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Abstract. The main objective of this paper is to find the sufficient conditions for the existence of best proximity points

for multivalued non-self mapping in the setting of O-complete metric space. We prove the existence of best proximity

point by introducing the new concept called proximal relation in O-sets along with various contraction conditions on

multivalued non-self mappings. In addition, we provide an example to support our main result.

1. Introduction

Let A be non empty subset of a metric space (X, D) and let Γ : A → X be a mapping. We say

that Γ has a fixed point in A if the fixed point equation Γa = a has at least one solution. That is,

a ∈ A is a fixed point of Γ if D(a, Γa) = 0. Now, consider the case where the equation Γa = a does

not possess a solution. Then we have D(a, Γa) > 0 for all a ∈ A. In this case, our aim is to find

an element a ∈ A such that D(a, Γa) is minimum. The concept of best approximation theory and

the theorems regarding the best proximity point are studied in this case. The best approximation

theorem due to Ky Fan [13] states that

Theorem 1.1. ( [13]) Let A be a nonempty compact convex subset of a normed linear space X and Γ : A→ X
be a continuous function. Then there exists a ∈ A such that ‖a− Γa‖ = D(Γa, A) := inf{‖Γa−m‖ : m ∈ A}.
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The element a ∈ A mentioned in Theorem 1.1 is called a best approximant of Γ in A. Note

that if a ∈ A is a best approximant, then ‖a − Γa‖ need not be the optimum. Best proximity

point theorems have been explored to find sufficient conditions so that the minimization problem

mina∈A ‖a − Γa‖ has at least one solution. To have a concrete lower bound, let us consider two

nonempty subsets A, B of a metric space (X, D) and a mapping Γ : A → B. The natural question

is whether one can find an element a0 ∈ A such that D(a0, Γa0) = min{D(a, Γa) : a ∈ A}. Since

D(a, Γa) ≥ D(A, B) = inf{D(a, b) : a ∈ A, b ∈ B}, the optimal solution to the problem of minimizing

the real valued function a → D(a, Γa) over the domain A of the mapping Γ will be the one for

which the value D(A, B) is attained. A point a0 ∈ A is called a best proximity point of Γ if

D(a0, Γa0) = D(A, B). Note that if D(A, B) = 0, then the best proximity point is nothing but a fixed

point of Γ.

In the literature, a variety of generalized results can be found that establish the sufficient

conditions for the existence of a best proximity point. Among these results, several notable

contributions stand out.

One such contribution is the best proximity point theorem for contractive mappings by Sadiq

Basha [8]. This result was inspired by the work of Anthony Eldred et al. [14], who focused on

relatively non-expansive mappings. Sankar Raj and Veeramani [22] also provided an alternative

treatment in this regard. Additionally, Sadiq Basha [10] obtained a best proximity point theorem

for contractions, while V. Sankar Raj [23] proved best proximity point theorems for contractive

non-self-mappings. The study was further extended by Abkar and Gabeleh [1, 26].

Eldred and Veeramani [15] explored best proximity point theorems for various variants of con-

tractions, and Haddadi and Moshtaghioun [17] also made significant contributions in this regard.

Another important concept introduced was the P-property, which allowed for the investigation of

the existence of best proximity points for weakly contractive mappings [1, 23, 26].

The existence and convergence of best proximity points have attracted the attention of many

authors, as evidenced by numerous references (see ref. [5,6,9,11,12,18,19,21,23–25]). Furthermore,

the existence of best proximity points has been studied within the framework of partially ordered

metric spaces, as indicated in references [3, 7, 20].

Let X be a non-empty set such that (X, D,⊥) is a O-metric space and let A, B ⊆ X. The following

notions are used subsequently:

(1) CB(X) : Set of all non-empty closed and bounded subsets of X.

(2) K(X) : Set of all non-empty compact subsets of X.

(3) B : Set of all non-empty subsets of B.

