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ABSTRACT. In this paper, we primarily have given neutrosophic coefficient of variation, robust neutrosophic 

coefficient of variation concern to interquartile range, and robust neutrosophic coefficient of variation concern to 

median absolute deviation.  Following the introduction, we have explored the methods of neutrosophic coefficient of 

variation, which is an effective method for modeling data that is fuzzy, imprecise, and uncertain. For the comparative 

study, we have given numerical studies based on neutrosophic distributions including discrete and continuous 

distributions. First, we have compared all three neutrosophic coefficient of variations and then have given the 

comparative study for all neutrosophic distributions for these neutrosophic coefficient of variations. Also, we have 

given real data analysis on climate data to highlight the impact of the neutrosophic coefficient of variations. We 

found that neutrosophic coefficient of variations NCV and based on IQR have near about similar values while the 

neutrosophic coefficient of variation based on MAD has higher values than other two for all samples and 

distributions. Further, we observe that with increasing the sample values all three neutrosophic coefficients of 

variations also increase for all the distributions and provide a general framework over classical methods of coefficient 

of variations, and the graphical representations also clarify this.  

 

1. Introduction 

In comparing variabilities across different data series with varying units, it's more 

effective to use the coefficient of variation (CV) instead of the standard deviation (SD). The CV 

is unitless and provides a relative measure of dispersion concerning the mean values. This 
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makes it ideal for comparing variability between different data sets. The coefficient of variation 

(CV), calculated as the ratio of the standard deviation to the mean, is a popular metric for 

assessing relative dispersion. This measure is useful in a variety of disciplines, including 

engineering, physics, chemistry, medicine, economics, finance, agriculture, meteorology, sports 

science, environmental science, education, retail and marketing, quality control, sampling, and 

so on where it is widely used. In analytical chemistry, the CV is frequently employed to indicate 

the precision and consistency of an assay, Reed et al [1]. In finance, it is utilized to evaluate 

relative risk by comparing the CVs of different stocks [2]. In economics, the CV is used as a 

summary statistic to measure inequality. Other examples of its application include assessing the 

homogeneity of bone test samples Hammer et al. [3], measuring the strength of ceramics [4], 

and defining age- and sex-specific cutoff points for body mass index in overweight children [5]. 

Moment-based measures like the mean and standard deviation are known to be sensitive to 

outliers. While the mean absolute deviation (MAD) is also affected by outliers, using the 

interquartile range (IQR) or the median absolute deviation (MAD) robustness can be improved 

more. To improve robustness, two measures based on IQR and MAD have been developed. 

Shapiro [6] introduced a robust coefficient of variation (CV) that uses the IQR and median. This 

measure is calculated as the ratio of the IQR to the median. Similarly, [7] defined a robust CV 

based on the MAD, which is calculated as the ratio of the MAD to the median. Arachchige [8] 

examined these robust CV versions, focusing on their properties for interval estimation using 

data quantiles like the IQR and MAD. However, all these studies for the coefficient of variations 

are done under classical statistics and do not count indeterminacy/fuzziness in the data, and 

the coefficient of variations under classical statistics will fail for these types of data.  

To deal with uncertainty/fuzziness in the data or uncertain observations, Florentin [9] 

proposed the concept of descriptive neutrosophic statistics. Neutrosophic statistics have been 

demonstrated to be more effective than traditional statistics when analyzing imprecise data. 

When there are no uncertain observations in the dataset, the outcomes of neutrosophic 

statistical analysis converge with those of classical statistical methods. Neutrosophic statistics is 

a branch of mathematical science designed to handle imprecise, fuzzy, and uncertain data. It 

involves the collection, presentation, analysis, and inference of such data. Unlike classical 

statistics, which deals with precise data, neutrosophic statistics operates in environments with 

inherent uncertainty.  Further, neutrosophic methods explored for analyzing neutrosophic data 

are discussed in [10] and [11]. Adepoju et al. [12] explores the use of the negative binomial 

distribution for fuzzy data. [13] and [14] develop discrete and continuous distributions using 

Neutrosophy. Alvaracín Jarrín et al. [15] applies neutrosophic statistics to social data analysis. 

Khan et al. [16] extends the Rayleigh distribution with neutrosophic statistics. Neutrosophic 

statistics are introduced in experimental design by [17] and [18] extends the Kumaraswamy 
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distribution to the neutrosophic Kumaraswamy distribution. Further applications of 

neutrosophic statistics are provided by Delcea et al. [19]. Algorithms for generating imprecise 

data in various situations are discussed by [20], [21], Aslam [22-25] and [26]. Also, in sampling 

theory, Tahir et al. [27], [28], Singh et al. [29], and Singh et al. [30, 31], and have given the 

estimation of the neutrosophic population parameters utilizing neutrosophic coefficient of 

variation (the ratio of the standard deviation to the mean) but none has given detailed study on 

the neutrosophic coefficient of variation (NCV). 

