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Abstract: In this study, a Novel Extended Alpha Power (NEAP) family of distributions is introduced to improve 

efficiency of the existing class of lifetime distributions. A sub-mode of NEAP is further studied using Weibull 

distribution as an input model. This new version of distribution is referred as novel extended alpha power Weibull 

(NEAPW) distribution. The new distribution is suitable for modeling both monotone and non-monotone type data. 

Various statistical characteristics of the suggested model are estimation of parameters, the order statistics, mean 

residual, quantile function, and moments are obtained. A simulation study of the novel distribution is also conducted. 

The usefulness and effectiveness of the novel model is established by investigating two real data sets from the field of 

basic sciences. 

 

1. Introduction 

 In the statistical distribution theory, adding further parameter(s) to the present family of 

distribution is a common practice. Usually adding further parameter(s) brings enhanced 

flexibility to probability function. In the recent years, the development of new distributions and 

new family of distributions has become popular. This is because, the classical distribution is 

insufficient for modeling the real data set. In this connection, Azzalini [1] presented skewed 

normal distribution. Mudholkar and Srivastava [2] presented a new technique to incorporate a 

new parameter to the baseline distributions. Cordeiro et al. [3] developed a new method known 

as exponentiated generalized class of distribution. Alzaatreh et al. [4] generated a family of 
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distributions. A new technique was suggested by Marshal and Olkin [5]. Rehman et al. [6] 

introduced generalize transmuted family of distribution and they gave the as K-transmuted 

family. Mahadavi and Kundu [7] produced a new technique for developing distribution(s) and 

the called it as alpha power transformation (APT) technique. Khan and King worked on 

transmuted modified Weibull distribution, Alizadeh et al. [9] produced generalized transmuted 

family of distribution, Afify et al. [10] developed the Kumaraswamy transmuted G family of 

distributions and Bourguignon et al. [11] produced general result for transmuted family of 

distribution. Oluyede and Yang [12] have studied Beta generated family of distribution. Besides 

this Rashid and Jan [13] have introduced a new family of distribution by compounding Lindly 

distribution with power series distribution.  

 Corderio and Castro [14] proposed Kumaraswamy type-1 class of distributions, and is given by 

                                          ( )( )( ) 1 1 ( ) , 0 (1)G x F x


 = − −   

A new family of distribution called Kumaraswamy type 2 was proposed by Tahir and Nadarajah 

[15]. The cumulative distribution function (CDF) of the proposed family of distribution is defined 

by 

        ( )( )( ) 1 1 1 ( ) , 0 (2)F x G x


 = − − −   

A new generated family of distribution presented by Zografos and Balakrishnan [16] is written 

as 

         

( )( )ln 1

1

0

( ) (3)

G x

tG x t e dt


 



− −

− −=   

The alpha power transformation technique [7] is defined as follows:  

The CDF of the APT is given as    

       

( ) 1
0, 1

( ) (4)1

( ) 1

F x

G x

F x


 





 −
 

= −
 =

 

In this study, an effort will be made to develop new class of distribution called a novel extended 

alpha power (NEAP) family of distributions. The particular case of this class is studied by 

inputting the Weibull distribution referred as Novel Extended Alpha Power Weibull (NEAPW) 

distribution. The new proposal would help in modeling the phenomenon taking both monotone 

and non-monotone hazard rate forms. 

The Proposed Family 

The CDF of the new family is defined by the following expression 
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( ( ) 1) 1
0, 1, 0

( ) (5)2 1

( ) 1

F x
x

G x

F x




 



 + −
  

= −
 =

 

The probability density function (PDF) corresponding to (5) is given by 

                     ( )
( ) ( )( )( )1

1 , 0, 1
(6)2 1

( ) 1

f x F x if x
f x

f x if






 



−
+  

= −
 =

 

The corresponding survival function (SF), hazard rate function (HRF) and reversed hazard rate 

function (RHRF) of the NEAP family of distributions are obtain as 

                    ( )
( )( )2 1

, 0, 1 (7)2 1

( ) 1

F x
if xs x

s x if




 



 − +
  = −


=

 

                      ( )

( ) ( )( )

( )( )

1

1
, 0, 1

(8)2 1

( ) 1

f x F x
if x

h x F x

h x if






 



− +
  

=  − +


=

 

                       ( )

( ) ( )( )

( )( )

1

1
, 0, 1

(9)1 1

( ) 1

f x F x
if x

r x F x

r x if






 



− +
  

= + −


=

 

The NEAP family is appealing, flexible and effective method for inducing an extra parameter(s) 

to generalize the baseline distribution. The proposed distribution claims to have superior 

flexibility. It efficiently models lifetime data sets having monotonically increasing and decreasing 

failure rates. 

