Int. J. Anal. Appl. (2025), 23:181

International Journal of Analysis and Applications

The Rainbow Mean Index of Corona Product of Graphs

K. Maheswari, G. Rajasekaran”

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014,
Tamil Nadu, India

*Corresponding author: rajasekaran.ganapathy@vit.ac.in

Abstract. In a connected graph G with at least three vertices, an edge coloring ¢ assigns positive integers to the edges.
The chromatic mean of a vertex v is determined by averaging the colors of all incident edges, provided that the result
remains a positive integer. A coloring c is a rainbow mean coloring if every vertex in G has a unique chromatic mean.
The rainbow mean index of ¢ is the highest chromatic mean assigned to any vertex, while the rainbow mean index of G
is the smallest possible maximum chromatic mean for all valid rainbow mean colorings. In this study, we calculate the
rainbow mean index of corona product of Px o H; G o P, and Py o Py, where G and H are regular graphs. In addition,

we calculate the rainbow mean index of the join graph G V K, where G is a regular graph.

1. INTRODUCTION

Let V(G) and E(G) be the vertex and edge set of a connected graph G. Concepts and terms not
explained in this article are available in [1]. The number of edges incident to v in G is known as
degree of v and it is denoted by d(v). If d(v) = £ ¥ v € V(G), then G is known as ¢-reqular. A cycle
Cy in G is a spanning cycle if V(Cy) = V(G). For x > 3, Py, Fy, Ky, Ky and O, denotes the path, fan,
complete, complete bipartite and null graphs, respectively.

An edge coloring ¢ : E(G) — IN assigns positive integer values to the edges of G (where the
color of the adjacent edges may be the sam;) iés )named mean coloring of G if the chromatic mean

cie

e€Ey

cm(v) of v € V(G), calculated by cm(v) = ~i(@~+ Ev denotes the number of edges connected to v,
is a positive integer. If cm(v) ¥ v € V(G) are distinct, then ¢ is named Rainbow Mean Coloring,
briefly RMC of G. For an RMC ¢, the largest cm(v) among the vertices is named Rainbow Mean
Index, briefly RMI of ¢, represented by xn(c). The RMI of G, represented as x»(G) is calculated
by
Xrm(G) = min{x,m(c) : cis a RMC of G}.
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Letx € Nand Lbeasubsetof{1,2,...,|5}. The graph C(x; L) with V(C(x; L)) = {vo,v1,02, ..., Vx-1}
and E(C(x;L)) = {vjviye :i€1{0,1,2,...,x -1}, € € L} is known as circulant graph.
The corona product of two graphs G and H [2], represented by G o H is constructed by taking

a single copy of G and |V (G)| copies of H. Each vertex in G is then connected to every vertex in its
corresponding copy of H.

The join graph of two graphs G and H [2], represented by G V H is constructed by each vertex in
G adjacent to every vertex in H.

The concept of RMI was first studied by Chartrand et al. [3] and they have proposed the RMI
conjecture, which states that for every connected graph G of order at least 3, then |V (G)| < xm(G) <
[V(G)|+2.

Observation 1.1. For any connected graph G with x vertices, xym(G) = x.

Theorem 1.1. [3] Let H be a connected graph with y > 6 vertices, y = 4t + 2 where T > 1 and d(v) are
odd for allv e V(H). Then x;m(H) >y + 1.

Also, they have calculated the RMI of path, cycle, complete and star graph. Additionally, in
2021 the same authors [4] calculated the RMI of the Path graph.

In 2020, Hallas et al. [5] discussed the RMI of the cartesian product of two graphs; complete
bipartite graph and n-dimensional hypercube. Moreover, in 2020 the same authors [6] determined
the RMI of double star, cubic caterpillars of even order, and the subdivision of stars.

In 2022, Anantharaman et al. [7] calculated the RMI of the regular; wheel; caterpillar and fan
graph. Also, they have calculated the RMI of wreath product of two graphs.

Theorem 1.2. [7] For x > 4, xym(Fx) = x+ 1.

In 2023, Garciano et al. [8] calculated the RMI of particular family of caterpillars.

In 2024, Maheswari and Rajasekaran [9] discussed the RMI of the cartesian product of two
graphs; Chain of cycle; Join of n wheel and transformation of path graph.

Rainbow mean index can be applied to network optimization, scheduling and resource alloca-
tion, data clustering and classification, design of fault-tolerant systems, cryptography and secure
communication, etc.

We are motivated by the above results and contributed some results in corona product graphs.

