

)
(ρ− σM− αMV) + em1τ1

(
1−

E1

E

) (
e−m1τ1αMτ1Vτ1 − µE− κ1ETN

− κ2ETS
)

+
αM1

β

(
1−

V1

V

)
(e−m2τ2ηEτ2 − βV) +

κ1em1τ1

γ1

1−
TN

1

TN

 (ξ1 + γ1ETN
− ν1TN

)
+
κ2em1τ1

γ2

1−
TS

1

TS

 (ξ2 + γ2ETS
− ν2TS

)
+ αM1V1

(
MV

M1V1
−

Mτ1Vτ1

M1V1
+ ln

(
Mτ1Vτ1

MV

))
+
αηM1e−m2τ2

β
E1

(
E
E1
−

Eτ2

E1
+ ln

(
Eτ2

E

))
.

Collecting terms leads to

dZ1

dt
=

(
1−

M1

M

)
(ρ− σM) − µem1τ1E− αMτ1Vτ1

E1

E
+ em1τ1µE1 + κ1em1τ1E1TN + κ2em1τ1E1TS

−
αηM1e−m2τ2

β
Eτ2

V1

V
+ αM1V1 +

κ1em1τ1

γ1

1−
TN

1

TN

 (ξ1 − ν1TN
)
− κ1em1τ1TN

1 E

+
κ2em1τ1

γ2

1−
TS

1

TS

 (ξ2 − ν2TS
)
− κ2em1τ1TS

1 E + αM1V1 ln
(

Mτ1Vτ1

MV

)
+
αηM1e−m2τ2

β
E1

(
E
E1

+ ln
(

Eτ2

E

))
.
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Applying the steady state conditions

ρ = σM1 + αM1V1,

µE1 = e−m1τ1αM1V1 − κ1E1TN
1 − κ2E1TS

1 ,

e−m2τ2ηE1 = βV1,

ξ1 = ν1TN
1 − γ1E1TN

1 ,

ξ2 = ν2TS
1 − γ2E1TS

1 .

Then we obtain

dZ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

1

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

1

)2

TS +
(
1−

M1

M

)
αM1V1

− κ1em1τ1

1−
TN

1

TN

 E1TN
1 − κ2em1τ1

1−
TS

1

TS

 E1TS
1 + em1τ1

[
αηM1E1

β
e−(m1τ1+m2τ2)

−κ1E1TN
1 − κ2E1TS

1 − µE1
] E

E1
− αMτ1Vτ1

E1

E
+ αM1V1 − κ1em1τ1E1TN

1 − κ2em1τ1E1TS
1 + κ1em1τ1E1TN

+ κ2em1τ1E1TS
−
αηM1e−m2τ2

β
Eτ2

V1

V
+ αM1V1 + αM1V1 ln

(
Mτ1Vτ1

MV

)
+ αM1V1 ln

(
Eτ2

E

)
.

It follows that

dZ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

1

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

1

)2

TS +
(
3−

M1

M

)
αM1V1

− κ1em1τ1

2−
TN

1

TN −
TN

TN
1

 E1TN
1 − κ2em1τ1

2−
TS

1

TS −
TS

TS
1

 E1TS
1 − αM1V1

Mτ1Vτ1E1

M1V1E

− αM1V1
Eτ2V1

E1V
+ αM1V1 ln

(
Mτ1Vτ1

MV

)
+ αM1V1 ln

(
Eτ2

E

)
.

Using the following inequalities

ln
(

Mτ1Vτ1

MV

)
= ln

(
Mτ1Vτ1E1

M1V1E

)
+ ln

(M1

M

)
+ ln

(EV1

E1V

)
,

ln
(

Eτ2

E

)
= ln

(
Eτ2V1

E1V

)
+ ln

(E1V
EV1

)
.

We obtain

dZ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1em1τ1

γ1

(
TN
− TN

1

)2

TN −
κ2ν2e−m1τ1

γ2

(
TS
− TS

1

)2

TS + αM1V1

(
3−

M1

M

−
Mτ1Vτ1E1

M1V1E
−

Eτ2V1

E1V
+ ln

(
Mτ1Vτ1E1

M1V1E

)
+ ln

(M1

M

)
+ ln

(
Eτ2V1

E1V

))

+ κ1em1τ1

(
TN
− TN

1

)2

TN E1 + κ2em1τ1
(TS
− TS

1 )
2

TS E1.

From the steady state conditions, we have
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ξ1 = ν1TN
1 − γ1E1TN

1 ⇒ E1 −
ν1

γ1
= −

ξ1

γ1TN
1

.

Similarly, E1 −
ν2
γ2

= − ξ2
γ2TS

1
. It follows that

dZ1

dt
= −

σ (M−M1)
2

M
−
κ1ξ1em1τ1

γ1

(
TN
− TN

1

)2

TNTN
1

−
κ2ξ2em1τ1

γ2

(
TS
− TS

1

)2

TSTS
1

− αM1V1

[
L

(M1

M

)
+L

(
Mτ1Vτ1E1

M1V1E

)
+L

(
Eτ2V1

E1V

)]
.