Weibull distribution 

The PDF and CDF of the Weibull distribution respectively is given as 

                        1( ) , , 0 (10)xf x x e x
   − −=   

                       ( ) 1 0 (11)xF x e x
−= −   

The Proposed Model: Novel Extended Alpha Power Weibull (NEAPW) distribution                 

Let ( , , )X NEAPW    . Then its PDF and CDF can be written as 

                       

1 1(2 )
, , , 0, 1

( ) (12)2 1

( ) 1

x x

W

x e e
x

f x

f x

    




   



− − − − −
  

=  −
 =
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(2 ) 1

, , , 0 1
( ) (13)2 1

( ) 1

x

W

e
x

F x

F x

 


   



− − −
  

=  −
 =

 

Figure (1) gives the shape forms of the PDF of NEAPW distribution for different values of 

parameters. We can see from this figure that NEAPW distribution has both increasing and 

decreasing pattern. 

  

                                          Fig 1: graph of the PDF of NEAPW 

The associated SF, HF and RHRF, respectively, are given below                          

                        
2 (2 )

, , , 0, 1
( ) (14)2 1

( ) 1

x

W

e
x

S x

S x

  


   



− − −
  

=  −
 =

 

                        

1 1(2 )
, , , 0, 1

( ) (15)2 (2 )

( ) 1

x x

x

W

x e e
x

h x e

h x

 



   

  


   



− − − −

−

 −
 
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1 1(2 )
, , , 0, 1

( ) (16)(2 ) 1

( ) 1

x x

x

W

x e e
x

r x e

r x

 



   

 


   



− − − −

−

 −
 

= − −


=

 

Figure 2 displays the SF of the NEAPW distribution for various values of the parameters. 



Int. J. Anal. Appl. (2025), 23:134 5 

 

 

                                               Fig 2: graph of the survival function 

 

Special Cases of the NEAPW Distribution 

We present various sub-models of the NEAPW in Table 1. 

                                                Table 1:  Special models of the NEAPW distribution 

      Reduced Models 

_ _ 1 NEAPW with one parameter  

1 _ _ Weibull distribution 

1 _ 1 Standard Weibull distribution 

_ 2 _ NEAP  Rayleigh distribution 

_ 1 _ NEAP exponential distribution 

1 1 _ exponential distribution 

 

Quantile function 

The quantile function is very useful in conducting simulation study. It is used to measure the 

central tendency and range of values that a random variable may assume. Let a random variable 

X follow the NEAPW distribution, then the quantile function of the NEAPW distribution can be 

obtained by 

( )F x q=  

Using equation (13), we get the quantile function of the NEAPW distribution                                    

( )( )
1

2 1 1 2xe q
  −− = − + −  

( )( )
1

log 2 1 1 2x q  
 

= − + −  
 
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 ( )( )

1

1
1

log 2 1 1 2 (17)x q


 



  
= − + −   

  

 

First Quartile 

When  
1

4
q = , then it is called as the first quartile, which is defined as follow                          

Second Quartile 

When 
1

2
q = , then it is called as second quartile. It is also called as median. We can define the 

median as  

                            
( )

1

1

1 1 2 1
0.5 log 2 (19)

2 2
x

Q


 



  
 +    = = −          

  

 

Third Quartile 

The quantile of order 
3

4
 is called the third quartile, which can be written as bellow 

                         
( )

1

1

3 1 3.2 3
0.75 log 2 (20)

4 4
x

Q


 



  
 +    = = −          

  

 

It is interesting to note that the interval from 1Q  to 3Q  is known as the interquartile range (IQR). 

