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Abstract. In this paper, we examine a one-dimensional viscous bilayer shallow water model under the rigid-lid as-

sumption. Each layer is described by the one-dimensional shallow water equations. The work presented in [Discrete

and Continuous Dynamical Systems Series B18(1), (2011), 361-383] established the stability of a similar model in the two-

dimensional case. The primary focus of this study is to demonstrate the existence of global strong solutions for the

proposed model within a periodic domain.

1. Introduction

Many flow phenomena are often modeled using the Navier-Stokes equations or their derivatives,

such as the shallow water equations. However, in numerous situations, a single-layer model fails to

adequately capture the dynamics of the flow. For instance, in cases like the Strait of Gibraltar, where

Mediterranean water flows beneath Atlantic water, or in scenarios involving pollutant transport

through water, it becomes necessary to adopt bilayer models for more accurate representation. To

address such phenomena, several derivations of two-layer and multilayer shallow water models

have been proposed, including the works cited in [1, 18].

This paper focuses on establishing the existence of global strong solutions for a one-dimensional

bilayer shallow water model under the rigid-lid assumption. Previous studies on shallow water
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problems with the rigid-lid hypothesis include [15, 16] for the single-layer case and [18] for the

bilayer case. Here, we concentrate on the following model:

∂th1 + ∂x(h1u1) = 0, (1.1)

∂t(h1u1) + ∂x(h1u1
2) − ν1∂x(h1∂xu1) + h1∂xp = 0, (1.2)

∂th2 + ∂x(h2u2) = 0, (1.3)

∂t(h2u2) + ∂x(h2u2
2) − ν2∂x(h2∂xu2) + h2∂xp = 0, (1.4)

h1 + h2 = 1. (1.5)

here, (t, x) ∈ (0, T) ×Ω, with Ω being a one-dimensional periodic domain. The variables h1 and

h2 represent the water heights for each layer, while u1 and u2 correspond to the velocities of the

respective layers.

The pressure term p, which depends on h1 and h2, incorporates the exchange terms. Additionally,

ν1 and ν2 denote the kinematic viscosities for the two layers.

From a theoretical perspective, numerous studies have focused on the existence of strong solutions

for the shallow water and Navier-Stokes equations (see [7,8,12]). For instance, in [17], the authors

demonstrated the existence of strong solutions for the one-dimensional compressible Navier-Stokes

equations, assuming that the initial data is smooth and the initial density is bounded below by a

positive constant. Building on the concepts introduced in [3,4,13,17], the work in [20] established

the existence of strong solutions for a one-dimensional regularized bilayer model, where the initial

energies associated with the model are:

E0 =
1
2

∫
Ω

h10,ε|v10,ε|
2 +

g(1− r)
2

∫
Ω

h20,ε|v20,ε|
2 +

rg
2

∫
Ω
|h10,ε + h20,ε|

2
≤ Cε2

≤ C

and

F0 =
1
2

∫
Ω

∣∣∣∣∣∣ν1
∂xϕε(h10,ε)√

h10,ε

∣∣∣∣∣∣2 + 1
2

∫
Ω

∣∣∣∣∣∣ν2
∂xϕε(h20,ε)√

h20,ε

∣∣∣∣∣∣2 ≤ Cε2
≤ C.

As ε approaches 0, the resulting model corresponds to the stationary case. Recently, the authors

in [19] analyzed an evolutionary model that resembles the one studied in [20] when ε tends to 0.

In [10], the authors established the existence of global strong solutions for the Cauchy problem of a

shallow water system in dimensions N ≥ 2. Similarly, the work in [11] demonstrated the existence

of global strong solutions for the compressible Navier-Stokes equations with a degenerate viscosity

coefficient in one dimension. A key aspect of their proof involved controlling a new effective

velocity (see [11]) in L∞((0, T); L∞(R)), which allowed them to also control the inverse of the

density, 1/ρ, in the same space.