Obviously, we deduce that dZ1
dt ≤ 0 for any

(
M, E, V, TN, TS

)
> 0 and dZ1

dt = 0 if M = M1, TN = TN
1 ,

TS = TS
1 , and

Mτ1 Vτ1 E1

M1V1E =
Eτ2 V1

E1V = 1. Thus, solutions of system (2.1)-(2.5) converge toH ′1. For each

element inH ′1, we have M = M1, TN = TN
1 , and TS = TS

1 . Then dM
dt = dTN

dt = dTS

dt = 0 and from Eqs.

(2.1) and (2.4), we get

0 =
dM
dt

= ρ− σM1 − αM1V =⇒ V(t) = V1 for any t,

0 =
dTN

dt
= ξ1 + γ1ETN

1 − ν1TN
1 =⇒ E(t) = E1 for any t.

Thus, by using LIP,H ′1 = {SS1} and SS1 is GAS. �

3. DENV InfectionModelWith Distributed-Time Delays

In the previous section, we made the following assumptions:

(i): The time it takes for each infected cell to form is constant;

(ii): The maturation time for each newly released virion is also constant.

Incorporating distributed delays, where the time delay is represented as a random variable

from a probability distribution, allows models to reflect the complexities and variabilities found

in real-world situations, making them more robust and applicable.

3.1. Model formulation. In this section, we build upon the DENV dynamics system that discussed

earlier by introducing two distributed time delays, as follows:

dM
dt

= ρ− σM− αMV, (3.1)

dE
dt

= α

∫ h1

0
f1(τ)e−m1τMτVτdτ− µE− κ1ETN

− κ2ETS, (3.2)

dV
dt

= η

∫ h2

0
f2(τ)e−m2τEτdτ− βV, (3.3)

dTN

dt
= ξ1 + γ1ETN

− ν1TN, (3.4)

dTS

dt
= ξ2 + γ2ETS

− ν2TS, (3.5)
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Here, τ is a random variable drawn from the probability distribution function fi(τ) over the time

interval [0, hi], where hi represents the upper limit of the delay period for i = 1, 2. We make the

following assumptions:

(I): The probability that uninfected monocytes contacted by DENV at time t − τ survive for

τ time units and become DENV-infected monocytes at time t is expressed by the factor

f1(τ)e−m1τ.

(II): The probability of newly immature DENV at time t − τ surviving for τ time units and

maturing at time t is represented by the factor f2(τ)e−m2τ.

Functions fi(τ), i = 1, 2, satisfy fi(τ) > 0 and∫ hi

0
fi(τ)dτ = 1,

∫ hi

0
fi(τ)enτdτ < ∞,

where n > 0 [43]. Let us denote Πi(τ) = fi(τ)e−miτ and zi =
∫ hi

0 Πi(τ)dτ, for i = 1, 2. This implies

that 0 < zi ≤ 1, and the initial conditions for the system (3.1)-(3.5) are the same as those specified

in Eq (2.6). Here τ∗ = max {h1, h2}.

3.2. Preliminaries.

Lemma 3.1. The solutions of system (3.1)-(3.5) with the initial conditions (2.6) are nonnegative and
ultimately bounded.

Proof. Eqs. (3.1), (3.4), and (3.5) provide

dM
dt
|M=0 = ρ > 0,

dTN

dt

∣∣∣TN=0 = ξ1 > 0,
dTS

dt

∣∣∣TS=0 = ξ2 > 0.

Hence, M(t) > 0, TN(t) > 0, and TS(t) > 0 for any t ≥ 0. Moreover, we have

E(t) = e−
∫ t

0 (µ+κ1TN(x)+κ2TS(x))dxϕ2(0) + α

∫ t

0
e−

∫ t
θ
(µ+κ1TN(x)+κ2TS(x))dx

∫ h1

0
Π1(τ)M(t− θ)V(t− θ)dτdθ ≥ 0,

V(t) = e−βtϕ3(0) + η

∫ t

0
e−β(t−θ)

∫ h2

0
Π2(τ)E(t− θ)dτdθ ≥ 0,

for any t ∈ [0, τ∗]. Through recursive argumentation, we obtain E(t), V(t) ≥ 0, for any t ≥ 0.

Consequently, M, E, V, TN and TS are nonnegative. Let us prove the ultimate boundedness of

M, E, V, TN and TS. From Eq. (3.1), we have

lim
t→∞

sup M(t) ≤
ρ

σ
= ω1.

Let us prove the ultimate boundedness of E, TN, and TS. Define

Φ =

∫ h1

0
Π1(τ)Mτdτ+ E +

κ1

γ1
TN +

κ2

γ2
TS.