(4) D(A, B) = inf{D(a, b) : a ∈ A, b ∈ B}.
(5) δ(A, B) = sup{D(a, b) : a ∈ A, b ∈ B}.
(6) D(a, A) = inf{D(a, b) : b ∈ A}.
(7) A0 = {a ∈ A : D(a, b) = D(A, B)} for some b ∈ B .

(8) B0 = {b ∈ B : D(a, b) = D(A, B)} for some a ∈ A .
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Suppose that Γ : A → 2B is a multivalued non-self mapping. Analogously to the case of

a single valued map, one can investigate the conditions to find an element x0 ∈ A such that

D(x0, Γx0) = D(A, B). Such an element is called best proximity point for Γ.

For the existence of best proximity point theorems for multivalued non-self mappings, one can

refer to the recent works [4, 27].

In the following theorem, R. K. Sharma and Sumit Chandok [28] have provided the sufficient

conditions for the existence of fixed point for a multi-valued F -contraction mapping in the setting

of O-metric space.

Theorem 1.2. [28] Let (X, D,⊥) be an O-complete metric space and Γ : X → K(X) be a multi-valued
mapping on X. Assume that the following conditions are satisfied:

(i) ∃a0 ∈ X such that {a0} ⊥1 Γa0 or Γa0 ⊥1 {a0},
(ii) ∀a, b ∈ X, a ⊥ b implies Γa ⊥1 Γb,

(iii) If {an} is an O- sequence in X such that an → a∗ ∈ X, then an ⊥ a∗ or a∗ ⊥ an ∀ n ∈N,
(iv) If F ∈ F , ∃ τ > 0 such that a, b ∈ X with a ⊥ b satisfying the following:

H(Γa, Γb) > 0, τ+ F(H(Γa, Γb)) ≤ F(D(a, b)).

Then, Γ has atleast a fixed point.

Research on the concept of orthogonal spaces (O-sets) is worth analyzing, as these spaces

represent a more general framework that cannot be compared to partially ordered spaces (see [23]).

In the existing literature, there are best proximity point results for multivalued non-self map-

pings in various spaces such as metric spaces, b-metric spaces, partially ordered sets, CAT(0)

spaces, etc. However, there are no existence results for such mappings in O-sets.

In this article, we attempt to extend the above theorem (Theorem 1.2) by considering a non-self

multivalued map Γ.

Motivated by the above mentioned result, in this paper, we shall extend the result from fixed

point to best proximity point for a multivalued non self mapping by defining a new concept of

proximal relation in the Orthogonal set .

2. Preliminaries

Here we provide some definitions, notations, and concepts needed in the sequel.

Definition 2.1. [28] Let F : (0,+∞)→ R be a mapping satisfying the following:
(F1) For all a, b > 0, a > b =⇒ F(a) > F(b).
(F2) For every sequence {an} in R+, limn→+∞ an = 0 if and only if limn→+∞ F(an) = −∞.
(F3) ∃k ∈ (0, 1) such that lima→0+ akF(a) = 0.
If limt→0+ F(t) = −∞, then by using (F1), we have F(tn)→ −∞ =⇒ tn → 0.

Let F denote the family of functions F : (0,+∞)→ R satisfying (F1) and (F3).
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Definition 2.2. [28] Let (X, D) be a metric space. The Hausdorff-Pompeiu metric H, induced by metric D
on X can be defined as: ∀A, B ∈ CB(X)

H : CB(X) ×CB(X)→ R,

H(A, B) = max{supa∈A D(a, B), supb∈B D(b, A)}

where, D(a, A) = inf{D(a, b) : b ∈ A}.

Definition 2.3. [16] Let X , φ and⊥⊆ X×X be an binary relation. If⊥ satisfies the following condition:

∃a0 : (∀b, b ⊥ a0) or (∀b, a0 ⊥ b)

then it is called an orthogonal set (briefly O-set) denoted by (X,⊥).