In [5], the authors proved the well-posedness of a system modeling two-layer shallow-water flow

between two horizontal rigid plates. They assumed that the depth of the bottom layer, denoted

h1, satisfies 0 < h1 < 1 and used the relationship h1 + h2 = 1, where h2 is the depth of the top

layer. Building on the approach in [5], and under the rigid-lid assumption h1 + h2 = 1, we adopt
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the following hypothesis: there exists a constant c > 0 such that 0 < c ≤ h1 < 1. The equations

(1.1) − (1.4) can then be reformulated as follows:

∂th1 + ∂x(h1u1) = 0, (1.6)

∂tu1 + u1∂xu1 − ν1∂
2
xu1 − ν1

∂xh1

h1
∂xu1 + ∂xp = 0, (1.7)

∂th1 + ∂x((h1 − 1)u2) = 0, (1.8)

∂tu2 + u2∂xu2 − ν2∂
2
xu2 − ν2

∂xh2

h2
∂xu2 + ∂xp = 0. (1.9)

Thus the estimates obtained on h1 will be valid for h2 with h2 = 1− h1.

This paper aims to prove the existence of global strong solutions for a one-dimensional bi-

layer shallow water model under the rigid-lid assumption, building upon the work in [19, 20].

Specifically, we establish appropriate regularity properties for the unknowns:

hi ∈ L∞(0, T; L∞(Ω)), ui ∈ L∞(0, T; L∞(Ω))∩ L2(0, T; H2(Ω)), p ∈ L∞(0, T; L∞(Ω)).

These regularities are obtained through compactness arguments and by applying De Rham’s the-

orem (refer to [2]).

The rest of this paper is structured as follows: Section 2 presents the initial and boundary condi-

tions, followed by the main existence theorem. In the subsections of Section 2, we introduce the

energy concepts (classical energy and mathematical entropy) and provide results that establish

the regularity of the unknowns necessary to prove the stated theorem. Finally, in Section 3, we

provide detailed proofs of the classical energy and mathematical entropy.

2. Main results

This section begins with the presentation of the initial data and the main results of this paper.

The subsequent subsections will provide detailed evidence supporting these key findings. We

assume that the initial data satisfies the following expressions and conditions:

h10 = h1|t=0, h20 = h2|t=0, u10 = u1|t=0 and u20 = u2|t=0,

0 < c10
≤ h10 < 1, 0 < c20

≤ h20 < 1,

h10 ∈ H1(Ω), u10 ∈ H1(Ω), h20 ∈ H1(Ω), u20 ∈ H1(Ω)

(2.1)

where c10
and c20

are some positive constants. We further assume that the viscosities ν1 and ν2

verify the relation

ν2 > ν1 (2.2)
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and the following quantities are finished:

1
2

∫
Ω

[
h10 |u10 |

2 + h20 |u20 |
2
]
dx ≤ C1, (2.3)

1
2

∫
Ω

[
h10 |u10 + ∂xϕ(h10)|

2 + h20 |u20 + ∂xϕ(h20)|
2
]
dx ≤ C2, (2.4)

where C1, C2 are real constants and ϕ(hi) = νi log hi, i = {1, 2}.

Theorem 2.1. The system (1.1) − (1.5) admits global strong solutions corresponding to the initial data
(2.1) − (2.4), satisfying the conditions for i = {1, 2}.

hi is bounded in L∞(0, T; H1(Ω)),

p is bounded in L2(0, T; H1(Ω)),

ui is bounded in L∞(0, T; L∞(Ω))∩ L2(0, T; H2(Ω)),

∂tui is bounded in L2(0, T; L2(Ω)).

(2.5)

Remark 2.1. Observe that as h1 tends to 0, h2 converges to 1. In this limit, equations (1.1) and (1.4) take
the form:

∂xui = 0, (2.6)

∂tui = 0. (2.7)

We deduce that the system (2.6) − (2.7) is a isentropic Euler system of the form

∂th + ∂xu = 0, (2.8)

∂tu + ∂xp(h) = 0. (2.9)

Global weak solutions for the conservation law (2.8)− (2.9) were constructed in [9], and the uniqueness
of weak entropy solutions for small BV functions was later established in [6].

