nternational Journal of Analysis and Applications

International Journal of Analysis and Applications

Best Proximity Point Results for Multivalued Non-Self Mappings in O-Complete Metric Space

V. Pragadeeswarar^{1,*}, V. Thinkal¹, Manuel De la Sen²

¹Department of Mathematics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India ²Institute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, 48940 Leioa, Bizkaia, Spain

**Corresponding author:* v_pragadeeswarar@cb.amrita.edu

Abstract. The main objective of this paper is to find the sufficient conditions for the existence of best proximity points for multivalued non-self mapping in the setting of O-complete metric space. We prove the existence of best proximity point by introducing the new concept called proximal relation in O-sets along with various contraction conditions on multivalued non-self mappings. In addition, we provide an example to support our main result.

1. Introduction

Let *A* be non empty subset of a metric space (X, D) and let $\Gamma : A \to X$ be a mapping. We say that Γ has a fixed point in *A* if the fixed point equation $\Gamma a = a$ has at least one solution. That is, $a \in A$ is a fixed point of Γ if $D(a, \Gamma a) = 0$. Now, consider the case where the equation $\Gamma a = a$ does not possess a solution. Then we have $D(a, \Gamma a) > 0$ for all $a \in A$. In this case, our aim is to find an element $a \in A$ such that $D(a, \Gamma a)$ is minimum. The concept of best approximation theory and the theorems regarding the best proximity point are studied in this case. The best approximation theorem due to Ky Fan [13] states that

Theorem 1.1. ([13]) Let A be a nonempty compact convex subset of a normed linear space X and $\Gamma : A \to X$ be a continuous function. Then there exists $a \in A$ such that $||a - \Gamma a|| = D(\Gamma a, A) := \inf\{||\Gamma a - m|| : m \in A\}$.

Received: Feb. 19, 2025.

²⁰²⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. best proximity point; O-complete metric space; O-sequence; O-closed sets; P-property; multi-valued mapping.

The element $a \in A$ mentioned in Theorem 1.1 is called a best approximant of Γ in A. Note that if $a \in A$ is a best approximant, then $||a - \Gamma a||$ need not be the optimum. Best proximity point theorems have been explored to find sufficient conditions so that the minimization problem $\min_{a \in A} ||a - \Gamma a||$ has at least one solution. To have a concrete lower bound, let us consider two nonempty subsets A, B of a metric space (X, D) and a mapping $\Gamma : A \to B$. The natural question is whether one can find an element $a_0 \in A$ such that $D(a_0, \Gamma a_0) = \min\{D(a, \Gamma a) : a \in A\}$. Since $D(a, \Gamma a) \ge D(A, B) = \inf\{D(a, b) : a \in A, b \in B\}$, the optimal solution to the problem of minimizing the real valued function $a \to D(a, \Gamma a)$ over the domain A of the mapping Γ will be the one for which the value D(A, B) is attained. A point $a_0 \in A$ is called a best proximity point of Γ if $D(a_0, \Gamma a_0) = D(A, B)$. Note that if D(A, B) = 0, then the best proximity point is nothing but a fixed point of Γ .

In the literature, a variety of generalized results can be found that establish the sufficient conditions for the existence of a best proximity point. Among these results, several notable contributions stand out.

One such contribution is the best proximity point theorem for contractive mappings by Sadiq Basha [8]. This result was inspired by the work of Anthony Eldred et al. [14], who focused on relatively non-expansive mappings. Sankar Raj and Veeramani [22] also provided an alternative treatment in this regard. Additionally, Sadiq Basha [10] obtained a best proximity point theorem for contractions, while V. Sankar Raj [23] proved best proximity point theorems for contractive non-self-mappings. The study was further extended by Abkar and Gabeleh [1,26].

Eldred and Veeramani [15] explored best proximity point theorems for various variants of contractions, and Haddadi and Moshtaghioun [17] also made significant contributions in this regard. Another important concept introduced was the P-property, which allowed for the investigation of the existence of best proximity points for weakly contractive mappings [1,23,26].

The existence and convergence of best proximity points have attracted the attention of many authors, as evidenced by numerous references (see ref. [5,6,9,11,12,18,19,21,23–25]). Furthermore, the existence of best proximity points has been studied within the framework of partially ordered metric spaces, as indicated in references [3,7,20].

Let *X* be a non-empty set such that (X, D, \bot) is a O-metric space and let $A, B \subseteq X$. The following notions are used subsequently:

- (1) $C\mathcal{B}(X)$: Set of all non-empty closed and bounded subsets of *X*.
- (2) $\mathcal{K}(X)$: Set of all non-empty compact subsets of *X*.
- (3) \mathcal{B} : Set of all non-empty subsets of *B*.
- (4) $D(A,B) = \inf\{D(a,b) : a \in A, b \in B\}.$
- (5) $\delta(A,B) = \sup\{D(a,b) : a \in A, b \in B\}.$
- (6) $D(a, A) = \inf\{D(a, b) : b \in A\}.$
- (7) $A_0 = \{a \in A : D(a, b) = D(A, B)\}$ for some $b \in B$.
- (8) $B_0 = \{b \in B : D(a, b) = D(A, B)\}$ for some $a \in A$.