2. MaIN Resurts

Lemma 2.1. For x > 2,
7ifx =2,
Xrm (Px © PZ) =
3x otherwise.
Proof. Let V(Pyo Pp) = V(Py) u{v§. :1<i<x1<j<2 and E(PyoPy) = E(Py)U {uivj. i€
{1,2,...,x},je{1,2)} U {v’iv; :i€{1,2,...,x}}. Define ¢’ : E(Py o P;) — NN as follows:
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If x = 2, then (P2 0 Py) = 7 (refer FIGURE 1).
If x > 3, then color the edges of P, o P; as:

FIGURE 1. Yy (PaoPp) =7.

Case 1. x is odd,
Forl1<i<x-land1<;<2,

c’(uz-v;) =3i+2j—-4and ¢ (v)vh) = 3i-2;

c’(uxv}‘) =2j+3(x-1)if j=1,2;

¢ (vjvy) = 3(x - 1);
Next, color the edges of Py as:
Forl1<i<x-1,

3i+ 2 if odd i;
¢ (uiipr) =
3(i+1)ifeveni;

Therefore, the chromatic mean of the vertices of Py o P, is given by:
Forie{l,2,...,x}and j = 1,2, cm(v;'.) = j+3i—3and cm(u;) = 3i;
Case 2. x is even,
Forj=1,2,

c’(ux_lv;.“l) =3x+2j-4

c'(uxv}‘) =3x+2j-10;

c’(v’l“lv;_l) = (03vf) = 3x - 2;

' (Uy_quy) = 3x+5;
and color the remaining edges of Py o P, as in Case 1.
Therefore, the chromatic mean of the vertices of Py o P, is given by:
Forj=1,2,

em(vi™) = j+3(x-1);

cm(v}‘) =j+3(x-2);

cm(uy—1) = 3x; cm(uy) = 3(x — 1); and the chromatic mean of the remaining vertices of Py o P,
follows as in Case 1.
Hence, in both cases x;, (Py o P2) = 3x (refer FIGURE 2, xy, (P50 Py) = 15). O

Lemma 2.2. For x > 2, xyu(Py o P3) = 4x.
Proof. Let V(Pyo P3) = V(Py) u{zJ;. :1<i<x1<j<3}and E(PyoP3;) = E(Py)U {uivj. i€

{1,2,...,x},j€{1,2,3}}uU {vj.vé.ﬂ :i€{1,2,...,x},j€{1,2}}. Define ¢’ : E(Py o P3) — N as:
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FIGURE 2. Xy (P50 Py) = 15.

Forl1<i<x-1,

¢(uvh) = j+4(i-1)if 1< j<3;

¢'(vivh,,) = 4i+2j-5if1<j<2.

If x is odd, then

c’(uxv}‘) =j+4x-1if1<j<2;

¢’ (uyv3) = ' (v3v3) = 4x = 1; ¢'(vjv;) = 2(2x - 3).
If x is even, then

c’(uxv;.‘) =j+4x-2if1<j<2;

¢ (uyvy) = c’(vjv}) = 4x —1; ¢’ (vjv;) = 4x = 5.
Next, color the edges of Py in Py o P3 as:

Forl1<i<x-1,
, 4i+6if odd i,
¢ (uinit1) = _ .
4(i+1)if eveni.

Therefore, the chromatic mean of the vertices of Py o P3 is given by:

em(vh) = j+4i-4ifi€{l,2,...,x}and j=1,2,3;
cm(uy) = 4;
cm(u;) =4iif2<i<x-1;
cm(uy) = 4x.
Hence xu(Py © P3) = 4x (refer to FIGURE 3. xyy, (P40 P3) = 16). O
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FIGURE 3. X (Pyo P3) = 16.
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Lemma 2.3. Forx >2and y > 4,
2y+3ifx=2andy=4t,y=41+2, 1>1,
Xrm (Px o Py) =
xy + x otherwise.
Proof. Let V(PyoPy) = V(Py) U {v;‘. :1<i<x1<j<y}and E(PyoP,) = E(Px)U{uiv’ : i €

5 5 . . ]
{1,2,...,x},j € {1,2,...,y}}U{v;.v’].Jrl ci1€{l,2,...,x},j€{1,2,...,y}}.