After thoroughly reviewing the existing literature, it seems that, to the best of the author's 

knowledge, there is a significant absence of research addressing the neutrosophic coefficient of 

variations (NCVs) and robust neutrosophic coefficient of variations based on IQR and MAD in 

uncertain contexts. To address this gap, we aim to introduce the neutrosophic coefficient of 

variation, and robust neutrosophic coefficient of variations based on IQR and MAD, and 

provide a detailed explanation. Like in classical methods of coefficient of variation, the 

neutrosophic coefficient of variation has also many applications. For example, in 

manufacturing, measurements of product dimensions can be subject to uncertainties stemming 

from machine precision, environmental conditions, and human error. By applying NCV, quality 

control managers can gain a clearer understanding of dimensional variability while factoring in 

these uncertainties and indeterminate elements. In clinical trials, patient data often contains 

uncertainties due to inconsistent adherence to treatment protocols or reporting inaccuracies. 

NCV provides a more thorough assessment of treatment outcome variability, taking these 

uncertainties and indeterminate data into account. Similarly, in ecological and environmental 

studies, measurements of pollution levels, temperatures, or species populations can be 

uncertain due to sampling errors, measurement limitations, and natural variability. Using NCV, 

researchers can effectively quantify the variation in these measurements, considering inherent 

uncertainties and indeterminacies. In other fields too, like climate change study as in our 

manuscript, energy sector, transportation and traffic study, education, and academic 

performance, financial market analysis, urban planning and development, and so many 

examples can be given where for the neutrosophic coefficient of variations. Further, to define 

the neutrosophic coefficient of variations, we have defined the first neutrosophic random 

variable, neutrosophic methodology, neutrosophic coefficient of variations, NCV, and NCV 

based on IQR and MAD. For comparative evaluation, we have conducted the simulation study 

based on generated data on neutrosophic statistical distributions (continuous and discrete 

distributions) to highlight the impact of the indeterminacy/uncertainty.  The real-life climate 

data is also given to highlight the comparative evaluation of methods of coefficient of variations 

under uncertainty. To enhance our proposed method, we have also provided graphical 

representations for the numerical comparisons of the coefficient of variations. Essentially, we 
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expect that our proposed method will offer greater flexibility in analyzing uncertain or 

indeterminate data, fulfilling the critical need within the domain of statistical analysis.   

 

2. Neutrosophic Random Variable 

Suppose that 𝑋𝑁 = 𝑋1𝐿 + 𝑋1𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈] be a neutrosophic random variable. The 

neutrosophic random variable is the combination of two parts known as the determinate part 

𝑋1𝐿 and the indeterminate part 𝑋1𝐿𝐼𝑁 and the degree of uncertainty𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈]. Note here that the 

proposed neutrosophic random variable is the generation of the random variable under 

classical statistics. The proposed random variable becomes the classical random variable 𝑋1𝐿 

when 𝐼𝐿 = 0. We assume that the determinate part of the neutrosophic random variable follows 

the normal distribution mean 𝜇 and variance 𝜎2. According to [13], fuzzy logic is a special case 

of neutrosophic logic and  𝐼𝑁
2 = 𝐼𝑁, … , 𝐼𝑁

𝑛 = 𝐼𝑁,0. 𝐼𝑁 = 0; 𝑛𝜖Ν. Based on this information, we 

discuss the expected value of the proposed neutrosophic random variable as follows 

𝐸(𝑋𝑁) = 𝐸(𝑋1𝐿 + 𝑋1𝐿𝐼𝑁) = (1 + 𝐼𝑁)𝜇  

The variance of the proposed neutrosophic random variable is given by 

𝑉𝑎𝑟(𝑋𝑁) = 𝑉𝑎𝑟(𝑋1𝐿 + 𝑋1𝐿𝐼𝑁) = (1 + 𝐼𝑁)2𝜎2   

The neutrosophic standard deviation is given by 

𝑆. 𝐷(𝑋𝑁) = (1 + 𝐼𝑁)𝜎  

2.1 Methodology   

Let 𝑋1𝑁 = 𝑋1𝐿 + 𝑋1𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈], 𝑋2𝑁 = 𝑋2𝐿 + 𝑋2𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈], . . ,  𝑋𝑛𝑁 = 𝑋𝑛𝐿 + 𝑋𝑛𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈] 

be an independently and identically neutrosophic random variable of size 𝑛. Note here that the 

first variable 𝑋1𝐿, 𝑋2𝐿,.., 𝑋𝑛𝐿 presents the random variable under classical statistics and the 

second part 𝑋1𝐿𝐼𝑁, 𝑋2𝐿𝐼𝑁, … , 𝑋𝑛𝐿𝐼𝑁 be the indeterminate part of the neutrosophic random 

variable and 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] be the degree of uncertainty.    Then, the neutrosophic sample mean, say 