Example 2.1. Let X = V be an inner product space. For a and b ∈ V, define

〈a, b〉 =
∞∑

j=1

a( j)b( j).

Define ⊥ as a ⊥ b if 〈a, b〉 = 0. Then, for a = (0, 0), it is an O-set.

Example 2.2. [16] In graph theory, a wheel graph Wn is a graph with n vertices for each n ≥ 5, formed
by connecting a single vertex to all vertices of (n − 1)-cycle. Let X be the set of all vertices of Wn for each
n ≥ 4. Define a ⊥ b if there is a edge connecting from a to b. Then (X,⊥) is an O-set.

Definition 2.4. [16] Let (X,⊥) be O-set. A sequence {an} is called an orthogonal sequence (O-sequence)
if an ⊥ an+1 or an+1 ⊥ an,∀n ∈N.

Example 2.3. Let M = R , define a ⊥ b by ab ≤ a or b. Take an = 1/n, then an is an O- sequence, since
∀n, an ⊥ an+1.

Definition 2.5. [16] Let (X,⊥, D) be an orthogonal metric space. Then X is said to be orthogonally
complete (or O-complete) if every Cauchy O-sequence is convergent.

Example 2.4. [16] Let X = [0, 1) and suppose that

a ⊥ b if and only if (a ≤ b ≤ 1
2 or a = 0).

Then (X,⊥) is an O-set. Clearly, X with the Euclidean metric is not complete metric space, but it is
O-complete metric space. In fact, if {an} is an arbitrary Cauchy O-sequence in X, then there exists a
subsequence {ank} of {an} for which ank = 0,∀k ≥ 1 or there exists a monotone subsequence {ank} of {an} for
which ank ≤

1
2 ,∀k ≥ 1. It follows that {ank} converges to a point a ∈ [0, 1] ⊆ X. On the other hand, we know

that every Cauchy sequence with a convergent subsequence is convergent. It follows that {an} is convergent.

Remark 2.1. [16] Every complete metric space is O-complete metric space, but the converse is not true.

Lemma 2.1. [23] If A is an O-closed set of an O-complete metric space, then A is an O-complete metric
space.

Definition 2.6. [23] Let (X,⊥) be an O-set. Let M be any subset of X. Then M is an orthogonally closed
set (or O-closed set) if any O-sequence an → a, then a ∈M.
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Example 2.5. [23] Let X = [0,∞). The space (X,≤) is an O-set. Consider M = [0, 1], which is O-closed.

Remark 2.2. [23] Every closed set is an O-closed set, but the converse is not true.

Definition 2.7. [20] Let A and B be any two non empty subsets of the metric space (X, D). Then a point
p ∈ A is said to be best proximity point of a single valued mapping Γ : A→ B if D(p, Γp) = D(A, B).

Example 2.6. Let X = R with D(a, b) = |a − b|. Define Γ : [0, 1] → [4, 6] with Γ(a) = 5 − a. Here,
D(A, B) = D([0, 1], [4, 6]) = 3. Then, for a0 = 1, Γa0 = 4, which gives D(a0, Γa0) = 3 = D(A, B).
Therefore, a0 = 1 is a best proximity point for the given mapping.

Definition 2.8. [20] Let A and B be any two non empty subsets of the metric space (X, D). Then a point
p ∈ A is said to be best proximity point of a multivalued mapping Γ : A→ B if D(p, Γp) = D(A, B).

Definition 2.9. [20] Let (A, B) be a pair of non empty subsets of a metric space (X, D) with A0 , φ. Then
(A, B) is said to have P-property if and only if

D(a1, b1) = D(A, B) and D(a2, b2) = D(A, B)=⇒ D(a1, a2) = D(b1, b2)

where a1, a2 ∈ A0 and b1, b2 ∈ B0.

3. Main Results

First, let us define a new concept called proximalrelation between two non empty subsets of the

O-set X. Then we prove the existence of best proximity point for contractive type multivalued

non-self mapping.