Suppose that $\Gamma : A \to 2^B$ is a multivalued non-self mapping. Analogously to the case of a single valued map, one can investigate the conditions to find an element $x_0 \in A$ such that $D(x_0, \Gamma x_0) = D(A, B)$. Such an element is called best proximity point for Γ .

For the existence of best proximity point theorems for multivalued non-self mappings, one can refer to the recent works [4, 27].

In the following theorem, R. K. Sharma and Sumit Chandok [28] have provided the sufficient conditions for the existence of fixed point for a multi-valued \mathcal{F} -contraction mapping in the setting of O-metric space.

Theorem 1.2. [28] Let (X, D, \bot) be an O-complete metric space and $\Gamma : X \to \mathcal{K}(X)$ be a multi-valued mapping on X. Assume that the following conditions are satisfied:

- (i) $\exists a_0 \in X \text{ such that } \{a_0\} \perp_1 \Gamma a_0 \text{ or } \Gamma a_0 \perp_1 \{a_0\},$
- (ii) $\forall a, b \in X, a \perp b \text{ implies } \Gamma a \perp_1 \Gamma b$,
- (iii) If $\{a_n\}$ is an O- sequence in X such that $a_n \to a^* \in X$, then $a_n \perp a^*$ or $a^* \perp a_n \forall n \in \mathbb{N}$,
- (iv) If $F \in \mathcal{F}$, $\exists \tau > 0$ such that $a, b \in X$ with $a \perp b$ satisfying the following:

$$H(\Gamma a, \Gamma b) > 0, \ \tau + F(H(\Gamma a, \Gamma b)) \le F(D(a, b)).$$

Then, Γ *has atleast a fixed point.*

Research on the concept of orthogonal spaces (O-sets) is worth analyzing, as these spaces represent a more general framework that cannot be compared to partially ordered spaces (see [23]).

In the existing literature, there are best proximity point results for multivalued non-self mappings in various spaces such as metric spaces, b-metric spaces, partially ordered sets, CAT(0) spaces, etc. However, there are no existence results for such mappings in O-sets.

In this article, we attempt to extend the above theorem (Theorem 1.2) by considering a non-self multivalued map Γ .

Motivated by the above mentioned result, in this paper, we shall extend the result from fixed point to best proximity point for a multivalued non self mapping by defining a new concept of proximal relation in the Orthogonal set.

2. Preliminaries

Here we provide some definitions, notations, and concepts needed in the sequel.

Definition 2.1. [28] Let $F : (0, +\infty) \to \mathbb{R}$ be a mapping satisfying the following: (F1) For all $a, b > 0, a > b \implies F(a) > F(b)$. (F2) For every sequence $\{a_n\}$ in \mathbb{R}^+ , $\lim_{n \to +\infty} a_n = 0$ if and only if $\lim_{n \to +\infty} F(a_n) = -\infty$. (F3) $\exists k \in (0, 1)$ such that $\lim_{a \to 0^+} a^k F(a) = 0$.

If $\lim_{t\to 0^+} F(t) = -\infty$, then by using (F1), we have $F(t_n) \to -\infty \implies t_n \to 0$.

Let \mathcal{F} *denote the family of functions* $F : (0, +\infty) \to \mathbb{R}$ *satisfying (F1) and (F3).*

Definition 2.2. [28] Let (X, D) be a metric space. The Hausdorff-Pompeiu metric H, induced by metric D on X can be defined as: $\forall A, B \in C\mathcal{B}(X)$

$$H : C\mathcal{B}(X) \times C\mathcal{B}(X) \to \mathbb{R},$$
$$H(A, B) = max \{ \sup_{a \in A} D(a, B), \sup_{b \in B} D(b, A) \}$$

where, $D(a, A) = \inf\{D(a, b) : b \in A\}.$

Definition 2.3. [16] Let $X \neq \phi$ and $\bot \subseteq X \times X$ be an binary relation. If \bot satisfies the following condition: $\exists a_0 : (\forall b, b \perp a_0) \text{ or } (\forall b, a_0 \perp b)$

then it is called an orthogonal set (briefly O-set) denoted by (X, \bot) .

Example 2.1. Let X = V be an inner product space. For a and $b \in V$, define

$$\langle a,b\rangle = \sum_{j=1}^{\infty} a(j)b(j).$$

Define \perp as $a \perp b$ if $\langle a, b \rangle = 0$. Then, for a = (0, 0), it is an O-set.