Define ¢’ : E(Py o P;) — NN as follows:
Assign colors to the edges ulv} (1 <j<y)bycasdefined in the proof of [7, Theorem 1.6].
If x = 2, then color the edges of P> o P, in the following manner:
Casel.y=4tandy =471+2,7> 1

3y +2)

c’(uzvjz.) = c(ulv}) + 5 ifj=12;

c’(uzvjz.) = c(ulv}) +y+2ifje{3,4,...,y}

+4

1 (02,2 .

¢ (v103) = 5
c’(vjz.v?H) = C(U}U}_H) +2+yif2<j<y-1;

, yif y =4r1;
¢’ (uup) =

y+1lify=4r+2.
Therefore, the chromatic mean of the vertices of P, o P, is given by:

cm(v?) = cm(v}) +y+2ifjei{l,2,...,y}

2(y+1)ify =41
2y +3ify =4t +2.

cm(up) =

Hence, X/ (P20 Py) = 2y + 3.
Case2. y=4tr+landy=47+3, 7> 1.

3
c’(uzv?) = c(ulv}) + # ifj=1,2;
c’(uzv?) = c(ulv}) +y+1ifje{3,4,...,y}
/ +3
(i) = 137,

c’(v?vfﬂ) = c(vl.v}ﬂ) +1+vyifje{2,3,...,y-1}

yity=4t+1;
y+1lify =4t+43.
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Therefore, the chromatic mean of the vertices of P o P, is given by:
em(v?) = em(v;) +y+1if1<j<y;

142yifty=4t+1;
cm(up) =
2y +2ify =47+ 3.

Hence, xm(P20 Py) = x(y +1).
Case 3. x > 3.
Case 3.1. x is odd.
Forie{2,3,...,x}and j€{1,2,...,y},
c’(ul-vj.) = c(ulv}) +(y+1)(i-1);
c’(v?v§.+1) = c(v}v}ﬂ) +(y+1)(@-1);

Forie{1,3,5,...,x—2}and 7 > 1,

, i(y+1)-1lify=4randy =47+ 1;
¢ (uivit1) = §
i(y+1)ify=4tr+2and y =41+ 3;

Forie{2,4,6,...,x—1}and 7 > 1,

y(i+1)+iify=4randy =4t +1;

¢ (uinti1) = _
(y+1)(i+1)ify=4r+2and y =47+ 3.
Therefore, the chromatic mean of the vertices of P, o Py is given by:
Forl<i<xand1<j< y,cm(v?) :cm(v})—i—yi—y—i—i—l.
Fory=4tr,y=4t+1landt>1,

cm(uy) = y;
em(u;)) =i(y+1)-1ifie{2,3,...,x-1};
cm(uy) = x(y+1) -1

Fory=4r+2andy=471+3,712>1

cm(uy) =y+1;
cem(u;) =i(y+1)ifief2,3,...,x-1};
cm(uy) = x(y+1).
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FIGURE 4. xyy(P30Py) = 15.

Hence rm(Py o P;) = x(y + 1) (refer to FIGURE 4. x; (P53 o P4) = 15).

Case 3.2. xisevenand t > 1.

c (ux_lv;.‘_l) = c(ulv}) +(x-D(y+1)ifjefl,2,...,y}
C’(z);‘—lz}}:i) = c(v}v}ﬂ) +yx+x-y-1ifje{1,2,...,y-1};
c’(uxv}‘) = c(ulv}) +yx-3y+x-3ifj=1,2;
¢! (uvy) = c(ulv}) +xy-2y+x-2if3<j<y;
d(vfv}) = c(vjvy) +xy—y+x-1;
¢ (vjviy,) = c(v}v}ﬂ) +xy-2y+x-2if2<j<y-1.
Then,
) x(y+1)+yify=4trandy =47+ 1;
c (ux—lux) =

(x+1)(y+1)ify=41+2and y =47+ 3;
color the remaining edges of Py o P, same as in Case 1.

Therefore, the chromatic mean of the vertices of P, o Py is given by:

X 4 3xy —y—2+2
cm(u,c_l):yx+ xi+y2 i xify:4’[andy:4'[—|—l;

cm(uy—q) =x(y+1)ify=4r+2andy =47+ 3;

cm(uy) =xy—y+x-2ify=4randy =41+ 1;
cm(uy) = (y+1)(x—1)ify =41+ 2and y = 47 + 3.
Therefore, the chromatic mean of the remaining vertices of P, o P, same as in Case 1.
Hence x/m(PxoPy) = x(y+1). |
From lemmas 2.1, 2.2, and 2.3, we conclude that:

Theorem 2.1. Forx > 2and y > 2,

2y+3ifx=2andy =41, y=41+2,1>1,
Xrm (Px o Py) =
x(y + 1) otherwise.
In the following lemmas 2.4, 2.5, 2.6, Theorem 2.2 and Theorem 2.3, the graph G is a £ regular
graph that contains a hamiltonian cycle with V(G) = {u; : i € {1,2,...,x}} and let V(Cy) =

{u1,u2, ..., uy} be a hamiltonian cycle in G.
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Lemma 2.4. Let G be an € regular graph that contains a hamiltonian cycle with x vertices.
Forx >3,
1+3xifx =4t+2, 1> 1and {isodd,

Xrm (G o PZ) = )
3x otherwise.