Definition 3.1. Let A and B be two non empty subsets of an orthogonal space (X, D,⊥) such that A0 , φ.
Let B1 and B2 be two non empty subsets of B0. The proximal relation between B1 and B2 is defined as:
B1 ⊥1 B2 if for every b1 ∈ B1 with D(a1, b1) = D(A, B), there exists b2 ∈ B2 with D(a2, b2) = D(A, B)
such that a1 ⊥ a2 and b1 ⊥ b2.

One can observe that when the orthogonal set becomes a partially ordered set, Definition 3.1

corresponds to Definition 1.9 in [20].

Now, we state and prove our main result.

Theorem 3.1. Let (X, D,⊥) be an O-complete metric space and let A and B be non-empty O-closed subsets
of (X, D) such that A0 , φ and (A, B) satisfies P- property. Let Γ : A→ K(B) be a multivalued mapping
which satisfies the following conditions:

(i) ∃a0, a1 ∈ A0 and b0 ∈ Γa0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1,
(ii) Γa0 ⊆ B0, ∀ a0 ∈ A0,

(iii) ∀a, b ∈ A0, Γa ⊥1 Γb whenever a ⊥ b,
(iv) If F ∈ F , ∃ τ > 0 such that τ+ F(δ(Γa, Γb)) ≤ F(D(a, b)), for all a, b ∈ A with a ⊥ b,
(v) If {xn} is an O- sequence in X such that xn → x∗, then xn ⊥ x∗ or x∗ ⊥ xn ,∀ n ∈N.

Then, ∃ a∗ ∈ A such that D(a∗, Γa∗) = D(A, B).
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Proof. By (i), ∃ a0, a1 in A0 and b0 ∈ Γa0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1.

Adding condition (iii), we get Γa0 ⊥1 Γa1. That is, ∃ b1 ∈ Γa1 such that

D(a2, b1) = D(a2, Γa1) = D(A, B) with a1 ⊥ a2 and b0 ⊥ b1.

In general, for each n ∈ N, there exists an+1 ∈ A0 and bn ∈ Γan such that D(an+1, bn) = D(A, B).
Hence, we obtain

D(an+1, bn) = D(an+1, Γan) = D(A, B) for all n ∈N (3.1)

with an ⊥ an+1 and bn−1 ⊥ bn.

If there exists n0 such that an0 = an0+1, then D(an0+1, Γan0) = D(an0 , Γan0) = D(A, B). This means

that an0 is a best proximity point of Γ.

Thus, we can suppose that an , an+1, for all n ∈N. Since D(an+1, bn) = D(A, B) and D(an, bn−1) =

D(A, B) and (A, B) has the P-property, we obtain

D(an+1, an) = D(bn, bn−1), ∀n ∈N∪ {0}

≤ δ(Γan, Γan−1), where, bn ∈ Γan and bn−1 ∈ Γan−1.
(3.2)

Consider F ∈ F . By (F1) and (iv), we get

F(D(an+1, an)) ≤ F(δ(Γan, Γan−1))

≤ F(D(an, an−1)) − τ

< F(D(an, an−1))

(3.3)

Hence from the strictly increasing property of F, we get D(an+1, an) < D(an, an−1). Therefore, the

sequence {D(an+1, an)} is strictly decreasing sequence. Suppose that tn = D(an+1, an)→ t, for some

t ≥ 0. Now, we have to prove that t = 0.

From (3.3), we get

τ+ F(tn) ≤ F(tn−1). (3.4)

Taking n → +∞ in (3.4), we get τ + F(t + 0) ≤ F(t + 0), which is contradiction, and hence

tn = D(an+1, an)→ 0.