In the following subsection, we will give some results that will help prove the previous theorem.

2.1. Energies inequalities. The energy equality associated with the system (1.1) − (1.5) is given

in the following proposition

Proposition 2.1. Let (h1, h2, u1, u2, p) be a smooth solution of the system (1.1)− (1.5), then the following
classical equality holds:

1
2

d
dt

∫
Ω

[
h1|u1|

2 + h2|u2|
2
]
dx + ν1

∫
Ω

h1|∂xu1|
2 + ν2

∫
Ω

h2|∂xu2|
2dx = 0. (2.10)

From the previous result (2.10), we deduce the following estimates:
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Corollary 2.1. Let (h1, h2, u1, u2, p) be a solution of model (1.1) − (1.5). We have the following uniform
bounds: √

h1u1 is bounded in L∞(0, T; L2(Ω)),
√

h2u2 is bounded in L∞(0, T; L2(Ω)),√
h1∂xu1 is bounded in L2(0, T; L2(Ω)),

√
h2∂xu2 is bounded in L2(0, T; L2(Ω)).

The estimates obtained on h1, h2, u1 and u2 are insufficient, we need other estimates which we

will find in the following results:

Proposition 2.2. If (h1, h2, u1, u2, p) is a solution of (1.1) − (1.3), the following equlity holds:

ν1
d
dt

∫
Ω

h1|∂x log h1|
2 + ν2

d
dt

∫
Ω

h2|∂x log h2|
2 +

d
dt

∫
Ω

u1∂xh1 +
d
dt

∫
Ω

u2∂xh2

=

∫
Ω

h1(∂xu1)
2 +

∫
Ω

h2(∂xu2)
2. (2.11)

This result allows us to have control over gradian of
√

hi and the gradian of ∂xhi in L∞(0, T; L2(Ω)) for
i = {1, 2}.

Proposition 2.3. Let (h1, h2, u1, u2, p) be a smooth solution of (1.1)− (1.5), then the following mathematical
BD entropy inequality holds:

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx +

1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx

+
ν2 − ν1

4

∫
Ω
|∂xp|2 ≤ .(ν2 − ν1)

∫
Ω
|∂xh1|

2 (2.12)

The previous result allows us to deduce the following estimates in the corollary

Corollary 2.2. If (h1, h2, u1, u2, p) is a solution of model (1.1) − (1.5) verifying the inequality given in
(2.12). We obtain the following estimates:

∂xh1 is bounded in L2(0, T; L2(Ω)), ∂xh2 is bounded in L2(0, T; L2(Ω)),

∂x
√

h1 is bounded in L∞(0, T; L2(Ω)), ∂x
√

h2 is bounded in L∞(0, T; L2(Ω))

and

∂xp is bounded in L2(0, T; L2(Ω)).

Thanks to the Corollary 2.1, Corollary 2.2 and the equality h1 + h2 = 1 we deduce the following

estimates on hi and ui for i = {1, 2}.

Corollary 2.3. Let (h1, h2, u1, u2, p) be a solution of model (1.1) − (1.5). We have the following uniform
bounds:

h1 is bounded in L∞(0, T; L∞(Ω)), h2 is bounded in L∞(0, T; L∞(Ω)),

u1 is bounded in L2(0, T; L∞(Ω)), u2 is bounded in L2(0, T; L∞(Ω)).

Now we are interested in the estimates on p.
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2.2. Estimation on p.

Proposition 2.4. If we assume that (h1, h2, u1, u2, p) is a solution of the system (1.1)− (1.5) then we have:

p is bounded in L∞((0, T), L∞(Ω)). (2.13)

Proof. This proof borrows the ideas developed in [14, 18]. We introduce the following functional

spaces

V = {ϕ : ϕ ∈ D(Ω), ∂xϕ = 0 in Ω}.