The expression for interquartile range is given as   

                                                                 3 1IQR Q Q= −  

 

                                             Fig 3: Graph of the Quantile function  
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The Moment Generating Function 

Moments generating function of the NEAPP distribution is defined by 

                               ( ) ( )
0

( ) (21)tx tx

xM t E e e f x dx


= =   

Inserting equation (12) into equation (21), we have  

                              
( )

( )

1

0

2
( ) (22)

2 1

x x

tx

x

x e e
M t e dx

   



 − − −
 −

=
−

  

We know that 

0 !

r
tx r

r

t
e x

r



=

=  

Equation (22) become as 

                             
( )

( )

1
1

00

2
( ) (23)

! 2 1

x x
r r

x

r

x e e dxt x
M t

r

  
  




−

− − −
 

=

 
− 

=  − 
 

  

Substituting y x= in equation(23) to have  

                               
( ) ( )

1

00

2
( ) (24)

! (2 1)

r
y yr

x

r

y e e dyt
M t

r

 





−

− − 

=

 
− 

=
 − 
 

  

  After simplifying equation (24), we get 

                                 
( )

( ) ( )
0

1

01

1 1
( ) log 2

!2 1

mr

x

r

t
M t z z dz

r









−

=

 
= − − − 

−  
  

                               
( )

( ) ( )
1

1

00

1
( ) log 2 (25)

!2 1

m r
m

x

r

t
M t z z dz

r










−

=

− 
= − 

−  
                                                                                                     

            
( )

( ) ( ) ( )
11

1

0 0 0

11
( ) 2 1 log (26)

!2 1

m r
k k m k

x

r k

t
M t z z dz

kr










 −
− −

= =

− − 
= −  

−    
   

Solving the integral part of the equation (26) 

( )
1 0

0

log
m k m uk uz z dz u e e du

−

=   

( )
1

( 1)

0 0

log
m k m u kz z dz u e du



+= −   
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( ) ( ) ( )

( )

1

( 1)

0

1 1 , 1

1

m

m u k

m

k m k u
u e du

− −

+
+ + − +

=
−

  

The final expression for MGF is  

            

( )
( ) ( )

( ) ( ) ( )

( )

1
1

1 1

0 0

1 1 1 , 11
( ) 2 1 (27)

!2 1 1

mm r
k k

X m
r k

k m k ut
M t

kr










− −
 −

− − +

= =

 − + + − + − 
 = −    −   −   

  

Bonferroni curve 

Bonferroni curve is frequently used in different fields, including economics, to study income and 

poverty and in the life time analysis to study survivorship and reliability. Paranaiba et al. [17] 

defined it as 

                               
0

1
( ) ( ) (28)

q

B p xf x dx
p

=   

The integral part of equation (28) can be expressed as 

0

( ) ( )

q

xf x dx T q= −  

Where    ( )E x =      and    1( )q F p−=  is the quantile function (QF). 

We know that 

( ) ( )
q

T q xf x dx


=   

Using equation (12) 

                  
( )

( )

1

2
( ) ( ) (29)

2 1

x x

q q

x e e
T q xf x dx x dx

  
  




−

− −
 

 
− 

= =  − 
 

   

By applying transformation xy e
−= , equation (29) reduces to  

                 
( )

( )

1

11
( ) log 2 (30)

2 1

qe

T q y y dy



 







− −

−



− 
= − 

−  
  

                
( )

( ) ( )

1
1

1

1

1 1
( ) 2 log (31)

2 1

qe
i i

i

T q y y dy
i


 







− −
−

− − −

= 

−  − 
= −   

−   
   

Using computer software, we can solve the above equation. 
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Lorenz Curve 

Like Bonferroni curve, Lorenz curve is also used to study income and poverty, reliability an 

demographic phenomenon, insurance and medicine. It is defined as 

                                        
0

1
( ) ( )

q

L p xf x dx


=   

                                      ( )
1

( ) ( )L p T q


= −  

                                 
( )

( ) 1 (32)
T q

L p


= −  

Inserting equation (31) in the equation (32), we can get the Lorenz curve 

Parameter Estimation 

The parameters of the probability distribution function are not known and it is needed to estimate 

these parameters on the bases of information obtained from a sample. Here, we consider the 

Maximum likelihood Estimation (MLE) method to estimate the parameters. Let 1 2 3, , ,... nx x x x  be 

n observed values from NEAPW distribution, then the likelihood function is defined as 

                                             
1

( )
n

i

L f x
=

=  

                                        ( )
1 1

1

2
2 1

xn
x

i

x e
L e




  