By (F3) exists k ∈ (0, 1) such that

lim
n→+∞

tk
nF(tn) = 0. (3.5)

By (3.3), we get

F(tn) ≤ F(tn−1) − τ ≤ F(tn−2) − 2τ · · · ≤ F(t0) − nτ. (3.6)

From (3.6), the following holds for all n ∈N :

tk
nF(tn) − tk

nF(t0) ≤ −tk
nnτ ≤ 0. (3.7)

Letting n→ ∞ in (3.7), we get limn→+∞ ntk
n = 0. Hence there exists n1 ∈N such that ntk

n ≤ 1,∀n ≥
n1. So, we have for all n ≥ n1 :

tn ≤
1

n
1
k

. (3.8)
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Now, for proving {an} is a Cauchy O-sequence, let m ≥ n ≥ n1, using (3.8) and triangle inequality,

we have

D(an, am) ≤ D(an, an+1) + D(an+1, an+2) + . . .+ D(am−1, am) (3.9)

≤ tn + tn+1 + . . .+ tm−1 ≤

m−1∑
i=1

ti ≤

∞∑
i=1

ti ≤

∞∑
i=1

(
1
i
)

1
k . (3.10)

Since the series
∑
∞

i=1(
1
i )

1
k is convergent, we get D(an, am)→ 0 as n→∞.

Here, {an} is an O-sequence by construction. Thus, {an} is a Cauchy O-sequence in A and hence

converges to some element a∗ ∈ A. Since D(an+1, an) = D(bn, bn−1), the sequence {bn} is also Cauchy

O-sequence in B and converges to b∗ in B. By the relation D(an+1, bn) = D(A, B) for all n, we

conclude that D(a∗, b∗) = D(A, B). We now claim that b∗ ∈ Ta∗. Using (v), we get

bn ⊥ b∗(or) b∗ ⊥ bn,∀n ∈N. (3.11)

Suppose that b∗ < Γa∗. Then by (3.11) and (iv), we obtain

F(D(bn, Γa∗)) ≤ F(δ(Γan, Γa∗)) (3.12)

≤ F(D(an, a∗)) − τ (3.13)

≤ F(D(an, a∗)). (3.14)

Now using strictly increasing property of F and τ > 0, we get D(bn, Γa∗) < D(an, a∗).
Taking n → ∞, we get D(b∗, Γa∗) ≤ 0. Since D(b∗, Γa∗) = 0, we get b∗ ∈ Γa∗ = Γa∗. Hence, we get

D(a∗, b∗) = D(a∗, Γa∗) = D(A, B). That is a∗ is the required best proximity point of the mapping

Γ. �

Example 3.1. Let X = R2 and for u = (u1, u2), v = (v1, v2) ∈ R2, define u ⊥ v ⇐⇒ uivi ≤ ui
2

or vi
2,∀i ∈ {1, 2}. Then, (R2,⊥) is an O-set. Moreover, (R2,⊥, D1) is an O-complete metric space with

metric D1 defined as D1((u1, u2), (v1, v2)) = |u1 − v1|+ |u2 − v2|. Let A = {(−6, 0), (0,−6), (0, 5)} and
B = {(−1, 0), (0,−1), (0, 0), (−1, 1), (1, 1)} be an O-closed subset of X. Then, D(A, B) = 5, A0 = A and
B0 = B. Let Γ : A→ K(B) be defined as:

Γ(u) =


{(0,−1), (0, 0)} i f u = (−6, 0)

{(−1, 1), (0, 0), (−1, 0)} i f u = (0,−6)

{(1, 1), (−1, 1)} i f u = (0, 5).

Since there exists (−6, 0), (0, 5) in A0 and (0, 0) ∈ Γ(−6, 0) such that :

D((0, 5), (0, 0)) = D(A, B) = 5 and (−6, 0) ⊥ (0, 5).