�̅�𝑁 is derived as 

�̅�𝑁 =
(𝑋1𝐿+𝑋1𝐿𝐼𝑁)+(𝑋2𝐿+𝑋2𝐿𝐼𝑁)+⋯+(𝑋𝑛𝐿+𝑋𝑛𝐿𝐼𝑁)

𝑛
=

𝑋1𝐿+𝑋2𝐿+⋯+𝑋𝑛𝐿

𝑛
+

(𝑋1𝐿+𝑋2𝐿+⋯+𝑋𝑛𝐿)𝐼𝑁

𝑛
                             (1) 

After some simplification, we have  

�̅�𝑁 = �̅�1𝐿 + �̅�1𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈]                                          (2) 

The neutrosophic sample variance, say 𝑆𝑁
2  is derived as follows 

𝑆𝑁
2 =

∑ (𝑋𝑖𝑁−�̅�𝑁)2𝑛
𝑖=1

𝑛−1
=

∑ ((1+𝐼𝑁)𝑋𝑖𝐿−(1+𝐼𝑁)�̅�𝐿)
2𝑛

𝑖=1

𝑛−1
=

(1+𝐼𝑁)2 ∑ (𝑋𝑖𝐿−𝑋𝑖𝐿)2𝑛
𝑖=1

𝑛−1
                        (3) 

The neutrosophic sample standard deviation is given by 

𝑆𝑁 =
(1+𝐼𝑁)√∑ (𝑋𝑖𝐿−𝑋𝑖𝐿)2𝑛

𝑖=1

𝑛−1
                        (4) 

Based on the information, the median of odd neutrosophic data 𝑋1𝑁, 𝑋2𝑁, … , 𝑋𝑛𝑁 is calculated by  

𝑚𝑁 = (1 + 𝐼𝑁) (
𝑛+1

2
)

𝑡ℎ
𝑣𝑎𝑙𝑢𝑒                            (5) 
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The median of even neutrosophic data 𝑋1𝑁, 𝑋2𝑁 , … , 𝑋𝑛𝑁 is calculated by 

𝑚𝑁 = (1 + 𝐼𝑁)
(

𝑛

2
)

𝑡ℎ
𝑣𝑎𝑙𝑢𝑒+(

𝑛

2
+1)

𝑡ℎ
𝑣𝑎𝑙𝑢𝑒

2
                             (6) 

The neutrosophic quartile for the neutrosophic data 𝑋1𝑁, 𝑋2𝑁 , … , 𝑋𝑛𝑁  is defined by  

𝑄𝑚𝑁 = 𝑚(1 + 𝐼𝑁) (
𝑛+1

4
) 𝑡ℎ 𝑣𝑎𝑙𝑢𝑒, 𝑚 = 1,2,3,4                            (7) 

The first neutrosophic quartile using neutrosophic data 𝑋1𝑁 , 𝑋2𝑁, … , 𝑋𝑛𝑁 is given by 

𝑄1𝑁 = (1 + 𝐼𝑁) (
𝑛+1

4
) 𝑡ℎ 𝑣𝑎𝑙𝑢𝑒                             (8)  

The third neutrosophic quartile using neutrosophic data 𝑋1𝑁 , 𝑋2𝑁, … , 𝑋𝑛𝑁 is given by 

𝑄3𝑁 = 3(1 + 𝐼𝑁) (
𝑛+1

4
) 𝑡ℎ 𝑣𝑎𝑙𝑢𝑒                             (9) 

The neutrosophic interquartile range (IQR) is defined by 

𝐼𝑄𝑅𝑁 = 𝑄3𝑁 − 𝑄1𝑁                            (10) 

The neutrosophic median absolute deviation (NMAD) is defined by 

𝑁𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|((1 + 𝐼𝑁)(𝑥𝑖𝐿 − �̃�𝐿))|)                                      (11) 

where �̃�𝐿 denote the median of the determinate part of the neutrosophic data.    

 

3. Neutrosophic Coefficient of Variation (NCV) 

The coefficient of variation (CV) is a vital metric used to assess the consistency of data. A 

higher CV value indicates greater dispersion around the mean. Traditional CV, as per classical 

statistics, is employed to evaluate data consistency when all observations are known. However, 

this conventional CV has limitations; it is applicable only when the data is recorded under 

specific conditions and is entirely accurate. In real-world scenarios, achieving precise data is not 

always feasible. In this section, we aim to enhance the traditional CV by introducing the 

neutrosophic coefficient of variation (NCV). The NCV is designed to address uncertainties in 

data. We propose the sample NCV as a potential alternative to the existing CV, incorporating 

the degree of uncertainty. The proposed NCV is defined as follows: 

 𝐶𝑉𝑁 =

(1+𝐼𝑁)√∑ (𝑋𝑖𝐿−𝑋𝑖𝐿)
2𝑛

𝑖=1

𝑛−1

(�̅�1𝐿+�̅�1𝐿𝐼𝑁)
× 100; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈]                      (12) 

Note that the proposed NCV serves as a generalization of the classical CV. The NCV aligns with 

the classical CV when 𝐼𝐿=0.  