Then,

dΦ
dt

=

∫ h1

0
Π1(τ)

dMτ

dt
dτ+

dE
dt

+
κ1

γ1

dTN

dt
+
κ2

γ2

dTS

dt
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=

∫ h1

0
Π1(τ) [ρ− σMτ − αMτVτ] dτ+ α

∫ h1

0
Π1(τ) MτVτdτ− µE− κ1ETN

− κ2ETS

+
κ1

γ1

[
ξ1 + γ1ETN

− ν1TN
]
+
κ2

γ2

[
ξ2 + γ2ETS

− ν2TS
]

= ρ

∫ h1

0
Π1(τ)dτ− σ

∫ h1

0
Π1(τ)Mτdτ− µE +

κ1ξ1

γ1
−
κ1ν1

γ1
TN +

κ2ξ2

γ2
−
κ2ν2

γ2
TS

= ρz1 +
κ1ξ1

γ1
+
κ2ξ2

γ2
−

σ∫ h1

0
Π1(τ) Mτdτ+ µE +

κ1ν1

γ1
TN +

κ2ν2

γ1
TS


≤ ρ+

κ1ξ1

γ1
+
κ2ξ2

γ2
− ε

∫ h1

0
Π1(τ)Mτdτ+ E +

κ1

γ1
TN +

κ2

γ1
TS


= ρ+

κ1ξ1

γ1
+
κ2ξ2

γ2
− εΦ.

It follows that

lim
t→∞

sup Φ ≤
ρ

ε
+
κ1ξ1

γ1ε
+
κ2ξ2

γ2ε
= ω2.

Hence, lim
t→∞

sup E(t) ≤ ω2, lim
t→∞

sup TN(t) ≤ ω3, and lim
t→∞

sup TS(t) ≤ ω4. Ultimately, from Eq. (3.3),

we obtain

dV
dt

= η

∫ h2

0
Π2(τ)Eτdτ− βV

≤ ηz2ω2 − βV

≤ ηω2 − βV,

and hence lim
t→∞

sup V(t) ≤ ω5. According to Lemma 3.1, we can demonstrate that Ω is positively

invariant for the system (3.1)-(3.5). �

Lemma 3.2. For the DENV dynamics system (3.1)-(3.5), there exists a threshold parameter R̄0 > 0 such
that

(i): If R̄0 ≤ 1, then there is a unique uninfected steady state SS0,
(ii): If R̄0 > 1, then there is an infected steady state SS1 in addition to SS0.

Proof. We calculate the steady states of the model (3.1)-(3.5) and determine the conditions under

which they exist. Any steady state SS = (M, E, V, TN, TS) satisfies:

0 = ρ− σM− αMV, (3.6)

0 = αz1MV − µE− κ1ETN
− κ2ETS, (3.7)

0 = ηz2E− βV, (3.8)

0 = ξ1 + γ1ETN
− ν1TN, (3.9)

0 = ξ2 + γ2ETS
− ν2TS. (3.10)
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From Eqs. (3.6), (3.8), (3.9) and (3.10) we have

M =
ρ

σ+ αV
, V =

ηz2E
β

,

TN =
ξ1

ν1 − γ1E
, TS =

ξ2

ν2 − γ2E
.

(3.11)

Substituting in Eq. (3.7) we get(
−µ+

ηαρz1z2

βσ+ ηαz2E
+

κ1ξ1

γ1E− ν1
+

κ2ξ2

γ2E− ν2

)
E = 0. (3.12)

Eq. (3.12) presents two possibilities: the first is E = 0, which corresponds to the uninfected steady

state SS0
(
M0, 0, 0, TN

0 , TS
0

)
. The other possibility of Eq. (3.12) is E , 0 and

−µ+
ηαρz1z2

βσ+ ηαz2E
+

κ1ξ1

γ1E− ν1
+

κ2ξ2

γ2E− ν2
= 0

which gives

ā3E3 + ā2E2 + ā1E + ā0

(βσ+ ηαE) (γ1E− ν1) (γ2E− ν2)
= 0, (3.13)

where

ā3 = µηαγ1γ2z2,

ā2 = −κ2ξ2ηαγ1z2 − κ1ξ1ηαγ2z2 + µγ1γ2βσ− ηαγ1γ2ρz1z2 − µηαγ2ν1z2 − µηαγ1ν2z2,

ā1 = −κ2ξ2γ1βσ− κ1ξ1γ2βσ+ κ2ξ2ηαν1z2 − µγ2βσν1 + ηαγ2ρν1z1z2 + κ1ξ1ηαν2z2

− µγ1βσν2 + ηαγ1ρν2z1z2 + µηαν1ν2z2,

ā0 = κ2ξ2βσν1 + κ1ξ1βσν2 + µβσν1ν2 − ηαρν1ν2z1z2.

We define a function Γ̄(E) = ā3E3 + ā2E2 + ā1E + ā0 , then we get

Γ̄(0) = −βσ (κ2ξ2ν1 + κ1ξ1ν2 + µν1ν2)

 ηαρz1z2

µσβ
(
κ1ξ1
ν1µ

+ κ2ξ2
ν2µ

+ 1
) − 1

 ,

Γ̄
(
ν1

γ1

)
=
κ1ξ1γ2 (βσγ1 + αν1ηz2)

γ1

(
ν2

γ2
−
ν1

γ1

)
Γ̄
(
ν2

γ2

)
=
κ2ξ2γ1 (βσγ2 + αν2ηz2)

γ2

(
ν1

γ1
−
ν2

γ2

)
,

lim
E→∞

Γ̄(E) = ∞.