Proof. Let V(P2) = {v; : j = 1,2}. Clearly, V(G o P;) = V(G) U {U; :i€i{1,2,...,x},j €{1,2}}. Define
¢’ :E(GoP;) -» N as:
Casel. x = 47,471+ 1 wheret > 1.
Forie{1,2,...,[31},
¢ (uv) = 6i —5; ¢/ (ujv))) = 6i = 3; ¢’ (viv))) = 6i - 5;
for[31+1<i<x,
¢ (u)) = 6(x—i) +4 ¢ (uvh) = 6(x —i+1); ¢/ (v'vh) = 6(x —i) + 4.
Color the edges of the hamiltonian cycle as:
For1<i<[3],
, 443¢(i—1)if odd i;
c (uitiyr) = ‘ ‘
4 + 3¢iif even i;
' (uinip) =4+ 30(x—i)if[F1+1<i<x-1,
¢’ (uyuq) = 4, and assign the color 3 to all edges remaining in G o P;.
Therefore, the chromatic mean of the vertices of G o P is given by:
For1<j<2,

cm(v)) = j+3(2i-2)if1<i< rgu

cm(vj.) =j+3(2x-2i+1)if E}—FZSin;

1 . . . .
cm(u;) :“_—2[4+3€(z—2)—|—4—|—3{’z+3(5—2)—l—1—|—6(z—1)—|—3+6(z—1)]

:3(2i—1)if1sism;

cm(u;) = 6(x—i+1) if E-‘ +1<i<x (referto FIGURES5. x;u(Kszo0Py) =19).

Case 2. x =47+ 2where 7 > 1.

Case 2.1 ¢ is even,

, 141 6x—4+3¢
g o} ) = T
, 149 6x + 3¢
(5410, ) = —5—;
111 % -30-4
c’(vlﬁlvzﬁl) _ 6x—3 )

2 4
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FIGURE 5. Xy (K330 P) = 19.

and color the remaining edges and vertices of G o P; as in Case 1.
Case 2.2 ¢ is odd,

i+1

: )=3x+2(-1;

¢’ (uz 10
’ ) — x4 204 1;
(10 ) =3x+20+1;

c’(vf“vf“) =3x-1-2¢

and color the remaining edges of G o P, as in Case 1.
Therefore, the chromatic mean of the vertices of G o P, is given by:

cm (ugﬂ) =3x+4+1;

cm(v]ﬁl) = j 4 3x — 2; and the remaining chromatic mean of the vertices of G o P, is described
as in Case 1.

Case 3. x =41t +3where7 > 1.

. (ur%]vgg]) _ bx —i—i— 35,
C'(Mrﬂvgﬁ) _ 6x —; 3{’,
c’(vig]vgﬁ) _ bx— 421 - 351
c’(uxju#) = w;

and color the remaining edges and vertices of G o P; is described as in Case 1.
Hence,

14+3xifx=41+2, t>1and {isodd,
er(G © PZ) =
3x otherwise.

Lemma 2.5. Let G be a € regular graph that contains a hamiltonian cycle with x vertices.
For x > 3, xym(G o P3) = 4x.

Proof. Let V(P3) = {v; : j = 1,2,3}. Clearly, V(GoP;) = V(G) U {v;'. :1<i<xj=12,3}. Define
¢’ : E(GoP3) = Nis given by:
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Casel. x =41, 41+ 1 wheret > 1,
For1<i<[3],
c’(ul-vj.) =j+8(i-1)ifl<j<3and c’(vj.v;H) =2j+8i-9ifj=1,2;
For[31+1<i<x,
c’(uivé) =j+8(x—i)+4if1<j<3;
¢ (vjvjy1) =2j+8(x—i) +3if j=1,2;
Color the edges of the hamiltonian cycle as:
For1<i<[3],

7+4L(i—1)if odd i;
7 +4¢i if even i;

¢ (ujtiv1) =

¢ (uiuipq) = 4lx +7—-idlifi € ([514+1,[31+2,...,x = 1}; ¢’ (uyu1) = 7, and give a color 4 to all
left over edges in G o Ps.
Therefore, the chromatic mean of the vertices of G o P3 is given by:
Forj=1,2,3,

cm(v?) =j+4(2i-2)if1<i< Ew,
x

cm(vé.) = j+4(2x-2i+1)if [2

W—lein;
C . [x

cm(ui):8z—41f1§zs[ﬂ;

cm(u;) = 8(x—i+1) if E-‘%—Zsigx.