This satisfies condition (i). Since B0 = B, Γu ⊆ B0, ∀u ∈ A0, the condition (ii) is satisfied. It is easy
to claim the condition (iii). Now, for the condition (iv), choose F(t) = ln t, t > 0, and for condition (v),
choose the O-sequence as constant O-sequence for each of u ∈ A. Thus, it satisfies all the hypotheses of
Theorem 3.1. Here, (0, 5) is the required best proximity point of the mapping Γ.
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Corollary 3.1. Let (X, D,⊥) be an O-complete metric space and let A and B be non-empty O-closed subsets
of (X, D) such that A0 , φ and (A, B) satisfies P- property. Let Γ : A→ K(B) be a multivalued mapping
which satisfies the following conditions:

(i) ∃ a0, a1 ∈ A0 and b0 ∈ Γa0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1,
(ii) Γa0 ⊆ B0, ∀a0 ∈ A0,

(iii) ∀a, b ∈ A0, Γa ⊥1 Γb whenever a ⊥ b,
(iv) If F ∈ F , ∃ τi > 0, i = 1, 2, 3 such that for all a, b ∈ A with a ⊥ b, either of the following condition

hold:

τ1 + δ(Γa, Γb) ≤ D(a, b);

τ2 −
1

δ(Γa,Γb) ≤ −
1

D(a,b) ;

τ3 +
1

1−exp(δ(Γa,Γb)) ≤
1

1−exp(D(a,b)) .

(v) If {an} is an O- sequence in X such that an → a∗, then an ⊥ a∗ or a∗ ⊥ an, ∀ n ∈N.

Then, ∃a∗ ∈ A such that D(a∗, Γa∗) = D(A, B).

Proof. Choose each functions as F1(r) = r, F2(r) = (− 1
r ) and F3(r) = ( 1

1−exp r ), where r = D(a, b) > 0

is strictly increasing on (0,+∞). The proof follows from Theorem 3.1. �

Further, Theorem 3.1 can be restricted to Γ as a single valued mapping by considering Γa as a

singleton set for all a ∈ A.

Corollary 3.2. Let (X, D,⊥) be an O-complete metric space and let A and B be non-empty O-closed subsets
of (X, D) such that A0 , φ and (A, B) satisfies P- property. Let Γ : A → B be a multivalued mapping
which satisfies the following conditions:

(i) ∃a0, a1 ∈ A0 and b0 ∈ B0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1,
(ii) Γa0 ∈ B0, ∀ a0 ∈ A0,

(iii) ∀a, b ∈ A0, Γa ⊥ Γb whenever a ⊥ b,
(iv) If F ∈ F , ∃ τ > 0 such that for a, b ∈ A with a ⊥ b,

τ+ F(D(Γa, Γb)) ≤ F(D(a, b)) ,

(v) If {an} is an O- sequence in X such that an → a∗, then an ⊥ a∗ or a∗ ⊥ an, ∀ n ∈N.

Then, ∃ a∗ ∈ A such that D(a∗, Γa∗) = D(A, B).

Theorem 3.2. Let (X, D,⊥) be an O-complete metric space and let A and B be non-empty O-closed subsets
of (X, D) such that A0 , φ and (A, B) satisfies P- property. Let Γ : A→ K(B) be a multivalued mapping
which satisfies the following conditions:

(i) ∃a0, a1 ∈ A0 and b0 ∈ Γa0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1,
(ii) Γa0 ⊆ B0, ∀ a0 ∈ A0,

(iii) ∀a, b ∈ A0, Γa ⊥1 Γb whenever a ⊥ b,
(iv) ∃α > 0 such that ∀B1, B2 ∈ B0,

D(b1, b2) < αH(B1, B2), where b1 ∈ B1 and b2 ∈ B2,
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(v) If F ∈ F with F(αx) = αF(x),∀x ∈ X, ∃ τ > 0 such that for a, b ∈ A with a ⊥ b,

τ+ F(H(Γa, Γb)) ≤ 1
αF(D(a, b)),

(vi) If {an} is an O- sequence in X such that an −→ a∗, then an ⊥ a∗ or a∗ ⊥ an, ∀n ∈N.