We have Γ̄(0) < 0 if the following condition is satisfied

ηαρz1z2

µσβ
(
κ1ξ1
ν1µ

+ κ2ξ2
ν2µ

+ 1
) > 1. (B)



18 Int. J. Anal. Appl. (2025), 23:88

Similar to the proof of Lemma 2.2, one can prove that there exists E1 ∈
(
0, min

{
v1
γ1

, v2
γ2

})
satisfies Eq.

(3.13). It follows that

M1 =
ρ

σ+ αV∗
, V1 =

ηz2E1

β
,

TN
1 =

ξ1

ν1 − γ1E1
, TS

1 =
ξ2

ν2 − γ2E1
.

We define the basic reproduction number R̄0 as:

R̄0 =
ηαM0z1z2

µβ
(
κ1TN

0
µ +

κ2TS
0

µ + 1
)

Then, the infected steady state SS∗
(
M1, E1, V1, TN

1 , TS
1

)
exists when R̄0 > 1. �

3.3. Global stability. Let Qi be the potential Lyapunov function and J ′i be the largest invariant

set of

Ji =

{(
M, E, V, TN, TS

)
:

dQi

dt
= 0

}
, i = 0, 1.

Theorem 3.1. The DENV dynamics system (3.1)-(3.5) is GAS around the uninfected steady state
SS0

(
M0, 0, 0, TN

0 , TS
0

)
if R̄0 ≤ 1.

Proof. Construct Lyapunov function as:

Q0 = M0L

( M
M0

)
+

1
z1

E +
αM0

β
V +

κ1

γ1z1
TN

0 L

TN

TN
0

+ κ2

γ2z1
TS

0L

TS

TS
0


+
α
z1

∫ h1

0
Π1(τ)

∫ t

t−τ
M(θ)V(θ)dθdτ+

αηM0

β

∫ h2

0
Π2(τ)

∫ t

t−τ
E(θ)dθdτ.

We observe that Q0

(
M, E, V, TN, TS

)
> 0 for all

(
M, E, V, TN, TS

)
> 0 and Q0

(
M0, 0, 0, TN

0 , TS
0

)
= 0.

Calculating dQ0
dt along the solutions of (3.1)-(3.5) as:

dQ0

dt
=

(
1−

M0

M

)
(ρ− σM− αMV) +

1
z1

α∫ h1

0
Π1(τ)MτVτdτ− µE− κ1ETN

− κ2ETS


+
αM0

β

η∫ h2

0
Π2(τ)Eτ − βV

+ κ1

γ1z1

1−
TN

0

TN

 (ξ1 + γ1ETN
− ν1TN

)
+

κ2

γ2z1

1−
TS

0

TS

 (ξ2 + γ2ETS
− ν2TS

)
+
α
z1

∫ h1

0
Π1(τ) (MV −MτVτ) dτ

+
αηM0

β

∫ h2

0
Π2(τ) (E− Eτ) dτ.

Then

dQ0

dt
=

(
1−

M0

M

)
(ρ− σM) −

µ

z1
E +

κ1

γ1z1

1−
TN

0

TN

 (ξ1 − ν1TN
)
−
κ1

z1
TN

0 E

+
κ2

γ2z1

1−
TS

0

TS

 (ξ2 − ν2TS
)
−
κ2

z1
TS

0 E +
αηM0

β
z2Edτ.
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Using ρ = σM0, ξ1 = ν1TN
0 and ξ2 = ν2TS

0 we obtain

dQ0

dt
= −

σ (M−M0)
2

M
−
κ1ν1

γ1z1

(
TN
− TN

0

)2

TN −
κ2ν2

γ2z1

(
TS
− TS

0

)2

TS

+

(
αηM0z2

β
−
κ1

z1
TN

0 −
κ2

z1
TS

0 −
µ

z1

)
E.

Ultimately, we obtain

dQ0

dt
= −

σ (M−M0)
2

M
−
κ1ν1

γ1z1

(
TN
− TN

0

)2

TN −
κ2ν2

γ2z1

(
TS
− TS

0

)2

TS −
µ

z1

κ1TN
0

µ
+
κ2TS

0

µ
+ 1

 (R̄0 − 1)E.