Case 2. x = 47+ 2 wheret > 1,

(uzqv; ) =c(v; vy ) =4x-1;
c’(v%“vé“) =4x-3-2¢

and color the remaining edges and vertices of G o P3 is described as in Case 1.
Case 3. x =47+ 3 where 7t > 1,

¢ (urgo)’ ) = j+A4x—4+20if j=1,2
c’(ur@v;ﬂ) = c’(vgﬁvgg]) =4x-1;
c’(v?wv;ﬁ) =4x-3-2¢

(Urntys) =7+2(x—1);

and color the remaining edges and vertices of G o P3 is described as in Case 1.
Hence xm (G o P3) = 4x. m]
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Lemma 2.6. Let G be a € reqular graph that contains a hamiltonian cycle with x vertices,

x > 3 and Py be a path with y > 4 vertices. Then

x(y+1)+1lifx=4t+2, y=4t, 41+ 2, 1> 1and {is odd,
er(G o Py) =

x(y + 1) otherwise.
Proof. Let V(Py) = {vj : j € {1,2,...,y}}. Clearly, V(Go P,) = {u; : i € {1,2,...,x}} U {vj. :1<i<
x,1 < j <y} Define ¢’ : E(Go P,) — N as follows:
Fix the colors to the edges ulvé by c as defined in [7, Theorem 1.2].
Casel. x =41, 41+ 1 wheret > 1,
For2<i<[5land1<j<y,

c’(u,-v?) = c(ulvjl.) + (y+1)(2i-2);
c’(v?v;ﬂ) = c(v}v}ﬂ) + (y+1)(2i-2);

For[31+1<i<xand,

c’(uiv;) = c(ulv}) +(y+D(2x-2i+1)ifje{1,2,...,y}

c’(vé.v;H) = C(U}U]l-Jrl) +(y+1)(2x-2i+1)ifje{1,2,...,y—1};

Color the edges of the hamiltonian cycle as follows:
Casell.y=4r, y=41+1,1t2>1,
For1<i<[3],
y+£€(i-1)(y+1)if odd i;
y + iy + il if even i;

¢’ (uinipr) =

' (uinip) =y+ (xy—yi+x—0)lif[31+1<i<x-1,
¢’ (uxu1) = y; and assign the color y to all edges remaining in G o P,,.
Casel2y=47+2, y=41+3, t2>1,
Forie{1,2,...,[31}
(y+1)(6i—€+1)if odd 5
¢ (uittis) =
(ti+1)(y+1)ifeveni;
¢ (uinip) = (y+1)(x =it +1)if [F14+1<i<x -1 (uyuy) =1+ .
Assign the color y + 1 to all edges remaining in G o P,,.
Therefore, the chromatic mean of the vertices of G o P, is given by:
Forlsis[’z—‘-l,lsjﬁyandle,

cm(vé.) = cm(v}) + (y+1)(2i-2);
cm(u;) = (2i-1)(y+1)-1lify=4randy =41+ 1;

cm(u;) =2iy—y+2i—-1ify=4r+2andy =471+ 3;



12 Int. ]. Anal. Appl. (2025), 23:181

Forie {[31+1,[51+2,[31+3,...,x},

cm(vé) = cm(v}) +(2x-2i+1)(y+1)if1<j<y
cem(u;)) =2(y+1)(x—i)+2y+1ify =4rand y = 47+ 1;
cem(u;)) =2(y+1)(x—i+1)ify=4r+2and y = 47+ 3.

Case 2. x =41+ 2wheret > 1,

6 6 6

FIGURE 6. X (Cs; {1,2} o Py) = 19.

Case2.1y =47, 41+ 2, 1 > 1and {is odd.