3.1 Robust NCV 

Arachchige, Prendergast, & Staudte [8] explored the properties of two robust versions of the CV 

based on data quantile. In this section, we aim to extend these robust CVs using neutrosophic 

statistics, anticipating that the proposed NCVs will offer greater efficiency and flexibility in 

handling imprecise data.  
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3.2 NCV Based on IQR 

The classical CV calculates the ratio of the mean to the standard deviation. Notably, the mean is 

significantly influenced by extreme values in the data. In contrast, the median remains 

relatively unaffected by extreme values. Shapiro [6] introduced an alternative robust CV based 

on the interquartile range (IQR) and median. This robust CV is defined as the ratio of IQR to 

median. It's worth noting that Shapiro's robust CV applies only when all data observations are 

accurate. In this section, we aim to adapt Shapiro's robust CV using neutrosophic statistics. We 

introduce the Neutrosophic Robust Coefficient of Variation (NRCV), based on IQR and median, 

defined as follows: 

𝑅𝐶𝑉𝑁𝑄 = 0.75 ×
𝐼𝑄𝑅𝑁

𝑚𝑁
; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈]                       (13) 

As noted by Arachchige et al. [8], a multiplier of 0.75 aligns 𝑅𝐶𝑉𝑁 with 𝐶𝑉𝑁 for the neutrosophic 

normal distribution. It's important to highlight that our proposed 𝑅𝐶𝑉𝑁 extends Shapiro's 

robust CV from 2005. The 𝑅𝐶𝑉𝑁 aligns with Shapiro's robust CV when there are no imprecise 

observations in the data.  

3.3 NCV Based on NMAD 

The median absolute deviation (MAD) under classical statistics is defined by [7] and given by 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖𝐿 − �̃�𝐿|)  

The NMAD, which is the extension of the MAD and is given by 

𝑁𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|((1 + 𝐼𝑁)(𝑥𝑖𝐿 − �̃�𝐿))|); 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈]   

Note the proposed NMAD becomes MAD when 𝐼𝐿=0.  

By following [32] and [1], the proposed NCV based on NMAD is defined by 

𝑅𝐶𝑉𝑁𝑀 =
1

Φ−1(
3

4
)

×
𝑁𝑀𝐴𝐷

𝑚𝑁
; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈]                       (14) 

The multiplier 1/Φ−1(3 4⁄ ) = 1.4826, where Φ−1 is a quantile function of the standard normal 

distribution with mean 0 and variance 1. This multiplier is used to make the equivalence 

between 𝑅𝐶𝑉𝑁𝑀 and 1.4826 × 𝑁𝑀𝐴𝐷.     

 

4. Simulation Study 

The simulation study is conducted for the numerical comparisons of the neutrosophic 

coefficient of variations 𝐶𝑉𝑁, 𝑅𝐶𝑉𝑁𝑄, and 𝑅𝐶𝑉𝑁𝑀 for different neutrosophic distributions along 

with the classical coefficient of variations 𝐶𝑉, 𝑅𝐶𝑉𝑄, and 𝑅𝐶𝑉𝑀 using R Studio. We have used 

“ntsDists” package for data generation through different neutrosophic distributions. We have 

calculated the neutrosophic coefficient of variations for the neutrosophic Beta, Normal, 

Binomial, Discrete Uniform, Exponential, Gamma, and Generalized Exponential distributions, 

and the results are placed in Table 1, for the neutrosophic Rayleigh, Generalized Rayleigh, 

Geometric, Kumaraswamy, Laplace, Negative Binomial, Generalized Pareto are placed in Table 
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2, and for the neutrosophic Uniform, Weibull, Poison distribution are placed in Table 3. The 

results for each neutrosophic distribution are calculated for samples n=10, 20, 50, 100, and 1000. 

For the same sample values, we have also calculated the classical coefficient of variations, and 

the results are placed in Tables 1, 2, and 3 along with the neutrosophic coefficient of variations.  

Further, the calculated results are visualized by graph and are placed in Figures 1.1 to 17.2.  