Hence, If R̄0 ≤ 1, we conclude that dQ0
dt ≤ 0 for any M, E, I, TN, TS > 0. Moreover, dQ0

dt = 0 if

M = M0, TN = TN
0 , TS = TS

0 , and (R̄0 − 1)E. The system’s solutions converge to J ′0 where

M = M0, TN = TN
0 , TS = TS

0 , and

(R̄0 − 1)E = 0. (3.14)

Two scenarios are being considered:

(I): R̄0 = 1, then from Eq. (3.1) we obtain

0 =
dM
dt

= ρ− σM0 − αM0V =⇒ V(t) = 0 for any t, (3.15)

and from Eq. (3.3) we obtain

0 =
dV
dt

= η

∫ h2

0
Π2(τ)Eτdτ =⇒ E(t) = 0 for any t. (3.16)

Thus, J ′0 = {SS0}.

(II): R̄0 < 1. Then from Eq. (3.14) we have E = 0 and Eq. (3.15) leads to V = 0 and hence

J
′

0 = {SS0}.

Then, the global stability of SS0 follows from LIP. �

Theorem 3.2. The DENV dynamics system (3.1)-(3.5) is GAS around the infected steady state
SS1

(
M1, E1, V1, TN

1 , TS
1

)
if R̄0 > 1.

Proof. Define

Q1 = M1L

( M
M1

)
+

1
z1

E1L

( E
E1

)
+
αM1

β
V1L

( V
V1

)
+

κ1

γ1z1
TN

1 L

TN

TN
1

+ κ2

γ2z1
TS

1L

TS

TS
1


+
α
z1

M1V1

∫ h1

0
Π1(τ)

∫ t

t−τ
L

(
M(θ)V(θ)

M1V1

)
dθdτ+

αηM1

β
E1

∫ h2

0
Π2(τ)

∫ t

t−τ
L

(
E(θ)

E1

)
dθdτ.
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Taking the derivative of Q1 along the solution of system (3.1)-(3.5) as:

dQ1

dt
=

(
1−

M1

M

) dM
dt

+
1
z1

(
1−

E1

E

) dE
dt

+
αM1

β

(
1−

V1

V

) dV
dt

+
κ1

γ1z1

1−
TN

1

TN

 dTN

dt

+
κ2

γ2z1

1−
TS

1

TS

 dTS

dt
+
α
z1

M1V1

∫ h1

0
Π1(τ)

( MV
M1V1

−
MτVτ

M1V1
+ ln

(MτVτ

MV

))
dτ

+
αηM1

β
E1

∫ h2

0
Π2(τ)

( E
E1
−

Eτ
E1

+ ln
(Eτ

E

))
dτ.

Substituting equations of system (3.1)-(3.5), we get

dQ1

dt
=

(
1−

M1

M

)
(ρ− σM− αMV) +

1
z1

(
1−

E1

E

) α∫ h1

0
Π1(τ)MτVτdτ− µE− κ1ETN

− κ2ETS


+
αM1

β

(
1−

V1

V

) η∫ h2

0
Π2(τ)Eτdτ− βV

+ κ1

γ1z1

1−
TN

1

TN

 (ξ1 + γ1ETN
− ν1TN

)
+

κ2

γ2z1

1−
TS

1

TS

 (ξ2 + γ2ETS
− ν2TS

)
+
α
z1

M1V1

∫ h1

0
Π1(τ)

( MV
M1V1

−
MτVτ

M1V1
+ ln

(MτVτ

MV

))
dτ

+
αηM1

β
E1

∫ h2

0
Π2(τ)

( E
E1
−

Eτ
E1

+ ln
(Eτ

E

))
dτ.

Collecting terms leads to

dQ1

dt
=

(
1−

M1

M

)
(ρ− σM) −

µ

z1
E−

α
z1

∫ h1

0
Π1(τ)

MτVτE1

E
dτ+

µ

z1
E1 +

κ1

z1
E1TN +

κ2

z1
E1TS

−
αηM1

β

∫ h2

0
Π2(τ)

EτV1

V
dτ+ αM1V1 +

κ1

γ1z1

1−
TN

1

TN

 (ξ1 − ν1TN
)
−
κ1

z1
TN

1 E

+
κ2

γ2z1

1−
TS

1

TS

 (ξ2 − ν2TS
)
−
κ2

z1
TS

1 E +
α
z1

M1V1

∫ h1

0
Π1(τ) ln

(MτVτ

MV

)
dτ

+
αηM1

β
E1

∫ h2

0
Π2(τ)

( E
E1

+ ln
(Eτ

E

))
dτ.

Applying the steady state conditions

ρ = σM1 + αM1V1,

µE1 = αz1M1V1 − κ1E1TN
1 − κ2E1TS

1 ,

z2ηE1 = βV1,

ξ1 = ν1TN
1 − γ1E1TN

1 ,

ξ2 = ν2TS
1 − γ2E1TS

1 .
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Then we obtain

dQ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1

γ1z1

(
TN
− TN

1

)2

TN −
κ2ν2

γ2z1

(
TS
− TS

1

)2

TS +
(
1−

M1

M

)
αM1V1

−
κ1

z1

1−
TN

1

TN

 E1TN
1 −

κ2

z1

1−
TS

1

TS

 E1TS
1 +

1
z1

[
αηM1z1z2E1

β
− κ1TN

1 E1 − κ2TS
1 E1 − µE1

]
E
E1

−
α
z1

M1V1

∫ h1

0
Π1(τ)

MτVτE1

M1V1E
dτ+ αM1V1 −

κ1

z1
E1TN

1 −
κ2

z1
E1TS

1 +
κ1

z1
E1TN

+
κ2

z1
E1TS

−
αηM1

β
E1

∫ h2

0
Π2(τ)

EτV1

E1V
dτ+ αM1V1 +

α
z1

M1V1

∫ h1

0
Π1(τ) ln

(MτVτ

MV

)
dτ

+
αM1V1

z2

∫ h2

0
Π2(τ) ln

(Eτ
E

)
dτ.