(y+1)(2x-2+6)+2+¢
2

c’(uaz_rﬂfo) c(uw]) + ifj=1,2;

c (uJZ_rHv]%H) = c(ulv}) +(y+1)(x-1)+1if3<j<y;
, o E41 241 (y+1)(2x—2—[)+2—€
(o] vy )= c(vjvs) + 5 ;
y o 541 241
C'(v; " v)) = c(vjol) + (y+1)(x-1) +1;

and color the remaining edges of G o P, as in Case 1.
Therefore, the chromatic mean of the vertices of G o P, is given by:

cm(vfﬂ) = cm(v}) +x(y+1)-yifl<j<y;
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x(y+1)ify =4,

cm(uz 1) =
" x(y+1)+1ify =47+2;

and the remaining chromatic mean of the vertices of G o P, is described as in Case 1.
Case 2.2 (y + 1){ is even.

, : +1)(2x -2+ ¢
c (u%HU].ZH) = c(ulv}) + +1)( > )

141 2 2 D(2x—-2-¢
C,(012+1022+1) _ 2+ (y+ 12« )

ifj=1,2

2 7

and color the remaining edges and vertices of G o P, is described as in Case 1.
Case 3. x = 417+ 3 wheret > 1,

; (1+y)(2x+£-2)

’ |—§-| _ 1 1 { — .
¢ lurgioy) = clmoy) + 2 =1z
X7 rx +1)(2x—-€-2
Cl(vgﬂvgﬂ) — C(’U%U;) + (y )( 5 ),,
’ | f(J/H)(;“_l)“y ifx =41, 4t1+1, 7>1,
' (Uss1thxss) = _
T e W20 Sy — 4742, 4743, 12 1;

and color the remaining edges and vertices of G o P, is described as in Case 1.

Hence

x(y+1)+1ifx=4t+2, y=4t, 4142, t > 1and (is odd,
er(GOPy) =
x(y + 1) otherwise.

From Lemmas 2.4, 2.5, and 2.6, we conclude that:

Theorem 2.2. Let G be € regular graph that contains a Hamiltonian cycle and |V (G)| = x, x > 4 and P,
denote a path with y vertices. For y > 4,

x(y+1)+1lifx=41+2, y=4t, 4t1+2, 1> 1and
er(G Opy) = € is odd,
x(y + 1) otherwise.

Theorem 2.3. Let G be a regqular graph that contains a hamiltonian cycle with x vertices.

Forx >3,

x+2ifx=41+1,1>1,
er(GVKl) - )
x + 1 otherwise.
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Ficure 7. xm(Cs;{1,3} 0 K7) = 9.

Proof. Let V(GV K7) = {u; : 1 <i < x}U{up} and E(GV Ky) = E(G) U{ujup : 1 < i < x}. Define
¢ :E(GVK;) - Nas:

If x = 3, then GV K; = Ky. In [3], the authors proved that x,,(Ks) = 4.

Casel. x =47, 1> 1.

(uou;) =1if1 <i<x,

¢ (uittisn) = Gi—C+i+1ifie {1,3,5,...,’“;2},

¢ (uiti) =3+ (C+1)iifi e {2,4,...,%},

¢ (ittie) = 24 (L4 1) (x—1) if i € {xgz,x;6,...,x—l},
¢ (uittin) = 3+ (€ +1)(x—i) if i € {’“54,”8 x=2),

' (uyu) =3,

assign the color 2 to all edges remaining in G V K.
Therefore, the chromatic mean of the vertices of G Vv Kj is given by:
X

cm(ug) »
cm(u;) = 2iif i € {1,2,...,%};
x+2

<i<ux.

em(u;) =3+ 2(x—1i) if

Hence x;m (G V K1) = x + 1 (refer to FIGURE 6. ) (Ksa0K1) =9.)
Case2. x=41t+2, t>1.
(uou;) =2i—1if1 <i <4, (uou;) =4if5<i<x-2,
c (uotiy—1) = 6, ¢’ (uptiy) = 2,
14+ 6(-1)ifi=1,3,
1+ilifi=2,4,

c(uinipr) =
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For5<i< 3%2,
, 1+i(f+1)—¢if odd i,
¢ (uitti1) =
i(€+1)—-3ifeveni;
For # <i<x-1,
, (E+1)(x—i)+2if odd i,
¢ (uinit1) = ‘
(E+1)(x—i)+20-1ifeveni;

¢’ (uyu1) = 1; and assign the color 1 to all edges remaining in G V Kj.