Example 2.2. [16] In graph theory, a wheel graph W_n is a graph with n vertices for each $n \ge 5$, formed by connecting a single vertex to all vertices of (n - 1)-cycle. Let X be the set of all vertices of W_n for each $n \ge 4$. Define $a \perp b$ if there is a edge connecting from a to b. Then (X, \perp) is an O-set.

Definition 2.4. [16] Let (X, \bot) be O-set. A sequence $\{a_n\}$ is called an orthogonal sequence (O-sequence) if $a_n \bot a_{n+1}$ or $a_{n+1} \bot a_n$, $\forall n \in \mathbb{N}$.

Example 2.3. Let $M = \mathbb{R}$, define $a \perp b$ by $ab \leq a$ or b. Take $a_n = 1/n$, then a_n is an O-sequence, since $\forall n, a_n \perp a_{n+1}$.

Definition 2.5. [16] Let (X, \bot, D) be an orthogonal metric space. Then X is said to be orthogonally complete (or O-complete) if every Cauchy O-sequence is convergent.

Example 2.4. [16] Let X = [0, 1) and suppose that

 $a \perp b$ if and only if $(a \le b \le \frac{1}{2} \text{ or } a = 0)$.

Then (X, \bot) is an O-set. Clearly, X with the Euclidean metric is not complete metric space, but it is O-complete metric space. In fact, if $\{a_n\}$ is an arbitrary Cauchy O-sequence in X, then there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ for which $a_{n_k} = 0$, $\forall k \ge 1$ or there exists a monotone subsequence $\{a_{n_k}\}$ of $\{a_n\}$ for which $a_{n_k} = 0$, $\forall k \ge 1$ or there exists a monotone subsequence $\{a_{n_k}\}$ of $\{a_n\}$ for which $a_{n_k} \le 1$, $\forall k \ge 1$. It follows that $\{a_{n_k}\}$ converges to a point $a \in [0, 1] \subseteq X$. On the other hand, we know that every Cauchy sequence with a convergent subsequence is convergent. It follows that $\{a_n\}$ is convergent.

Remark 2.1. [16] Every complete metric space is O-complete metric space, but the converse is not true.

Lemma 2.1. [23] If A is an O-closed set of an O-complete metric space, then A is an O-complete metric space.

Definition 2.6. [23] Let (X, \bot) be an O-set. Let M be any subset of X. Then M is an orthogonally closed set (or O-closed set) if any O-sequence $a_n \rightarrow a$, then $a \in M$.

Example 2.5. [23] Let $X = [0, \infty)$. The space (X, \leq) is an O-set. Consider M = [0, 1], which is O-closed.

Remark 2.2. [23] Every closed set is an O-closed set, but the converse is not true.

Definition 2.7. [20] Let A and B be any two non empty subsets of the metric space (X, D). Then a point $p \in A$ is said to be best proximity point of a single valued mapping $\Gamma : A \to B$ if $D(p, \Gamma p) = D(A, B)$.

Example 2.6. Let $X = \mathbb{R}$ with D(a, b) = |a - b|. Define $\Gamma : [0, 1] \rightarrow [4, 6]$ with $\Gamma(a) = 5 - a$. Here, D(A, B) = D([0, 1], [4, 6]) = 3. Then, for $a_0 = 1$, $\Gamma a_0 = 4$, which gives $D(a_0, \Gamma a_0) = 3 = D(A, B)$. Therefore, $a_0 = 1$ is a best proximity point for the given mapping.

Definition 2.8. [20] Let A and B be any two non empty subsets of the metric space (X, D). Then a point $p \in A$ is said to be best proximity point of a multivalued mapping $\Gamma : A \to \mathcal{B}$ if $D(p, \Gamma p) = D(A, B)$.

Definition 2.9. [20] Let (A, B) be a pair of non empty subsets of a metric space (X, D) with $A_0 \neq \phi$. Then (A, B) is said to have P-property if and only if

$$D(a_1, b_1) = D(A, B)$$
 and $D(a_2, b_2) = D(A, B) \Longrightarrow D(a_1, a_2) = D(b_1, b_2)$

where $a_1, a_2 \in A_0$ *and* $b_1, b_2 \in B_0$ *.*

3. MAIN RESULTS

First, let us define a new concept called *proximalrelation* between two non empty subsets of the O-set X. Then we prove the existence of best proximity point for contractive type multivalued non-self mapping.

Definition 3.1. Let A and B be two non empty subsets of an orthogonal space (X, D, \bot) such that $A_0 \neq \phi$. Let B_1 and B_2 be two non empty subsets of B_0 . The proximal relation between B_1 and B_2 is defined as: $B_1 \perp_1 B_2$ if for every $b_1 \in B_1$ with $D(a_1, b_1) = D(A, B)$, there exists $b_2 \in B_2$ with $D(a_2, b_2) = D(A, B)$ such that $a_1 \perp a_2$ and $b_1 \perp b_2$.