H = {φ : φ ∈ D(Ω),
∫

Ω
φ = 0}

If we add up the equation (1.2) and (1.4), we have

∂t(h1u1) + ∂t(h2u2) + ∂x(h1u2
1) + ∂x(h2u2

2) − ν1∂x(h1∂xu1)) − ν2∂x(h1∂xu1)) + ∂xp = 0. (2.14)

For i = {1, 2}, we have

∂t(hiui) is bounded in W−1,∞(0, T; L∞(Ω)),

∂x(hiu2
i ) is bounded in W−1,∞(0, T; L∞(Ω))

and

∂x(hi∂xui) is bounded in W−1,∞(0, T; L2(Ω)).

We then deduce the left term of the equation (2.14) is bounded in W−1,∞(0, T; L2(Ω)). Let ϕ ∈ V,

we multiply (2.14) by ϕ and integrate over Ω by taking into account that Ω is periodic to obtain∫
Ω

(
∂t(h1u1) + ∂t(h2u2) + ∂x(h1u2

1) + ∂x(h2u2
2) − ν1∂x(h1∂xu1) − ν2∂x(h1∂xu1)

)
ϕ = 0 (2.15)

So by De Rham’s theorem, there exists a unique p ∈W−1;∞(0, T; L2(Ω)) such that

∂t(h1u1) + ∂t(h2u2) + ∂x(h1u2
1) + ∂x(h2u2

2) − ν1∂x(h1∂xu1)) − ν2∂x(h1∂xu1)) = ∂xp,

and ∫
Ω

pφ = 0 ∀φ ∈ H .

Hence

p ∈W−1,2(0, T; L2(Ω)) and
∫

Ω
pφ = 0 ∀φ ∈ H .

Moreover if we add up the equations (1.1) and (1.3), we get

∂x(h1u1 + h2u2) = 0

and we add up the equations (1.2) and (1.4) and deriving from x, we have

−∂x2p = ∂x(∂xh1u2
1 + ∂xh2u2

2) − ν1∂x2(h∂xu1)) − ν2∂x2(h2∂xu2).

With the preceding regularities established on hi and ui we easily justify that the right-hand terms

of the previous equation are all in L2(0, T; W−2,2(Ω)). Then

∂x2p is bounded in L2(0, T; W−2,2(Ω)).
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Hence by regularity of the Laplacian we have

p is bounded in L2(0, T; L2(Ω)) (2.16)

Thanks to the Corollary2.2 and injection of H1 into L∞ we deduce that

p is bounded in L2(0, T; L∞(Ω)) (2.17)

�

Remark 2.2. With the estimates obtained on hi and as p is defined as a function of h then we deduce that:

p is bounds in L∞(0, T; L∞(Ω)).

2.3. Uniform bounds for the velocities.

Proposition 2.5. For (h1, h2, u1, u2, p) solution of the system (1.1)− (1.5), we have the following estimates:

u1 is bounded in L2(0, T; H2(Ω)), ∂tu1 is bounded in L2(0, T; L2(Ω)),

u2 is bounded in L2(0, T; H2(Ω)), ∂tu2 is bounded in L2(0, T; L2(Ω)).

Proof. Proposition 2.5

We consider the momentum equation for i = {1, 2}

∂t(hiui) + ∂x(hiui
2) − νi∂x(hi∂xui) + hi∂xp = 0

We rewrite that as:

hi∂tui + hiui∂xui − νi∂x(hi∂xui) + hi∂xp = 0,

hi∂tui + hiui∂xui − νihi∂
2
xui − νi∂xhi∂xui + hi∂xp = 0,

∂tui + ui∂xui − νi∂
2
xui − νi

∂xhi

hi
∂xui + ∂xp = 0,

∂tui − νi∂
2
xui = −∂xp + (νi∂x log hi − ui)∂xui. (2.18)

By virtue of Corollary 2.2, ∂xp is bounded in L2
(
0, T; L2(Ω)