Therefore, the chromatic mean of the vertices of G Vv K is given by:

cm(up) = 4,
2
cm(ui):2i—1if1$isx; ;
4
cm(u;) :Z(x—i+2)ifx+ <i<x-1;
cm(uy) = 2.
Hence x;m(GVKy) =x+1.
Case3.x=47+3, t>1.
' (uour) = 1; ' (uoup) = 5; ¢’ (upuz) =9,
(uou;) =5if4<i<x—4;
' (uoui) =2(x—i+1)ifx-3<i<x;
)=1

(uup) =1, ' (uguz) =26-1;

i(€+1)+1lifeveni;

(uintiy1) =
((i+1)+i-2if odd i

(6+1)(x—i)+lifeveni,

c (uittiyr) =
x(6+1) —i€ -3 if odd i;

¢’ (uinjirq) = €(x—i) + 1if x —3 < i < x, and assign the color 1 to all edges remaining in G V Kj.
Therefore, the chromatic mean of the vertices of G Vv Kj is given by:

cm(up) =5;

cm(u;)) =2i—-1ifi=1,2;

em(u;) =2i+1if3 <i < 5
em(u;) =2x-2i+2if B <i<x

Hence x;m(GVKy) =x+1.
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Cased. x =47+1, t>1.
(uou;) = 1ifie{1,2,...,x},

i(£+1)—£+3ifie{1,35...,x;—l},
¢ (uiuir1) =4+ (E+1)iifief2,4,..., 5L,
4+(£+1)(x—i)ifie{#,%,...,x—u.

¢’ (uyu1) = 4, assign the color 3 to all edges remaining in G V Kj.
Therefore, the chromatic mean of the vertices of G Vv K is given by:
cm(ug) = 3 = 1;
cm(u )—21+11f1€{12 L
em(u;) =2x—2i+4ifi € {”3 2«
Hence x;m(GV K1) = x + 2. O

Corollary 2.1. [7] Fory > 4,

+2ify=4t+landt > 1,
er(CyVKl) = Y fy
y + 1 otherwise.

Theorem 2.4. Let H be a reqular graph that contains a hamiltonian cycle with y vertices, y > 4 and Py
denote a path with x > 3 vertices. Then

xy+x+1lifxisoddandy =4t+1, t>1,
er(Pon>: )
xy + x otherwise.

Proof. LetV(Py,) = {u1,uy, ..., ux} and V(H) = {01,0s,...,0,}. Clearly V(Pyo H) = V(Py) U {u,'v;'. :
ie€f{l,2,...,x}, j €{1,2,...,y}} and let H be ¢ regular graph. Consider H',H?,H°3,...,H* be x
disjoint isomorphic copies of H.

Define ¢”” : E(Py o H) — IN as follows:

Assign colors to the edges ulv}

using the coloring ¢’, as shown in the proof of Theorem 2.3.
Casel. xisoddandy #47+1, 7> 1.
Forie{2,...,x}and1<j,j <y,
ol (v]v]) = (o] ! 1)+iy—y+i— ;
ol (uv]) c (ulv )+zy+z—y 1;
Forie {1,3,5,...,x =2},

y(i-1)+1ify =4z
" (winiy1) = Si(y +1) -y +3ify = 41+ 2;
i(y+1)-y+4ify=41+3;



Int. ]. Anal. Appl. (2025), 23:181 17

FIGURE 8. Xy (P30 Cy) = 15.

Forie {2,4,6,...,x—1},

1+i(y+1)ify =4r;
"(uini1) =4 +i(y+1)ify =41+ 2;
5+i(y+1)ify =4t+3.
Therefore, the chromatic mean of the vertices of P, o H is given by:
cm(v?) =cm(vj) +iy-y+i-1if1<i<x1<j<y;
forie{l,2,...,x},
i(y+1)-yify =4t
em(u;) = i(y+1)—y+3ify =41 +2;
i(y+1)-y+4ify =471+3.
Hence xym(Pxo H) = x(y + 1) (refer to FIGURE 8. xy,(P30Cys) = 15.)