One can observe that when the orthogonal set becomes a partially ordered set, Definition 3.1 corresponds to Definition 1.9 in [20].

Now, we state and prove our main result.

Theorem 3.1. Let (X, D, \bot) be an O-complete metric space and let A and B be non-empty O-closed subsets of (X, D) such that $A_0 \neq \phi$ and (A, B) satisfies P- property. Let $\Gamma : A \rightarrow \mathcal{K}(B)$ be a multivalued mapping which satisfies the following conditions:

- (i) $\exists a_0, a_1 \in A_0$ and $b_0 \in \Gamma a_0$ such that $D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B)$ with $a_0 \perp a_1$,
- (ii) $\Gamma a_0 \subseteq B_0, \forall a_0 \in A_0$,
- (iii) $\forall a, b \in A_0$, $\Gamma a \perp_1 \Gamma b$ whenever $a \perp b$,
- (iv) If $F \in \mathcal{F}$, $\exists \tau > 0$ such that $\tau + F(\delta(\Gamma a, \Gamma b)) \leq F(D(a, b))$, for all $a, b \in A$ with $a \perp b$,
- (v) If $\{x_n\}$ is an O- sequence in X such that $x_n \to x^*$, then $x_n \perp x^*$ or $x^* \perp x_n$, $\forall n \in \mathbb{N}$.

Then, $\exists a^* \in A$ such that $D(a^*, \Gamma a^*) = D(A, B)$.

Proof. By (*i*), $\exists a_0, a_1 \text{ in } A_0$ and $b_0 \in \Gamma a_0$ such that $D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B)$ with $a_0 \perp a_1$. Adding condition (*iii*), we get $\Gamma a_0 \perp_1 \Gamma a_1$. That is, $\exists b_1 \in \Gamma a_1$ such that

$$D(a_2, b_1) = D(a_2, \Gamma a_1) = D(A, B)$$
 with $a_1 \perp a_2$ and $b_0 \perp b_1$.

In general, for each $n \in \mathbb{N}$, there exists $a_{n+1} \in A_0$ and $b_n \in \Gamma a_n$ such that $D(a_{n+1}, b_n) = D(A, B)$. Hence, we obtain

$$D(a_{n+1}, b_n) = D(a_{n+1}, \Gamma a_n) = D(A, B) \text{ for all } n \in \mathbb{N}$$
(3.1)

with $a_n \perp a_{n+1}$ and $b_{n-1} \perp b_n$.

If there exists n_0 such that $a_{n_0} = a_{n_0+1}$, then $D(a_{n_0+1}, \Gamma a_{n_0}) = D(a_{n_0}, \Gamma a_{n_0}) = D(A, B)$. This means that a_{n_0} is a best proximity point of Γ .

Thus, we can suppose that $a_n \neq a_{n+1}$, for all $n \in \mathbb{N}$. Since $D(a_{n+1}, b_n) = D(A, B)$ and $D(a_n, b_{n-1}) = D(A, B)$ and (A, B) has the P-property, we obtain

$$D(a_{n+1}, a_n) = D(b_n, b_{n-1}), \quad \forall n \in \mathbb{N} \cup \{0\}$$

$$\leq \delta(\Gamma a_n, \Gamma a_{n-1}), \quad \text{where, } b_n \in \Gamma a_n \text{ and } b_{n-1} \in \Gamma a_{n-1}.$$
(3.2)

Consider $F \in \mathcal{F}$. By (F1) and (*iv*), we get

$$F(D(a_{n+1}, a_n)) \le F(\delta(\Gamma a_n, \Gamma a_{n-1}))$$

$$\le F(D(a_n, a_{n-1})) - \tau$$

$$< F(D(a_n, a_{n-1}))$$
(3.3)

Hence from the strictly increasing property of *F*, we get $D(a_{n+1}, a_n) < D(a_n, a_{n-1})$. Therefore, the sequence $\{D(a_{n+1}, a_n)\}$ is strictly decreasing sequence. Suppose that $t_n = D(a_{n+1}, a_n) \rightarrow t$, for some $t \ge 0$. Now, we have to prove that t = 0.

From (3.3), we get

$$\tau + F(t_n) \le F(t_{n-1}). \tag{3.4}$$

Taking $n \to +\infty$ in (3.4), we get $\tau + F(t+0) \leq F(t+0)$, which is contradiction, and hence $t_n = D(a_{n+1}, a_n) \to 0$.