It follows that

dQ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1

γ1z1

(
TN
− TN

1

)2

TN −
κ2ν2

γ2z1

(
TS
− TS

1

)2

TS +
(
3−

M1

M

)
αM1V1

−
κ1

z1

2−
TN

1

TN −
TN

TN
1

 E1TN
1 −

κ2

z1

2−
TS

1

TS −
TS

TS
1

 E1TS
1 −

α
z1

M1V1

∫ h1

0
Π1(τ)

MτVτE1

M1V1E
dτ

−
αM1V1

z2

∫ h2

0
Π2(τ)

EτV1

E1V
dτ+

α
z1

M1V1

∫ h1

0
Π1(τ) ln

(MτVτ
MV

)
dτ+

αM1V1

z2

∫ h2

0
Π2(τ) ln

(Eτ
E

)
dτ.

Using the following inequalities

ln
(MτVτ

MV

)
= ln

(MτVτE1

M1V1E

)
+ ln

(M1

M

)
+ ln

(EV1

E1V

)
,

ln
(Eτ

E

)
= ln

(EτV1

E1V

)
+ ln

(E1V
EV1

)
.

We obtain

dQ1

dt
= −

σ (M−M1)
2

M
−
κ1ν1

γ1z1

(
TN
− TN

1

)2

TN −
κ2ν2

γ2z1

(
TS
− TS

1

)2

TS

+
α
z1

M1V1

∫ h1

0
Π1(τ)

(
2−

M1

M
−

MτVτE1

M1V1E
+ ln

(MτVτE1

M1V1E

)
+ ln

(M1

M

))
dτ

+
α
z2

M1V1

∫ h2

0
Π2(τ)

(
1−

EτV1

E1V
+ ln

(EτV1

E1V

))
dτ

+
κ1

z1

(
TN
− TN

1

)2

TN E1 +
κ2

z1

(TS
− TS

1 )

TS E1.

From the steady state conditions, we have

E1 −
ν1

γ1
= −

ξ1

γ1TN
1

and E1 −
ν2

γ2
= −

ξ2

γ2TS
1

.
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It follows that

dQ1

dt
= −

σ (M−M1)
2

M
−
κ1ξ1

γ1z1

(
TN
− TN

1

)2

TNTN
1

−
κ2ξ2

γ2z1

(
TS
− TS

1

)2

TSTS
1

−
α
z1

M1V1

∫ h1

0
Π1(τ)

(
L

(M1

M

)
+L

(MτVτE1

M1V1E

))
dτ−

α
z2

M1V1

∫ h2

0
Π2(τ)L ln

(EτV1

E1V

)
dτ.

Clearly, dQ1
dt ≤ 0 for any

(
M, E, V, TN, TS

)
> 0 and dQ1

dt = 0 if M = M1, TN = TN
1 , TS = TS

1 , and
MτVτE1
M1V1E = EτV1

E1V = 1. Solutions of system (3.1)-(3.5) converge to J ′1. Any element in J ′1 satisfies

M = M1, TN = TN
1 , and TS = TS

1 . Then dM
dt = dTN

dt = dTS

dt = 0 and from Eqs. (3.1) and (3.4), we get

0 =
dM
dt

= ρ− σM1 − αM1V =⇒ V(t) = V1 for any t,

0 =
dTN

dt
= ξ1 + γ1ETN

1 − ν1TN
1 =⇒ E(t) = E1 for any t.

Consequently, by using LIP, J ′1 = {SS1} and SS1 is GAS. �

We note that if we chose fi(τ) = D (τ− τi) , i = 1, 2, and hi →∞, then model (3.1)-(3.5) will lead

to model (2.1)-(2.5).

4. Numerical Simulation

In this section, we conduct numerical simulations for the model with discrete-time delays (2.1)-

(2.5) to enhance the theoretical findings given in Theorem 2.1-2.2.

4.1. Numerical simulations for system (2.1)-(2.5). In this subsection, we utilize the parameter

values listed in Table 1 and use MATLAB’s dde23 solver to numerically solve the system of DDEs.