4.1 Comparison of neutrosophic coefficient of variations 𝑪𝑽𝑵, 𝑹𝑪𝑽𝑵𝑸, and 𝑹𝑪𝑽𝑵𝑴 

In this sub-section, we compare all three measures of coefficient variations and we see, from 

Tables 1-3, and Figures 1.1-17.2 that the coefficient of variation 𝑅𝐶𝑉𝑁𝑀 is higher than both 𝐶𝑉𝑁 

and 𝑅𝐶𝑉𝑁𝑄 for all neutrosophic distributions and all sample sizes n=10, 20, 50, 100, and 1000 

except the case of neutrosophic Normal distribution for n=20. Also, we observe an increasing 

pattern in 𝑅𝐶𝑉𝑁𝑀 with the increasing sample sizes for all the neutrosophic distributions and a 

sudden spike observed at n=50 for the neutrosophic distributions Binomial, Normal, Poison, 

Exponential, Gamma, Generalized Exponential, Generalized Pareto, Kumaraswamy, and for the 

rest it is observed at n=100. While, the coefficient of variations 𝐶𝑉𝑁 and 𝑅𝐶𝑉𝑁𝑄 are not much 

affected by the increasing sample sizes, however, there is an increasing pattern for the 

neutrosophic Exponential, Gamma, Generalized Exponential, Geometric, and Generalized 

Pareto distributions (except Negative Binomial and Poison neutrosophic distribution, as there is 

an increasing pattern for only 𝐶𝑉𝑁) and for the rest of the neutrosophic distributions there is a 

first increasing and then decreasing (first decreasing and then increasing) pattern (except 

Negative Binomial and Poison neutrosophic distribution, as it is for only 𝑅𝐶𝑉𝑁𝑄). It is also 

observed that 𝑅𝐶𝑉𝑁𝑄 is greater than 𝐶𝑉𝑁 with sample sizes n=50, 100, and 1000, for all the 

distributions and for the rest of the sample sizes that are n=10, 20, 𝑅𝐶𝑉𝑁𝑄 is less/greater than 

𝐶𝑉𝑁 except for neutrosophic Laplace distribution for which 𝐶𝑉𝑁 is greater than 𝑅𝐶𝑉𝑁𝑄 at all 

sample sizes and for neutrosophic Generalized Pareto distribution it is for sample sizes n=50, 

100, 1000.  

4.2 Comparison of neutrosophic coefficient of variations with the classical coefficient of 

variations 

In this sub-section, we compare the neutrosophic coefficient of variations 𝐶𝑉𝑁, 𝑅𝐶𝑉𝑁𝑄, and 

𝑅𝐶𝑉𝑁𝑀 with the respective classical coefficient of variations 𝐶𝑉, 𝑅𝐶𝑉𝑄, and 𝑅𝐶𝑉𝑀, and  we see 

from Tables 1-3, and Figures 1.1-17.2 that the coefficient of variation 𝑅𝐶𝑉𝑁𝑀 is higher than 

respective classical 𝑅𝐶𝑉𝑀 for all neutrosophic distributions and all sample sizes n=10, 20, 50, 

100, and 1000. In the case of 𝐶𝑉𝑁, we observe that 𝐶𝑉𝑁 is higher than respective classical 𝐶𝑉 for 

the distributions Laplace, Generalized Pareto, Normal (n=10), Discrete Uniform (n=100, 1000), 

and for the rest of the distributions it is less than respective classical 𝐶𝑉 for all sample sizes 

except the distributions Exponential and Rayleigh for which both the classical and neutrosophic 
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coefficient of variations are same that is there is no effect of indeterminacy. Also, in the case of 

𝑅𝐶𝑉𝑁𝑄, we observe that 𝑅𝐶𝑉𝑁𝑄 is higher than respective classical 𝑅𝐶𝑉𝑄 for the distributions 

Laplace, Generalized Pareto, Normal, Discrete Uniform (n=1000), Beta, Kumaraswamy, Poison, 

and for the rest of the distributions it is less than respective classical 𝑅𝐶𝑉𝑄 for all sample sizes 

except the distributions Exponential, Uniform, and Rayleigh for which both the classical 𝑅𝐶𝑉𝑄 

and neutrosophic 𝑅𝐶𝑉𝑁𝑄 are the same that is there is no effect of indeterminacy for these 

distributions.  

 

5. Real-Data Application 

To compile our study numerically, we have taken real-life indeterminate climate data of 

Alabama state of USA (Multi-Station data summaries for all stations in a state can be computed 

for any range of dates for all 50 states), recorded in May month. There are several variables, but 

we are taking into account “Hourly Temperature” vs “Dew Point Temperature” vs “Relative 

Humidity” variables only here. Along with indeterminate data, classical data is also taken as 

lower values of the indeterminate data. The data for the three variables is available in Table 5 of 

Appendix A. Also, one can visit for the data on this link: https://mrcc.purdue.edu/CLIMATE 

/Hourly/MultiDlyAve2.jsp. Based on the real data mentioned above, for the three variables, we 

have computed the neutrosophic coefficient of variations 𝐶𝑉𝑁, 𝑅𝐶𝑉𝑁𝑄, and 𝑅𝐶𝑉𝑁𝑀 along with 

the classical coefficient of variations 𝐶𝑉, 𝑅𝐶𝑉𝑄, and 𝑅𝐶𝑉𝑀 . We see from Table 4 and Figures 18.1 

and 18.2, 𝐶𝑉𝑁 is least for the Hourly Temperature variable and maximum for Relative 