By (*F*3) exists $k \in (0, 1)$ such that

$$\lim_{n \to +\infty} t_n^k F(t_n) = 0.$$
(3.5)

By (3.3), we get

$$F(t_n) \le F(t_{n-1}) - \tau \le F(t_{n-2}) - 2\tau \dots \le F(t_0) - n\tau.$$
(3.6)

From (3.6), the following holds for all $n \in \mathbb{N}$:

$$t_n^k F(t_n) - t_n^k F(t_0) \le -t_n^k n\tau \le 0.$$
(3.7)

Letting $n \to \infty$ in (3.7), we get $\lim_{n \to +\infty} nt_n^k = 0$. Hence there exists $n_1 \in \mathbb{N}$ such that $nt_n^k \le 1, \forall n \ge n_1$. So, we have for all $n \ge n_1$:

$$t_n \le \frac{1}{n^{\frac{1}{k}}}.\tag{3.8}$$

Now, for proving $\{a_n\}$ is a Cauchy O-sequence, let $m \ge n \ge n_1$, using (3.8) and triangle inequality, we have

$$D(a_n, a_m) \le D(a_n, a_{n+1}) + D(a_{n+1}, a_{n+2}) + \ldots + D(a_{m-1}, a_m)$$
(3.9)

$$\leq t_n + t_{n+1} + \ldots + t_{m-1} \leq \sum_{i=1}^{m-1} t_i \leq \sum_{i=1}^{\infty} t_i \leq \sum_{i=1}^{\infty} (\frac{1}{i})^{\frac{1}{k}}.$$
(3.10)

Since the series $\sum_{i=1}^{\infty} (\frac{1}{i})^{\frac{1}{k}}$ is convergent, we get $D(a_n, a_m) \to 0$ as $n \to \infty$.

Here, $\{a_n\}$ is an O-sequence by construction. Thus, $\{a_n\}$ is a Cauchy O-sequence in A and hence converges to some element $a^* \in A$. Since $D(a_{n+1}, a_n) = D(b_n, b_{n-1})$, the sequence $\{b_n\}$ is also Cauchy O-sequence in B and converges to b^* in B. By the relation $D(a_{n+1}, b_n) = D(A, B)$ for all n, we conclude that $D(a^*, b^*) = D(A, B)$. We now claim that $b^* \in Ta^*$. Using (v), we get

$$b_n \perp b^*(\text{or}) \ b^* \perp b_n, \forall n \in \mathbb{N}.$$
(3.11)

Suppose that $b^* \notin \Gamma a^*$. Then by (3.11) and (iv), we obtain

$$F(D(b_n, \Gamma a^*)) \le F(\delta(\Gamma a_n, \Gamma a^*))$$
(3.12)

$$\leq F(D(a_n, a^*)) - \tau \tag{3.13}$$

$$\leq F(D(a_n, a^*)). \tag{3.14}$$

Now using strictly increasing property of *F* and $\tau > 0$, we get $D(b_n, \Gamma a^*) < D(a_n, a^*)$. Taking $n \to \infty$, we get $D(b^*, \Gamma a^*) \le 0$. Since $D(b^*, \Gamma a^*) = 0$, we get $b^* \in \overline{\Gamma a^*} = \Gamma a^*$. Hence, we get $D(a^*, b^*) = D(a^*, \Gamma a^*) = D(A, B)$. That is a^* is the required best proximity point of the mapping Γ .

Example 3.1. Let $X = \mathbb{R}^2$ and for $u = (u_1, u_2)$, $v = (v_1, v_2) \in \mathbb{R}^2$, define $u \perp v \iff u_i v_i \leq u_i^2$ or v_i^2 , $\forall i \in \{1, 2\}$. Then, (\mathbb{R}^2, \bot) is an O-set. Moreover, $(\mathbb{R}^2, \bot, D_1)$ is an O-complete metric space with metric D_1 defined as $D_1((u_1, u_2), (v_1, v_2)) = |u_1 - v_1| + |u_2 - v_2|$. Let $A = \{(-6, 0), (0, -6), (0, 5)\}$ and $B = \{(-1, 0), (0, -1), (0, 0), (-1, 1), (1, 1)\}$ be an O-closed subset of X. Then, D(A, B) = 5, $A_0 = A$ and $B_0 = B$. Let $\Gamma : A \to \mathcal{K}(B)$ be defined as:

$$\Gamma(u) = \begin{cases} \{(0,-1),(0,0)\} & if \ u = (-6,0) \\ \{(-1,1),(0,0),(-1,0)\} & if \ u = (0,-6) \\ \{(1,1),(-1,1)\} & if \ u = (0,5). \end{cases}$$

Since there exists (-6, 0)*,* (0, 5) *in* A_0 *and* $(0, 0) \in \Gamma(-6, 0)$ *such that :*

$$D((0,5), (0,0)) = D(A,B) = 5 \text{ and } (-6,0) \perp (0,5).$$

This satisfies condition (i). Since $B_0 = B$, $\Gamma u \subseteq B_0$, $\forall u \in A_0$, the condition (ii) is satisfied. It is easy to claim the condition (iii). Now, for the condition (iv), choose $F(t) = \ln t$, t > 0, and for condition (v), choose the O-sequence as constant O-sequence for each of $u \in A$. Thus, it satisfies all the hypotheses of Theorem 3.1. Here, (0,5) is the required best proximity point of the mapping Γ .