)
. Drawing on the methods presented

in [11] and [17], and employing Holder’s inequality, the Gagliardo-Nirenberg inequality, and

energy estimates, we obtain:

||(νi∂x log hi − ui)∂xui||L2(0,T;L2(Ω))

≤ ||νi∂x log hi − ui||L∞(0,T;L2(Ω))||∂xui||L2(0,T;L∞(Ω))

≤ ||νi∂x log hi − ui||L∞(0,T;L2(Ω))||∂xui||
1
2
L2(0,T;L2(Ω))

||∂2
xui||

1
2
L2(0,T;L2(Ω))

≤ C||∂2
xui||

1
2
L2(0,T;L2(Ω))

.

Using regularity results for parabolic equation of the form (2.18) gives for any T ∈ (0, T0):

||∂tui||L2(0,T;L2(Ω)) + ||∂xui||L2((0,T;H1(Ω)) ≤ C||∂xui||
1
2
L2(0,T;H1(Ω))

+ C,
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with C depending on ||ui0 ||H1 and by boostrap for any T ∈ (0, T0):

||∂tui||L2((0,T),L2(Ω)) + ||ui||L2((0,T),H2(Ω)) ≤ C(T).

�

3. Appendix

Proof. Proposition 2.1

We will multiply the equations (1.2) and (1.4) respectively by u1 and u2. We obtain the

following equalities:∫
Ω

[
(∂th1u1) + ∂x(h1u2

1)

]
u1dx +

∫
Ω

h1u1∂xpdx− ν1

∫
Ω

u1∂x(h1∂xu1)dx = 0,

and ∫
Ω

[
(∂th2u2) + ∂x(h2u2

2)

]
u2dx +

∫
Ω

h2u2∂xpdx− ν2

∫
Ω

u2∂x(h2∂xu2)dx = 0.

We rewrite the first two terms of each of the two previous equations as follows:∫
Ω

[
(∂th1u1) + ∂x(h1u2

1)

]
u1dx =

1
2

d
dt

∫
Ω

h1|u1|
2dx, (3.1)

∫
Ω

[
(∂th2u2) + ∂x(h2u2

2)

]
u2dx =

1
2

d
dt

∫
Ω

h2|u2|
2dx. (3.2)

We also observe that: ∫
Ω

h1u1∂xpdx +
∫

Ω
h2u2∂xpdx =

∫
Ω

p∂t(h1 + h2)dx. (3.3)

Furthermore, we have:

−ν1

∫
Ω

u1∂x(h1∂xu1)dx− ν2

∫
Ω

u2∂x(h2∂xu2) = ν1

∫
Ω

h1|∂xu1|
2 + ν2

∫
Ω

h2|∂xu2|
2dx. (3.4)

Now we add the equations (3.1) − (3.4) to find the proclaimed equality. �

Proof. Proposition 2.2 For i = {1, 2}, thanks to the mass equation, we have

∂t∂xhi + ∂x(hi∂xui) + ∂x(ui∂xhi) = 0 (3.5)

Raplacing ∂xhi by hi∂x log hi, we get:

∂t(hi∂x log hi) + ∂x(hi∂xui) + ∂x(uihi∂x log hi) = 0 (3.6)

we multiply the previous equation by ∂x log hi to have:

1
2
∂t[hi|∂x log hi|

2] −
1
2
|∂xhi|

2

h2
i

∂x(hiui) + ∂2
xui∂xhi + 2∂xui

|∂xhi|
2

hi
+

ui∂2
xhi∂xhi

hi
= 0 (3.7)

Let us multiply the momentum equation by ∂x log hi and simplify to have

(∂tui + ui∂xui)∂xhi − ν1∂
2
xu1∂xhi − ν1

|∂xhi|
2

h1
∂xu1 + ∂xp∂xhi = 0 (3.8)
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We multiply the equation (3.7) by νi add to the equation (3.8) and integrate to have

νi

2
d
dt

∫
Ω

hi|∂x log hi|
2 +

∫
Ω
∂xhi∂xp +

∫
Ω
(∂tui + ui∂xui)∂xhi = 0,

so,
νi

2
d
dt

∫
Ω

hi|∂x log hi|
2 +

∫
Ω
∂xhi∂xp = −

∫
Ω
(∂tui + ui∂xui)∂xhi

We use the mass equation to rewrite: (∂tu + u∂xu)∂xh as

(∂tui + ui∂xui)∂xhi = ∂tui∂xhi + (−∂thi − hi∂xui)∂xui.