 − − −
−

=

 
= −  − 
  

The expression for log likelihood function is given as 

( ) ( )( )
0

log log log log ( 1)log log 2 1 ( 1)log 2 (33)
n

x

i

L x x e
        −

=

= + + + − − − − + − −  

Differentiating equation (33) with respect to  ,   and  , we obtain 

                                           
( )

( )
0

log 1 2 log(2)
log 2

2 1

n
x

i

d L
e

d





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−

=

 
 = − + −
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 

  

                                         
( )

( )
( )

1

2 log 2log
log 2 (34)

2 1

n
x

i

nd L n
e

d






 

−

=

= − + −
−

  

( )

( )
( )( )

0

1log 1
log log log

2

n
x

x
i

d L
x x x e x x

d e




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


 

 

−

−
=

 
− = + − + − −

  −
 

  
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( )0 1 1
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log log 1 (35)

2
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i i i
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
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
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  
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  −
 

  

                                ( )
( )1 1

log
1 (36)

2
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x
i i
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x

d e





 



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−

−
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Setting the above equations (34, 35,36) to zero and resolving them mathematically produce MLEs 

of the parameters  ,   and  . But these equations are not in closed form, therefore a 

appropriate mathematical algorithm must be used to achive the MLEs of the parameters 

Asymptotic Confidence Bound 

To find the asymptotic confidence bound for the population parameters of the NEAPP, we have 

to find the higher order partial derivative of the above equations.  

                                               

11 12 13

21 22 23

31 32 33

ˆ

ˆ ,

ˆ

v v v

N v v v

v v v

 

 



      
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           

 

ijv is the variance- covariance matrix 
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All the second ordered derivatives are exist, which can obtained by the following relation 
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I I E

 

 
= =  

  
                    

33 2

log L
I E



 
=  

 
               23 32

logL
I I E

 

 
= =  

  
 

through variance-covariance matrix, we can find the 100(1-α) for the parameters   ,  ,    which 

is given as 

            ( )
2

ˆ ˆ.Z S E           
2

.S Ez 
  
  

 
             

2

.S Ez 
  
  

 
 

Order statistics 

In statistical applications, the extreme value of a distribution plays an important role. The pdf 

: ( )i nf x  of the 
thi  order statistics of random sample 

1 2 3, , ,. . ., nx x x x
 
from NEAPW distribution is 

given by the expression                      



Int. J. Anal. Appl. (2025), 23:134 11 

 

                        
( )( )

( )1

:

!
( ) ( ( )) ( ) 1 ( ) (37)

1

n ii

i n

n
f x F x f x F x

i n i

−−= −
− −

 

Using the PDF and CDF of the NEAPW distribution 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

1 1
1

;

2 1 2 2 1!
1 (38)

1 ! ! 2 1 2 1 2 1

i n i
x x x x

i n

e x e e en
f x

i n i

   
    

  


− −−

− − − − −    − − − − −    = −    − − − − −        

 

After simplification the equation (38), we have the final result as 

( )
( ) ( ) ( )

( )( ) ( ) ( )( )
1 1

1

;

!
2 1 2 2 2 (39)

2 1 1 ! !

n ii
x x x x

i n n

n
f x e x e e e

i n i

   
     




−− −

− − − − − 
= − − − − − 

 − − −
 

The first order statistic is given as 

 ( )
( ) ( )

( ) ( )( )
1

1
1

1

!
2 2 2 (40)

2 1 1 !

n

x x x

n

n
f x x e e e

n

  
    




−

−
− − − − 

= − − − 
 − −

 

The nth order statistic is given by 

                       ( )
( ) ( )

( )( ) ( )
1 1

1!
2 1 2 (41)

2 1 1 !

n
x x x

n n

n
f x e x e e

n

   
   



 − −
− − − − 

= − − − 
 − −

 

The 
thr  moments 

Let x be a random variable follow NEAPW distribution, then the 
thr  moments say /

r  is defined 

as  

                         ( )/

0

( ) (41)r r

r E x x f x dx


= =   

Substituting the PDF of NEAPW distribution in equation (41), we have  

                                      ( )
1 1

/

0

2 (42)
2 1

x
r x

r

x e
x e dx




  








 − − −
−

 
= −  − 
  

Let y x= , then using the transformation, equation (42) reduced to 

                                 
( )