Corollary 3.1. Let (X, D, \bot) be an O-complete metric space and let A and B be non-empty O-closed subsets of (X, D) such that $A_0 \neq \phi$ and (A, B) satisfies P- property. Let $\Gamma : A \rightarrow \mathcal{K}(B)$ be a multivalued mapping which satisfies the following conditions:

- (i) $\exists a_0, a_1 \in A_0 \text{ and } b_0 \in \Gamma a_0 \text{ such that } D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B) \text{ with } a_0 \perp a_1,$
- (ii) $\Gamma a_0 \subseteq B_0, \forall a_0 \in A_0, \forall a_0$
- (iii) $\forall a, b \in A_0, \Gamma a \perp_1 \Gamma b$ whenever $a \perp b$,
- (iv) If $F \in \mathcal{F}$, $\exists \tau_i > 0, i = 1, 2, 3$ such that for all $a, b \in A$ with $a \perp b$, either of the following condition hold:

$$\begin{split} \tau_1 + \delta(\Gamma a, \Gamma b) &\leq D(a, b); \\ \tau_2 - \frac{1}{\delta(\Gamma a, \Gamma b)} &\leq -\frac{1}{D(a, b)}; \\ \tau_3 + \frac{1}{1 - \exp(\delta(\Gamma a, \Gamma b))} &\leq \frac{1}{1 - \exp(D(a, b))}. \end{split}$$

(v) If $\{a_n\}$ is an O- sequence in X such that $a_n \to a^*$, then $a_n \perp a^*$ or $a^* \perp a_n$, $\forall n \in \mathbb{N}$.

Then, $\exists a^* \in A$ *such that* $D(a^*, \Gamma a^*) = D(A, B)$ *.*

Proof. Choose each functions as $F_1(r) = r$, $F_2(r) = (-\frac{1}{r})$ and $F_3(r) = (\frac{1}{1-\exp r})$, where r = D(a,b) > 0 is strictly increasing on $(0, +\infty)$. The proof follows from Theorem 3.1.

Further, Theorem 3.1 can be restricted to Γ as a single valued mapping by considering Γa as a singleton set for all $a \in A$.

Corollary 3.2. Let (X, D, \bot) be an O-complete metric space and let A and B be non-empty O-closed subsets of (X, D) such that $A_0 \neq \phi$ and (A, B) satisfies P- property. Let $\Gamma : A \rightarrow B$ be a multivalued mapping which satisfies the following conditions:

- (i) $\exists a_0, a_1 \in A_0 \text{ and } b_0 \in B_0 \text{ such that } D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B) \text{ with } a_0 \perp a_1,$
- (ii) $\Gamma a_0 \in B_0, \forall a_0 \in A_0$,
- (iii) $\forall a, b \in A_0, \Gamma a \perp \Gamma b$ whenever $a \perp b$,
- (iv) If $F \in \mathcal{F}$, $\exists \tau > 0$ such that for $a, b \in A$ with $a \perp b$,

$$\tau + F(D(\Gamma a, \Gamma b)) \le F(D(a, b))$$

(v) If $\{a_n\}$ is an O- sequence in X such that $a_n \to a^*$, then $a_n \perp a^*$ or $a^* \perp a_n$, $\forall n \in \mathbb{N}$.

Then, $\exists a^* \in A$ such that $D(a^*, \Gamma a^*) = D(A, B)$.

Theorem 3.2. Let (X, D, \bot) be an O-complete metric space and let A and B be non-empty O-closed subsets of (X, D) such that $A_0 \neq \phi$ and (A, B) satisfies P- property. Let $\Gamma : A \rightarrow \mathcal{K}(B)$ be a multivalued mapping which satisfies the following conditions:

- (i) $\exists a_0, a_1 \in A_0$ and $b_0 \in \Gamma a_0$ such that $D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B)$ with $a_0 \perp a_1$,
- (ii) $\Gamma a_0 \subseteq B_0, \forall a_0 \in A_0$,
- (iii) $\forall a, b \in A_0, \Gamma a \perp_1 \Gamma b$ whenever $a \perp b$,
- (iv) $\exists \alpha > 0$ such that $\forall B_1, B_2 \in B_0$,

 $D(b_1, b_2) < \alpha H(B_1, B_2)$, where $b_1 \in B_1$ and $b_2 \in B_2$,

(v) If $F \in \mathcal{F}$ with $F(\alpha x) = \alpha F(x)$, $\forall x \in X, \exists \tau > 0$ such that for $a, b \in A$ with $a \perp b$, $\tau + F(H(\Gamma a, \Gamma b)) \leq \frac{1}{\alpha}F(D(a, b)),$

(vi) If $\{a_n\}$ is an O- sequence in X such that $a_n \longrightarrow a^*$, then $a_n \perp a^*$ or $a^* \perp a_n$, $\forall n \in \mathbb{N}$. Then, $\exists a^* \in A$ such that $D(a^*, \Gamma a^*) = D(A, B)$.