For simplicity, we assign τi = 0.1 for i = 1, 2, and we also select the three following initial points

(IPs) as described below:

IP-1 : M(θ) = 6× 107, E(θ) = 0.5, V(θ) = 150, TN(θ) = 90, TS(θ) = 90,

IP-2 : M(θ) = 4× 107, E(θ) = 1, V(θ) = 357, TN(θ) = 60, TS(θ) = 60,

IP-3 : M(θ) = 2× 107, E(θ) = 3, V(θ) = 500, TN(θ) = 30, TS(θ) = 30,

where θ ∈ [−0.1, 0]. Choosing among the three sets of starting points is optional to make sure our

choice does not impact the overall stability of any steady states. By changing the parameter α, we

obtain two distinct circumstances:

Circumstance-1: (Stability of SS0): We set α = 1.72 × 10−13. In this scenario, we have R0 =

0.21 < 1. Figure 1 illustrates that the solutions starting from initial points IP-1, IP-2, and IP-3

converge to the uninfected steady state SS0 =
(
7.143× 107, 0, 0, 60, 60

)
. This provides SS0

is GAS which is consistent with the result in Theorem 2.1. Thus, the DENV will eventually

be eradicated, and the count of uninfected monocytes will return to its normal level.
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Table 2. The variation of R0 with respect to the delay parameters τi, i = 1, 2.

τ1 = τ2 R0

0 25.0755

0.5 9.22474

1.5 1.24843

1.61094 1

1.7 0.83685

1.9 0.560957

Circumstance-2: (Stability of SS1): By setting α = 1.72 × 10−11, we find R0 = 20.53 > 1.

Figure 2 shows that the solutions starting from initial points IP-1, IP-2, and IP-3 converge

to the infected steady state SS1 =
(
7.142× 107, 326.72, 849516, 84.52, 264413

)
and then SS1

is GAS as we have proven in Theorem 2.2.

4.2. Effect of time delays on the DENV dynamics system. By fixing the parameter α = 1.72 ×

10−11 and varying τi (for i = 1, 2), we investigate the effect of incorporating time delays on the

stability of SS0. Since R0 influenced by τi, any alterations to these parameters will impact the

stability of SS0. Even a small increase in the values of τi will lead to a decrease in R0 (see Table 2).

We will consider the following cases:

T.D-1 : τ1 = τ2 = 0,

T.D-2 : τ1 = τ2 = 0.5,

T.D-3 : τ1 = τ2 = 1.5,

T.D-4 : τ1 = τ2 = 1.7,

T.D-5 : τ1 = τ2 = 1.9.

Let us solve system (2.1)-(2.5) under the following initial condition:

IP− 4 : M(θ) = 4× 107, E(θ) = 200, V(θ) = 100, TN(θ) = 100, TS(θ) = 500,

where θ ∈ [−1.9, 0]. Let’s calculate the critical value of the time delay that affects the stability of

SS0. For the sake of simplicity, we assume that τ1 = τ2 = τ12. By keeping the other parameters

constant, R0 can be expressed as functions of τ12 as follows:

R0(τ12) =
ηαM0e−(m1+m2)τ12

µβ
(
κ1TN

0
µ +

κ2TS
0

µ + 1
) .

To fulfill that R0(τ12) ≤ 1, we take τ12 as:

τ12 ≥ τ
cr
12 where τcr

12 = max

0,
1

m1 + m2
ln

 ηαM0

µβ
(
κ1TN

0
µ +

κ2TS
0

µ + 1
)

 .
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Figure 1. Solutions of system (2.1)-(2.5) arrive uninfected steady state SS0 =(
7.143× 107, 0, 0, 60, 60

)
using three distinct initial points (Circumstance-1).
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Figure 2. Solutions of system (2.1)-(2.5) arrive infected steady state SS1 =(
7.142× 107, 326.72, 849516, 84.52, 264413

)
using three distinct initial points

(Circumstance-2).
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Thus, if τ12 ≥ τcr
12, then SS0 is GAS. Using the values of parameters given in Table 1, we obtain

τcr
12 = 1.61094. Consequently,

(i): If τ12 ≥ 1.61094, then R0 (τ12) ≤ 1, and SS0 is GAS. This shows that the DENV will be

cleared.

(ii): If 0 ≤ τ12 < 1.61094, then R1 (τ12) > 1, and SS0 will lose its stability and in this case SS1

will be GAS. In this case the infection will be presented.

Figure 3 presents the numerical solutions for system (2.1)-(2.5). It shows that the including

of time delays helps maintain the concentration of uninfected monocytes, while simultaneously

reducing the concentrations of other compartments such as E, V, TN, and TS. As the delay period

increases, it becomes apparent that time delays can help manage DENV progression in patients,

demonstrating an effect similar to that of drug efficacy. Therefore, incorporating time delays may

play a significant role in the development of new and effective treatment strategies.

4.3. Sensitivity analysis. A sensitivity analysis will be performed to assess how different parame-

ters affect the spread of Dengue infection in a host. This section emphasizes the critical parameters

that notably influence our model, assisting researchers in the development of new antiviral drugs.