( )
1

/

0

2 (43)
2 1

r

y y

r x e e dy
 







−

− −= −
−
  

                            
( )

( ) ( )
1

1/

0

1
log 2 (44)

2 1

r
r

r z z dz
 









−− 
= − 

−  
  

                        

( )
( ) ( ) ( )

01
1/

0
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2 1 log (45)

2 1

m
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k

z z dz
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









−
− −
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− − 
= −  

−    
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Solving the integral part of the equation (45), we obtain the result as 

                               
( ) ( )

( )

1

( 1)

0 0

1 1, 1

1

m

m uk u m u k

m

k m k u
u e e du u e du

− − 

+
+ + − +

− = − =
−

   

Where 

1 0,k− −          1 0,m− −           2 0m− −  . 

After solving the integral part, we have  

                     
( )

( ) ( )
( ) ( )

( )

1
1

1 1/

0

1 1 1, 11
2 1

2 1 1
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k k

r m
k

k m k u

k











− −
−

− − +

=

 − + + − + − 
 = −    −   −   

  

Replace 
r

m


= , we have the final result for 
thr  moments 

( )
( ) ( )

( ) ( )

( )

1

1
1 1/

0

1 1, 1
11

2 1 (46)
2 1 1

r

r

k k

r r
k

r
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k


 





 




− −

−
− − +

=

 
+ + − + − −   = −  

 −     − 
 

  

Simulation study 

The simulation study has been carried out for obtaining average MLE and mean square error 

(MSE). The simulated data were generated 1000 times for different sample size. The random 

number were generated by the following expression 

                                                      

1
1

log(( (2 1) 1) 2)u
X


 



 
− + − =

 
  

                 

Where the bias and MSE were calculated by the expressions below 

                   
^1

( )
w

i

i

Bias
w

 
=

= −    and 
^

2

0

1
( )

w

i

i

MSE
w

 
=

= − . 

From the results presented in table 2, we observe that the MSE and bias decrease as we increase 

the sample size. This clearly shows the consistency of MLE’s. 

                                               Table 2: Bias and MSE for the parameters α, β, λ 

  Β   N MSE(α) MSE(β) MSE(λ) Bias(α) Bias(β) Bias(λ) 

2 2 2 10 7.8790 1.3168 2.0871 1.2780 0.6434 0.1125 

   50 5.3111 0.2199 0.3447 0.5855 0.1728 0.1044 

   130 3.1349 0.1101 0.2076 0.3924 0.0938 0.0965 

   240 1.6096 0.0589 0.1103 0.0907 0.0354 0.0258 

1.3 2.0 1.7 10 6.1209 1.1290 1.5102 1.1633 0.5717 0.1102 

   50 3.5228 0.0775 0.2147 0.5796 0.1102 0.0913 

   130 2.9552 0.0875 0.1781 0.3032 0.0619 0.0612 
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   240 1.0601 0.0380 0.0759 0.1043 0.0290 0.0209 

1.3 1.5 1.7 10 5.9292 0.6375 1.4136 1.1623 0.4299 0.1088 

   50 3.9495 0.0891 0.2583 0.4976 0.0985 0.0610 

   130 2.5735 0.0459 0.1606 0.2158 0.0388 0.0416 

   240 1.3363 0.0255 0.0900 0.1247 0.0239 0.0259 

7 3.0 5 10 19.2454 2.9694 11.5522 0.4027 0.8435 1.5416 

   50 11.5156 0.6566 0.6982 0.4423 0.1994 0.2621 

   130 4.8813 0.3715 0.2262 0.1899 0.1717 0.0358 

   240 1.6850 0.0895 0.0960 0.0818 0.0367 0.0343 

 

Applications 

We consider two real data sets to illustrate the usefulness of the NEAPW distribution. The two 

data sets correspond to “losses due to wind catastrophes recorded in 1977 [18]” and “breaking 

stress of corban fibers from two different materials [19]”. These data sets have been fitted by 

NEAPW distribution and some other extensions of the Weibull distribution. Some goodness of 

fit like, LogL, AIC, BIC, HQIC, CAIC and p- value have been produced. The model with 

minimum goodness of fit is said to provide better fit to the data.  