Proof. Follow the proof of Theorem 3.1 till (3.2). Now by condition (*iv*), (3.2) becomes,

$$D(a_{n+1}, a_n) = D(b_n, b_{n-1})$$
$$< \alpha H(\Gamma a_n, \Gamma a_{n-1}).$$

Now using strictly increasing property of *F* and (v), we get

$$F(D(a_{n+1}, a_n)) < F(\alpha H(\Gamma a_n, \Gamma a_{n-1}))$$
$$< \alpha F(H(\Gamma a_n, \Gamma a_{n-1}))$$
$$\leq \frac{\alpha}{\alpha} F(D(a_n, a_{n-1})) - \tau \alpha$$
$$< F(D(a_n, a_{n-1})).$$

Hence, we get $D(a_{n+1}, a_n) < D(a_n, a_{n-1})$. Now, by proceeding the same as the proof of Theorem 3.1, we obtain the result.

Theorem 3.3. Let (X, D, \bot) be an O-complete metric space and let A and B be non-empty O-closed subsets of (X, D) such that $A_0 \neq \phi$ and (A, B) satisfies P- property. Let $\Gamma : A \rightarrow \mathcal{K}(B)$ be a multivalued mapping which satisfies the following conditions:

- (i) $\exists a_0, a_1 \in A_0$ and $b_0 \in \Gamma a_0$ such that $D(a_1, b_0) = D(a_1, \Gamma a_0) = D(A, B)$ with $a_0 \perp a_1$,
- (ii) $\Gamma a_0 \subseteq B_0, \forall a_0 \in A_0$,
- (iii) $\forall a, b \in A_0$, $\Gamma a \perp_1 \Gamma b$ whenever $a \perp b$,
- (iv) $\exists \alpha > 0$ such that $\forall B_1, B_2 \in B_0$,

 $D(b_1, b_2) < \alpha H(B_1, B_2)$, where $b_1 \in B_1$ and $b_2 \in B_2$,

(v) $\exists \lambda \in (0, 1)$ such that for $a, b \in A$ with $a \perp b$,

$$H(\Gamma a, \Gamma b)) \leq \frac{\lambda}{\alpha} D(a, b),$$

(vi) If $\{a_n\}$ is an O- sequence in X such that $a_n \longrightarrow a^*$, then $a_n \perp a^*$ or $a^* \perp a_n$, $\forall n \in \mathbb{N}$. Then, $\exists a^* \in A$ such that $D(a^*, \Gamma a^*) = D(A, B)$.

Proof. Follow the proof of Theorem 3.1 till (3.2). Now by conditions (iv) and (v), (3.2) becomes,

$$D(a_{n+1}, a_n) = D(b_n, b_{n-1})$$

< $\alpha H(\Gamma a_n, \Gamma a_{n-1})$
 $\leq \alpha \frac{\lambda}{\alpha} D(a_n, a_{n-1})$
= $\lambda D(a_n, a_{n-1}).$

Since $D(a_{n+1}, a_n) < \lambda D(a_n, a_{n-1})$. In general , for each $n \in \mathbb{N}$, $D(a_{n+1}, a_n) < \lambda^n D(a_0, a_1)$. If $m, n \in \mathbb{N}$ and $n \ge m$, then

$$D(a_m, a_n) \le D(a_m, a_{m+1}) + D(a_{m+1}, a_{m+2}) + \ldots + D(a_{n-1}, a_n)$$

$$\le (\lambda^m D(a_0, a_1) + \ldots + \lambda^{n-1} D(a_0, a_1))$$

$$\le \frac{\lambda^m}{1 - \lambda} D(a_0, a_1).$$

Since $\lambda \in (0, 1)$, we get $\{a_n\}$ is a Cauchy O- sequence in *A*. Now, by proceeding the same as the proof of Theorem 3.1, we get the result.

4. Conclusions

The fixed point and best proximity point results ensure the existence of solutions to many problems in non-linear analysis. In our paper, we have given the existence of the best proximity point for multivalued non-self mapping in O-complete metric space. Also, we have given example to support our result.