So, we have

νi

2
d
dt

∫
Ω

hi|∂x log hi|
2 +

d
dt

∫
Ω

ui∂xhi +

∫
Ω
∂xp∂xhi =

d
dt

∫
Ω

hi|∂xui|
2 (3.9)

By summing the previous expression for i = {1, 2}, we have

ν1

2
d
dt

∫
Ω

h1|∂x log h1|
2 +

ν2

2
d
dt

∫
Ω

h2|∂x log h2|
2 +

d
dt

∫
Ω

u1∂xh1 +
d
dt

∫
Ω

u2∂xh2

=

∫
Ω

h1|∂xu1|
2 +

∫
Ω

h2|∂xu2|
2. (3.10)

�

Proof. Proposition 2.3

The system (1.1) − (1.4) can be written as follows: for i, j = 1, 2 with i , j

(Si)


∂thi + ∂x(hiui) = 0,

∂t(hiui) + ∂x(hiui
2) − νi∂x(hi∂xui) + hi∂xp = 0.

Following the idea proposed in [11], we set vi = ui + νi∂x log hi = ui + ∂xϕ(hi) and we can rewrite

the system (Si) as follows:

(S′i )


∂thi + ∂x(hivi) − νi∂

2
xhi = 0,

hi∂t(vi) + hiui∂x(vi) + hi∂xp = 0,

for i, j = 1, 2.

We multiply the second equation of (S′i ) by vi and integrate on Ω, for i = 1, 2.

We have for each layer:

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx + ν1

∫
Ω
∂xp∂xh1dx +

∫
Ω

p∂th1dx = 0, (3.11)

and
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1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx + ν2

∫
Ω
∂xp∂xh2dx +

∫
Ω

p∂th2dx = 0. (3.12)

We sum up the equations by performing a simple calculation to have:

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx +

1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx

+ν1

∫
Ω
∂xp∂xh1dx + ν2

∫
Ω
∂xp∂xh2dx = 0.

Taking into account the equation h1 + h2 = 1 to deduce that:

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx +

1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx

+ν1

∫
Ω
∂xp∂xh1dx− ν2

∫
Ω
∂xp∂xh1dx = 0.

Using the equality: ab =
1
2

[
(a + b)2

− a2
− b2

]
for the to last terms, we have

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx +

1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx +

ν2 − ν1

2

∫
Ω
|∂xh1|

2

+
ν2 − ν1

2

∫
Ω
|∂xp|2 − .

ν2 − ν1

2

∫
Ω
|∂xh1 + ∂xp|2 = 0

we deduce taking into account the inequality: (a + b)2
≥

1
2

a2
−

3
2

b2, we get:

1
2

d
dt

∫
Ω

h1|u1 + ∂xϕ(h1)|
2dx +

1
2

d
dt

∫
Ω

h2|u2 + ∂xϕ(h2)|
2dx

+
ν2 − ν1

4

∫
Ω
|∂xp|2 ≤ .(ν2 − ν1)

∫
Ω
|∂xh1|

2 = 0. (3.13)

�

4. Conclusion

This paper focuses on the theoretical study of a one-dimensional viscous bilayer shallow water

model under the rigid-lid assumption. Using the estimates derived for the unknowns (hi, ui, and

p), we demonstrate the existence of global strong solutions in time for this model. This work

enhances and builds upon the results in [19]. Additionally, as part of ongoing research, we are

exploring the existence of solutions in the two-dimensional case, for which stability was previously

established in [Discrete and Continuous Dynamical Systems Series B, 18(1), (2011)].
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