Humidity, 𝑅𝐶𝑉𝑁𝑄 is least for Dew Point Temperature variable and maximum for Relative 

Humidity, similarly, 𝑅𝐶𝑉𝑁𝑀 is least for the Dew Point Temperature variable and maximum for 

Relative Humidity. Among the three methods of coefficient for all three variables, the values of 

 𝐶𝑉𝑁 are least and 𝑅𝐶𝑉𝑁𝑀 is maximum except for the case Relative Humidity variable for which 

𝑅𝐶𝑉𝑁𝑄 is least and 𝑅𝐶𝑉𝑁𝑀 is maximum. For the comparison of neutrosophic over classical, we 

see, that the neutrosophic coefficient values are lesser than their respective classical counterpart 

except coefficient of variation 𝑅𝐶𝑉𝑁𝑀, for all three variables. 

 

6. Conclusions 

In this paper, we primarily have given neutrosophic coefficient of variation 𝐶𝑉𝑁, robust 

neutrosophic coefficient of variation 𝑅𝐶𝑉𝑁𝑄, and robust neutrosophic coefficient of variation 

𝑅𝐶𝑉𝑁𝑀. Following the introduction, we have explored the methods of the neutrosophic 

coefficient of variation, which is an effective method for modeling data that is fuzzy, imprecise, 

and uncertain. For the comparative study, we have given the numerical study based on 

neutrosophic distributions including discrete and continuous distributions. First, we have 

compared all three neutrosophic coefficient of variations and then have given the comparative 

https://mrcc.purdue.edu/CLIMATE%20/Hourly/MultiDlyAve2.jsp
https://mrcc.purdue.edu/CLIMATE%20/Hourly/MultiDlyAve2.jsp
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study for all neutrosophic distributions for these neutrosophic coefficient of variations. Also, we 

have given real data analysis on climate data to highlight the impact of the neutrosophic 

coefficient of variations. From the results and comparative study, we conclude that the 

neutrosophic coefficient of variations 𝐶𝑉𝑁 and 𝑅𝐶𝑉𝑁𝑄 have near similar values or properties 

while the neutrosophic coefficient of variation 𝑅𝐶𝑉𝑁𝑀 has higher values for all samples and 

distributions. Further, we observe that with increasing the sample values all three neutrosophic 

coefficient of variations also increase for all the distributions and provide a general framework 

over classical methods of coefficient of variations, and the graphical representations also clarify 

this. The limitation of this study is that it applies only to uncertain data.  

In closing, we suggest several avenues of future research as in sampling, for the estimation 

of neutrosophic population parameters all three neutrosophic coefficient of variation can be 

used, in the control chart, the study on control chart based on the neutrosophic coefficient of 

variation can be given, in interval estimation, a neutrosophic coefficient based interval can be 

studied, and so on utilizing methods neutrosophic coefficient of variation many future studies 

can be given apart from statistical domain too.   

 

Table 1: Classical vs Neutrosophic CVs based on simulated data 

 

𝐶𝑉𝑠 

Beta Distribution: 

 𝑓𝑁(𝑥) =
1

𝐵([1,   3],[1,   3])
𝑥𝑁

[1,   3]−1
(1 − 𝑥𝑁)[1,   3]−1 

𝑛=10 𝑛=20 𝑛=50 𝑛=100 𝑛=1000 

𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 

𝐶𝑉𝑁 0.571 0.473 0.664 0.533 0.638 0.512 0.571 0.467 0.540 0.457 

𝑅𝐶𝑉𝑁𝑄 0.575 0.606 0.857 0.919 0.788 0.848 0.635 0.719 0.596 0.678 

𝑅𝐶𝑉𝑁𝑀 0.582 0.809 1.935 2.691 7.465 10.45 16.77 24.88 158.7 237.6 

 Normal Distribution: 

 𝑓𝑁(𝑥) =
1

[2,   3]√2𝜋
𝑒𝑥𝑝 (−

(𝑥𝑁−[4,   5])2

2[2,   3]2 ) 

𝐶𝑉𝑁 0.697 0.628 0.591 0.602 0.583 0.601 0.490 0.505 0.516 0.530 

𝑅𝐶𝑉𝑁𝑄 0.780 0.859 0.540 0.565 0.643 0.672 0.430 0.442 0.532 0.550 

𝑅𝐶𝑉𝑁𝑀 1.092 3.584 0.064 0.246 1.424 6.485 5.150 25.33 9.340 45.25 

 Binomial Distribution: 