The normalized forward sensitivity index for R0 is defined as follows:

HRi
ω =

∂Ri

∂δ
×
δ
Ri

(4.1)

where δ is given parameter. The influence of R0 on the stability of the uninfected steady state SS0

is quite substantial, which encourages further investigation into the sensitivity analysis of these

variables. Using Eq. (4.1) and setting α = 1.72× 10−12, the sensitivity indices of R0 with respect to

each parameter are determined and presented in Table 3. Based on the signs indicated in the table,

we can interpret the level of influence each parameter has in our model as follow:

• Parameters η,α, ρ, ν1 and ν2 demonstrate positive indices. This indicates that changes

in these parameters will result in corresponding adjustments to the basic reproduction

number R0. As a result, increasing or decreasing these parameters will lead to a rise or fall

in R0 accordingly. The findings suggest that both the infection rate, α, and viral replication

rate, η, play a crucial role in determining the sensitivity of R0. Lowering the values of

parameters α and η can be accomplished through a control strategy designed to inhibit

both viral infection and production. These findings could be valuable in creating antiviral

therapies focused on preventing viral entry and replication.

• Conversely, the parameters β, σ, µ, κ1,κ2, ξ1, ξ2, m1, m2, τ1, and τ2 have negative signs,

resulting in a negative impact on R0. From Table 3, we find that a 10% increase (or

decrease) the values of β, σ, µ, κ1,κ2, ξ1, ξ2, m1, m2, τ1 and τ2 decreases (or increases) R0 by

10%, 10%, 9.944%, 0.012%, 0.044%, 0.012%, 0.044%, 1%, 1%, 1%, and 1%, respectively.

4.4. Impact of non-specific CTLs and strain-specific CTL responses on the DENV dynamics.
This section examines how the stimulated rate constants of non-specific CTLs and strain-specific
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Figure 3. Solutions of system (2.1)-(2.5) for different delays τ1 and τ2.
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Table 3. Sensitivity index of R0.

Parameter HR0
δ

Parameter HR0
δ

η 1 ξ1 −0.0012

α 1 ξ2 −0.0044

ρ 1 ν1 0.0012

β −1 ν2 0.0044

σ −1 m1 −0.1000

µ −0.9944 m2 −0.1000

κ1 −0.0012 τ1 −0.1000

κ2 −0.0044 τ2 −0.1000

Figure 4. Sensitivity of R2.

CTLs, denoted asγ1 andγ2, affect the system dynamics outlined in model (2.1)-(2.5) . To investigate

the impact of γ1 and γ2 on the model’s solutions, we will maintain the values of α = 1.72× 10−11,

and τi = 0.1 for i = 1, 2, constant while varying the parameter γ1 and γ2. We will begin with the

following initial point:

IP− 5 : M(θ) = 4× 107, E(θ) = 1, V(θ) = 357, TN(θ) = 60, TS(θ) = 60,

where θ ∈ [−0.1, 0]. Figure 5 shows that as the parameters γ1 and γ2 increase, the levels of unin-

fected monocytes remain unchanged. In contrast, the quantities of DENV-infected monocytes and

free DENV decrease. Therefore, these CTLs primarily contribute to controlling DENV infection.

Since R0 is not influenced by changes in γ1 and γ2, increasing these parameters does not lead to

reaching SS0. Thus, non-specific CTLs and strain-specific CTL cells cannot completely eliminate

DENV infections, but they are effective in slowing down DENV progression.
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Figure 5. Impact of non-specific CTLs and strain-specific CTL responses on the

dynamics of the DENV model.
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5. Conclusions and Discussion

This paper explored two DENV dynamics models that include both non-specific and strain-

specific CTLs. The models describe the interaction between five populations: uninfected mono-

cytes, infected monocytes, free DENV particles, non-specific CTLs, and strain-specific CTLs. Two

types of discrete/distributed delays were included into the models: Delay in the formation of

infected monocytes and delay in the maturation of newly released dengue virions.

The study established that the solutions for the proposed models remain non-negative and

bounded. Two steady states are identified: the uninfected steady state (SS0) and the infected

steady state (SS1), with the stability of these points being influenced by the basic reproduction

number, R0. Using the Lyapunov method and LaSalle’s invariance principle, the global asymptotic

stability of both steady states is demonstrated. We proved that

(i) The uninfected steady state (SS0) always exists and is GAS when R0 ≤ 1. This indicates

that DENV will be eradicated in this scenario.

(ii) The infected steady state exists and is GAS when R0 > 1. This represents that an individual

infected with DENV.

The theoretical results are verified through numerical simulations. Additionally, sensitivity

analysis is performed to examine the effect of various parameters on R0 based on available data.

The findings suggest that both the infection rate and viral production rate play a crucial role in

influencing the sensitivity of R0, thereby shaping the dynamics of DENV. This understanding

may aid in the design of antiviral therapies targeting viral entry and replication.The study also

examines the role of CTL immune responses and the effect of time delays, leading to several key

conclusions:

• Increasing the delay period can help manage the progression of DENV in patients.

• Both non-specific and strain-specific CTLs play distinct roles in controlling DENV infection.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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