Different goodness of fits are defined by  

                                                         

^

2 ( )AIC l = − +   

                                                     

^

2 ( ) log( )BIC l n= − +   

                                               

^

2 ( ) 2 log(log( ))HQIC l n= − +   

                                                  

^ 2
2 ( )

1

n
CAIC l

n



= − +

− −
 

Where 
^

( )l   gives the log-likelihood function, ,  represents the number of parameters, and n 

shows the sample size. 

Data set 1: The first data set correspond to losses due to wind catastrophes. The analysis is based 

on this data set.  

                                       Table 3: MLEs and p-values for data 1 

Distributions                            MLEs                                                                                                                                                                                     

 
^

         
^

                 
^

                    

 

-logL                                                     

 

P value 

NEAPW  18.301 0.4444 1.2252 119.8839 0.2520 

Weibull    1.0020 0.1120 - 124.0191 0.0838 

APW 0.2107 1.1300 0.0657 123.1877 0.0236 

NAPTW 16.7974 0.5925 0.6263 122.9424 0.0777 
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                        Table 4: Measure of AIC, BIC, HQIC, and CAIC for data 1 

Distribution AIC CAIC BIC    HQIC 

NEAPW 245.7679 246.4536 250.7586 247.5585 

Weibull 252.0382 252.3715 255.3653 353.2320 

APW 252.3755 253.0612 257.3661 254.1661 

NAPTW 351.8848 252.5705 256.8755 253.6754 

   

Table 3 gives MLE’s and p-values of various distributions for data set1.  In table 4, we present the 

AIC, CAIC, BIC, and HQIC values for the data set 1. From table 4 it is clear that the NEAPW 

distribution has minimum values for all model selection criteria than the other distributions. 

Hence NEAPW distribution provides better fit. 

 

                            Fig 4: theoretical and empirical PDF and CDF of the NEAPW for data set 1 
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Figure 4 illustrates the theoretical and empirical PDF, CDF, Q-Q and P-P plot of the NEAPW 

distribution for the data set 1. The graphs clearly show better fit of the data set 1. 

Data set 2 

The following analysis are based on data set 2.  

                                    Table 5:  MLEs and p- values for data 2 

Distribution 

 

                                MLEs 

  
^

                             
^

                           
^

  

                    Statistics 

  -logL                    p-value 

NEAPW 25.5530 0.6032 1.5700 128.6708 0.0011 

Weibull 0.9755 0.2722 _ 157.8819 0.0075  

APW 16.4609 0.7850 0.7131 147.4325 0.0005 

NAPTW 0.3757 1.1851 0.0874 148.6812 0.0025 

IW 0.4840 1.6000 _   0.0016 

 

                              Table 6: Measure of AIC, BIC, HQIC, and CAIC for data 2 

Distribution AIC CAIC BIC    HQIC 

NEAPW 263.3411 263.7220 269.9551 265.9583 

Weibull 319.7639 319.9514 324.1733 321.5087 

APW 300.8651 301.2460 307.4791 303.4823 

NAPTW 303.3623 303.7433 309.9764 305.9795 

IW 265.1506 265.3381 269.5599 266.8954 

 

Table 5 gives MLE’s and p-values of various distributions for data set 2.  In table 6, we present 

the AIC, CAIC, BIC, and HQIC values for the data set 2. From table 6 it is clear that the NEAPW 

distribution has minimum values as compared to other distributions. Hence NEAPW distribution 

provides better fit. 

Figure 5 and 6, present the TTT plots for the data set 1and data set 2. 

 

                                                Fig 5: TTT plot for the data 1 
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                                                     Fig 6: TTT plot for the data 2 

 

                Fig 7: theoretical and empirical PDF and CDF of the NEAPW for data set 2 
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Figure 7 illustrates the theoretical and empirical PDF, CDF, Q-Q and P-P plot for data set 2 of the 

NEAPW distribution. The graphs clearly show better fit of the data set 2. 

Conclusion 

In this study, we developed a new model known as Novel Extended Alpha Power Weibull 

(NEAPW) distribution and examined its properties. These include probability density function, 

cumulative distribution function, survival, hazard and reversed hazard functions. The quantile 

function and 
thr  moments were also derived. Simulation studies were carried out to examine 

consistency of the MLE. It was found that with the increasing of sample size the MSE and Bias 

decreased. The new model was applied to two real data sets. Based on the findings we concluded 

that the new constructed model gave better result as compared to other forms of Pareto 

distribution. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 
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