Case2. xisevenand y #4t+1, 7> 1.
For1<j,j <y,

(0710 = ¢ (olol) + (x—1)(y + 1);
c ’(ux_lv}‘_l) = c’(ulvl) +(x-1)(y+1);
Forj=1,2,
c”(uxv;?) = c’(ulv}) + (y+1)(x-3);
" (vfvy) = ¢ (v03) + (y + 1) (x = 1);
C”(uxv;?) = c’(uw}) +(y+1)(x-2)if3<j<y
c”(v;.‘v}c,) = c’(v}v},) +(y+1)(x=2)if (E(H")\vjv; : 1< j,j" <y}
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x(y+1)+1ify =47
¢ (up1tty) =Sx(y +1) +4ify =41+ 2;
x(y+1)+5ify=4t+3;
and color the remaining all edges of P, o H same as in Case 1.
Therefore, the chromatic mean of the vertices of Py o H is given by:
for1<j<y,
cm(v;.“l) = CW!(U}) +(y+1)(x-1);
em(v}) = cm(v}) +xy-2y+x-2;

x(y+1)-yify =4z
em(uy-1) =x(y+1)—y+3ify =41 +2;
x(y+1)-y+4ify=41+3;

x(y+1)-2y-1ify =47
em(uy) = {x(y+1) -2y +2if y = 47 +2;
x(y+1)-2y+3ify =41+3;
The remaining chromatic mean of the vertices of Py o H follows as in Case 1.
Hence xm(Px o H) = xy + x.
Case3.y=47+1, 1> 1.
Define ¢’ : E(Go H) — N as follows:
Let V(Cy) = {v1,02,03,...,0,} be a hamiltonian cycle in H'.

First, color the edges of hamiltonian cycle H! as follows:

1+ £6(j-1)ifj€(1,3,5,..., 41,
¢ (vjo ) =1+ jif je 2,4,6,..., 5,
1+ e(y-j)ifje (5, B2, y-1)
¢'(vyv;) = ¢’ (v]0}), give a color 1 to all the edges remaining in H'.
Therefore, the chromatic mean of the vertices of H! is given by:
em(vl) =2j-1if j€ {1,2,3,..., 57}
cm(v}) =2(y-j+1)ifje {yT%,yT%,...,y};
Next, color the edges of x — 1 disjoint isomorphic copies of H! as follows:
Case 3.1. x is odd.
Forie{2,3,...,x—-1}and1<j,j <y,
) =c(olol) + (y+1)(i-1);
cm(v') = cm(v}) +(y+1)(i-1);

c’(uiv;) = cm(v?) ifief{l,2,...,x—1};
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¢ (vjvy) = ¢ (vjv) +x(y+1) - y;
cm(vy) = cm(vj) +x(y+1)-y.
1)+2
¢ (uy0%) = em (o) + M if j e {1,2);
1)(4x -4 - 2
¢ (o) = 14 (y+1)( X4 y+2
c’(uxv}“) = cm(v;?) if3<j<y
Color the edges u;u; 1 as follows:
W) ¢ € 41,3,5,...,x - 2);
¢ () = ‘
- WD) ¢ e (2,4,6,...,x— 1},
Therefore, the chromatic mean of the vertices of Py o H is given by:
cem(u;)) =i(y+1)if1<i<x-1;
cm(uy) =x(y+1)+ 1.
Hence xym(PxoH) =x(y+1)+1
Case 3.2. x is even.
For1<jk<y,
c ’(ux_lv}‘_l) = cm(v )+ (y+1)(x—-1)
c"(v}‘_lv}“fl) = c(v;v } },) +xy-y+x-1;
c”(uxv}‘) = cm(v}) +(y+1)(x-3)if j=1,2;
" (vfv3) = c(vj03) + (y + 1) (x — 1);
c”(uxv;.“) = cm(v}) +(y+1)(x-2)ifje{3,4,...,y5
c”(v}“v;‘,) = c(v}v},) (y+1)(x=2)if {E(H)\vjuy : 1 <, j <y}
, +1)(y+2x+2
O 1ty rity) = (y )(y2 ),
and color the remaining edges of Py o H follows as in Case 3.1.
Therefore, the chromatic mean of the vertices of P, o H is given by:
for1<j<y,
em(vi™) = cm(v;) + (x=1)(y +1);
Cm(v ) = cm(v}) +(x=-2)(y+1);
cm(ur-1) = x(y +1); em(u) = (x=1)(y +1);
and the chromatic mean of the remaining vertices of P, o H follows as in Case 3.1.
Hence xym(PxoH) = x(y +1). ]
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3. CoNCLUSION

As rainbow mean coloring is a recent development in graph coloring, numerous graph families
still have undetermined rainbow mean coloring. In this study, we analyze the RMI of the corona
product and join graph of some particular classes of graphs such as: Py o H; Py o P,; Go P, and
G V K1. The results presented in this paper support the conjecture stated in [3]. In future, we

investigate the RMI of other product of graphs.
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