 𝑓𝑁(𝑥) = (
20
𝑥𝑁

) [0.6, 0.7]𝑥𝑁(1 − [0.6, 0.7])20−𝑥𝑁 

𝐶𝑉𝑁 0.207 0.181 0.196 0.161 0.183 0.147 0.183 0.151 0.184 0.151 

𝑅𝐶𝑉𝑁𝑄 0.172 0.169 0.195 0.188 0.172 0.165 0.188 0.185 0.188 0.186 

𝑅𝐶𝑉𝑁𝑀 0.124 1.591 0.119 1.584 3.707 47.64 4.571 58.86 14.58 187.7 
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 Discrete Uniform Distribution: 

 𝑓𝑁(𝑥) =
1

[10,   11]
 

𝐶𝑉𝑁 0.451 0.417 0.418 0.410 0.517 0.517 0.527 0.530 0.517 0.520 

𝑅𝐶𝑉𝑁𝑄 0.562 0.482 0.438 0.406 0.667 0.606 0.750 0.714 0.625 0.694 

𝑅𝐶𝑉𝑁𝑀 0.297 1.737 1.236 8.560 7.907 42.77 10.97 64.26 107.5 752.4 

 Exponential Distribution: 

   𝑓𝑁(𝑥) = [0.2, 0.3]𝑒−[0.2,   0.3]𝑥𝑁 

𝐶𝑉𝑁 0.641 0.641 0.692 0.692 0.848 0.848 0.943 0.943 1.027 1.0270 

𝑅𝐶𝑉𝑁𝑄 0.629 0.629 0.634 0.634 0.967 0.967 1.361 1.361 1.139 1.1390 

𝑅𝐶𝑉𝑁𝑀 0.364 1.089 3.484 11.78 33.66 83.00 57.80 170.5 593.5 1912.1 

 Gamma Distribution:  

 𝑓𝑁(𝑥) =
1

[7.7,   8.8][1.18,   2.19]Γ[1.18,   2.19]
𝑥𝑁

[1.18,   2.19]−1
𝑒

−
𝑥𝑁

[7.7,   8.8] 

𝐶𝑉𝑁 0.585 0.526 0.634 0.568 0.775 0.695 0.865 0.773 0.941 0.834 

𝑅𝐶𝑉𝑁𝑄 0.569 0.557 0.577 0.565 0.857 0.823 1.209 1.140 1.022 0.9730 

𝑅𝐶𝑉𝑁𝑀 0.141 1.009 2.620 21.44 27.09 156.2 46.11 325.4 474.8 3690.6 

 Generalized Exponential Distribution: 

𝑓𝑁(𝑥) =
[1.24, 1.34]

[7.95, 8.36]
(1 − 𝑒

−
𝑥𝑁

[7.95,   8.36])
[1.24,1.34]−1

(𝑒
−

𝑥𝑁
[7.95,   8.36]) 

𝐶𝑉𝑁 0.576 0.558 0.627 0.608 0.765 0.741 0.857 0.832 0.935 0.9081 

𝑅𝐶𝑉𝑁𝑄 0.559 0.554 0.568 0.563 0.839 0.824 1.187 1.161 1.005 0.9870 

𝑅𝐶𝑉𝑁𝑀 0.124 0.921 2.559 21.65 26.32 160.2 45.12 331.8 467.6 3766.6 

 

 

Table 2: Classical vs Neutrosophic CVs based on simulated data 

 

𝐶𝑉𝑠 
Rayleigh Distribution: 𝑓𝑁(𝑥) =

𝑥𝑁

[8.64,9.87]2 (𝑒
−(

𝑥𝑁
[8.64,   9.87]

)
2

) 

𝑛=10 𝑛=20 𝑛=50 𝑛=100 𝑛=1000 

𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 

𝐶𝑉𝑁 0.483 0.483 0.484 0.484 0.458 0.458 0.448 0.448 0.528 0.528 

𝑅𝐶𝑉𝑁𝑄 0.631 0.631 0.442 0.442 0.447 0.447 0.534 0.534 0.578 0.5780 

𝑅𝐶𝑉𝑁𝑀 0.140 1.767 0.731 9.218 0.800 9.610 14.31 155.8 140.8 1523.8 

 Generalized Rayleigh Distribution: 

𝑓𝑁(𝑥) =
2[1.24, 1.34]

[7.67, 8.78]
𝑥𝑁 (1 − 𝑒

−
𝑥𝑁

2

[7.67,   8.78])

[1.24,1.34]−1

(𝑒
−

𝑥𝑁
2

[7.67,   8.78]) 
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𝐶𝑉𝑁 0.473 0.389 0.426 0.346 0.463 0.380 0.483 0.398 0.480 0.396 

𝑅𝐶𝑉𝑁𝑄 0.524 0.508 0.469 0.451 0.539 0.514 0.634 0.598 0.541 0.516 

𝑅𝐶𝑉𝑁𝑀 0.484 4.234 1.330 10.35 3.960 30.06 16.55 125.6 99.14 754.3 

 Geometric Distribution: 