Then, ∃ a∗ ∈ A such that D(a∗, Γa∗) = D(A, B).

Proof. Follow the proof of Theorem 3.1 till (3.2). Now by condition (iv), (3.2) becomes,

D(an+1, an) = D(bn, bn−1)

< αH(Γan, Γan−1).

Now using strictly increasing property of F and (v), we get

F(D(an+1, an)) < F(α H(Γan, Γan−1))

< αF(H(Γan, Γan−1))

≤
α
α

F(D(an, an−1)) − τα

< F(D(an, an−1)).

Hence, we get D(an+1, an) < D(an, an−1). Now, by proceeding the same as the proof of Theorem 3.1,

we obtain the result. �

Theorem 3.3. Let (X, D,⊥) be an O-complete metric space and let A and B be non-empty O-closed subsets
of (X, D) such that A0 , φ and (A, B) satisfies P- property. Let Γ : A→ K(B) be a multivalued mapping
which satisfies the following conditions:

(i) ∃a0, a1 ∈ A0 and b0 ∈ Γa0 such that D(a1, b0) = D(a1, Γa0) = D(A, B) with a0 ⊥ a1,
(ii) Γa0 ⊆ B0, ∀ a0 ∈ A0,

(iii) ∀a, b ∈ A0, Γa ⊥1 Γb whenever a ⊥ b,
(iv) ∃α > 0 such that ∀B1, B2 ∈ B0,

D(b1, b2) < αH(B1, B2), where b1 ∈ B1 and b2 ∈ B2,

(v) ∃λ ∈ (0, 1) such that for a, b ∈ A with a ⊥ b,

H(Γa, Γb)) ≤
λ
α

D(a, b),

(vi) If {an} is an O- sequence in X such that an −→ a∗, then an ⊥ a∗ or a∗ ⊥ an, ∀ n ∈N.

Then, ∃ a∗ ∈ A such that D(a∗, Γa∗) = D(A, B).

Proof. Follow the proof of Theorem 3.1 till (3.2). Now by conditions (iv) and (v), (3.2) becomes,

D(an+1, an) = D(bn, bn−1)

< αH(Γan, Γan−1)

≤ α
λ
α

D(an, an−1)

= λD(an, an−1).
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Since D(an+1, an) < λD(an, an−1). In general , for each n ∈N, D(an+1, an) < λnD(a0, a1). If m, n ∈N

and n ≥ m, then

D(am, an) ≤ D(am, am+1) + D(am+1, am+2) + . . .+ D(an−1, an)

≤ (λmD(a0, a1) + . . .+ λn−1D(a0, a1))

≤
λm

1− λ
D(a0, a1).

Since λ ∈ (0, 1), we get {an} is a Cauchy O- sequence in A. Now, by proceeding the same as the

proof of Theorem 3.1, we get the result. �

4. Conclusions

The fixed point and best proximity point results ensure the existence of solutions to many

problems in non-linear analysis. In our paper, we have given the existence of the best proximity

point for multivalued non-self mapping in O-complete metric space. Also, we have given example

to support our result.

Acknowledgment: This work has been funded by the Basque Government through Grant IT1555-

22.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] A. Abkar, M. Gabeleh, Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces, J. Optim. Theory Appl.

150 (2011), 188–193. https://doi.org/10.1007/s10957-011-9810-x.

[2] A. Abkar, M. Gabeleh, Best Proximity Points of Non-Self Mappings, TOP 21 (2013), 287–295. https://doi.org/10.

1007/s11750-012-0255-7.

[3] A. Abkar, M. Gabeleh, Generalized Cyclic Contractions in Partially Ordered Metric Spaces, Optim. Lett. 6 (2012),

1819–1830. https://doi.org/10.1007/s11590-011-0379-y.

[4] A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad.

Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 319–325. https://doi.org/10.1007/s13398-012-0074-6.
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