Acknowledgment: This work has been funded by the Basque Government through Grant IT1555-22.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- A. Abkar, M. Gabeleh, Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces, J. Optim. Theory Appl. 150 (2011), 188–193. https://doi.org/10.1007/s10957-011-9810-x.
- [2] A. Abkar, M. Gabeleh, Best Proximity Points of Non-Self Mappings, TOP 21 (2013), 287–295. https://doi.org/10. 1007/s11750-012-0255-7.
- [3] A. Abkar, M. Gabeleh, Generalized Cyclic Contractions in Partially Ordered Metric Spaces, Optim. Lett. 6 (2012), 1819–1830. https://doi.org/10.1007/s11590-011-0379-y.
- [4] A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 319–325. https://doi.org/10.1007/s13398-012-0074-6.
- [5] I. Altun, G. Minak, H. Dağ, Multivalued F-Contractions on Complete Metric Spaces, J. Nonlinear Convex Anal. 16 (2015), 659–666.
- [6] M.A. Al-Thagafi, N. Shahzad, Convergence and Existence Results for Best Proximity Points, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022.
- [7] S.S. Basha, Discrete Optimization in Partially Ordered Sets, J. Glob. Optim. 54 (2012), 511–517. https://doi.org/10. 1007/s10898-011-9774-2.
- [8] S. Sadiq Basha, Best Proximity Points: Global Optimal Approximate Solutions, J. Glob. Optim. 49 (2011), 15–21. https://doi.org/10.1007/s10898-009-9521-0.
- [9] S.S. Basha, Best Proximity Point Theorems on Partially Ordered Sets, Optim. Lett. 7 (2013), 1035–1043. https://doi.org/10.1007/s11590-012-0489-1.
- [10] S. Sadiq Basha, Extensions of Banach's Contraction Principle, Numer. Funct. Anal. Optim. 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713.

- [11] S.S. Basha, P. Veeramani, Best Approximations and Best Proximity Pairs, Acta Sci. Math. (Szeged) 63 (1997), 289–300.
- [12] S. Sadiq Basha, P. Veeramani, Best Proximity Pair Theorems for Multifunctions with Open Fibres, J. Approx. Theory 103 (2000), 119–129. https://doi.org/10.1006/jath.1999.3415.
- [13] K. Fan, Extensions of Two Fixed Point Theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. https://doi.org/10. 1007/BF01110225.
- [14] A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal Normal Structure and Relatively Nonexpansive Mappings, Stud. Math. 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5.
- [15] A.A. Eldred, P. Veeramani, Existence and Convergence of Best Proximity Points, J. Math. Anal. Appl. 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081.
- [16] M.E. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.
- [17] M.R. Haddadi, S.M. Moshtaghioun, Some Results on the Best Proximity Pair, Abstr. Appl. Anal. 2011 (2011), 158430. https://doi.org/10.1155/2011/158430.
- [18] W.K. Kim, K.H. Lee, Existence of Best Proximity Pairs and Equilibrium Pairs, J. Math. Anal. Appl. 316 (2006), 433–446. https://doi.org/10.1016/j.jmaa.2005.04.053.
- [19] W.A. Kirk, S. Reich, P. Veeramani, Proximinal Retracts and Best Proximity Pair Theorems, Numer. Funct. Anal. Optim. 24 (2003), 851–862. https://doi.org/10.1081/NFA-120026380.
- [20] V. Pragadeeswarar, M. Marudai, P. Kumam, Best Proximity Point Theorems for Multivalued Mappings on Partially Ordered Metric Spaces, J. Nonlinear Sci. Appl. 9 (2016), 1911–1921.
- [21] V. Pragadeeswarar, R. Gopi, Existence of Common Best Proximity Point for Single and Multivalued Non-Self Mappings, Carpathian J. Math. 37 (2021), 273–285. https://www.jstor.org/stable/27082105.
- [22] V.S. Raj, P. Veeramani, Best Proximity Pair Theorems for Relatively Nonexpansive Mappings, Appl. Gen.Topol. 10 (2009), 21–28. https://doi.org/10.4995/agt.2009.1784.
- [23] V. Sankar Raj, A Best Proximity Point Theorem for Weakly Contractive Non-Self-Mappings, Nonlinear Anal.: Theory Methods Appl. 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052.
- [24] P. Srinivasan, P. Veeramani, On Existence of Equilibrium Pair for Constrained Generalized Games, Fixed Point Theory Appl. 2004 (2004), 704376. https://doi.org/10.1155/S1687182004308132.
- [25] M. De La Sen, R.P. Agarwal, Some Fixed Point-Type Results for a Class of Extended Cyclic Self-Mappings with a More General Contractive Condition, Fixed Point Theory Appl. 2011 (2011), 59. https://doi.org/10.1186/ 1687-1812-2011-59.
- [26] M. Gabeleh, Proximal Weakly Contractive and Proximal Nonexpansive Non-Self-Mappings in Metric and Banach Spaces, J. Optim. Theory Appl. 158 (2013), 615–625. https://doi.org/10.1007/s10957-012-0246-8.
- [27] M. Gabeleh, Best Proximity Points: Global Minimization of Multivalued Non-Self Mappings, Optim. Lett. 8 (2014), 1101–1112. https://doi.org/10.1007/s11590-013-0628-3.
- [28] R.K. Sharma, S. Chandok, Multivalued Problems, Orthogonal Mappings, and Fractional Integro-Differential Equation, J. Math. 2020 (2020), 6615478. https://doi.org/10.1155/2020/6615478.