 𝑓𝑁(𝑥) = [0.1, 0.2](1 − [0.1, 0.2])𝑥𝑁 

𝐶𝑉𝑁 0.810 0.773 0.806 0.782 0.978 0.956 1.055 1.038 1.149 1.128 

𝑅𝐶𝑉𝑁𝑄 0.900 0.853 0.812 0.803 1.125 1.085 1.500 1.457 1.250 1.224 

𝑅𝐶𝑉𝑁𝑀 0.593 1.857 4.942 17.97 33.36 88.16 68.79 215.4 574.8 2090 

 Kumaraswamy Distribution: 

𝑓𝑁(𝑥) = ([0.24,   0.34][1,   2])𝑥𝑁
[0.24,   0.34]−1

(1 − 𝑥𝑁
[0.24,   0.34]

)
[1,   2]−1

 

𝐶𝑉𝑁 0.517 0.424 0.481 0.385 0.485 0.392 0.579 0.463 0.572 0.459 

𝑅𝐶𝑉𝑁𝑄 0.611 0.644 0.472 0.494 0.488 0.501 0.848 0.805 0.741 0.729 

𝑅𝐶𝑉𝑁𝑀 1.758 2.784 3.233 5.120 6.610 10.12 10.17 13.57 49.45 70.32 

 Laplace Distribution: 

𝑓𝑁(𝑥) =
1

2[1, 2]
(𝑒

−
|𝑥𝑁−[0.23,   0.34]|

[1,   2] ) 

𝐶𝑉𝑁 0.745 0.760 0.956 0.980 0.933 0.953 0.822 0.840 0.850 0.870 

𝑅𝐶𝑉𝑁𝑄 0.442 0.443 0.597 0.602 0.464 0.467 0.541 0.545 0.471 0.475 

𝑅𝐶𝑉𝑁𝑀 1.558 2.587 10.84 15.76 19.80 29.56 28.58 42.57 435.2 605.1 

 Negative Binomial Distribution: 

𝑓𝑁(𝑥) = (
3 + 𝑥𝑁 − 1

𝑥𝑁
) [0.1, 0.2]3(1 − [0.1, 0.2])𝑥𝑁 

𝐶𝑉𝑁 0.404 0.396 0.439 0.433 0.545 0.535 0.609 0.598 0.660 0.6480 

𝑅𝐶𝑉𝑁𝑄 0.411 0.406 0.375 0.375 0.583 0.574 0.825 0.807 0.682 0.6800 

𝑅𝐶𝑉𝑁𝑀 0.424 4.721 0.645 7.829 10.38 100.1 21.20 225.5 170.2 1981.6 

 Generalized Pareto Distribution: 

  𝑓𝑁(𝑥) =
1

[2.67,   2.88]
(1 +

[1.19,   1.29]

[2.67,   2.88]
𝑥𝑁)

1

[1.19,   1.29]
−1

 

𝐶𝑉𝑁 0.845 0.864 1.209 1.255 2.004 2.115 2.257 2.380 18.314 18.686 

𝑅𝐶𝑉𝑁𝑄 0.776 0.783 1.113 1.131 2.091 2.161 1.415 1.446 2.3910 2.4900 

𝑅𝐶𝑉𝑁𝑀 5.822 14.98 15.93 46.06 155.1 468.3 294.2 917.5 111440 421002 
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Table 3: Classical vs Neutrosophic CVs based on simulated data 

 

𝐶𝑉𝑠 

Uniform Distribution: 

 𝑓𝑁(𝑥) =
1

[0,    2]−[4,   8]
 

𝑛=10 𝑛=20 𝑛=50 𝑛=100 𝑛=1000 

𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 

𝐶𝑉𝑁 0.543 0.457 0.502 0.423 0.506 0.424 0.514 0.430 0.577 0.481 

𝑅𝐶𝑉𝑁𝑄 0.682 0.661 0.532 0.520 0.549 0.534 0.683 0.654 0.759 0.727 

𝑅𝐶𝑉𝑁𝑀 1.220 3.711 2.261 6.873 3.997 11.53 9.129 23.50 50.41 128.9 

 Weibull Distribution: 

 

𝑓𝑁(𝑥) =
[1.05, 2.05] 𝑥𝑁

[1.05,   2.05]−1

[8.34, 9.45][1.05,2.05]
(𝑒

−(
𝑥𝑁

[ 8.34,   9.45]
)

[1.05,   2.05] 

) 

𝐶𝑉𝑁 0.132 0.126 0.122 0.116 0.128 0.123 0.136 0.130 0.142 0.136 

𝑅𝐶𝑉𝑁𝑄 0.152 0.152 0.111 0.111 0.108 0.108 0.154 0.153 0.138 0.138 

𝑅𝐶𝑉𝑁𝑀 0.335 0.574 0.483 0.828 1.519 2.582 2.096 3.503 26.39 44.48 

 Poison Distribution: 

  𝑓𝑁(𝑥) =
𝑒−[2,   3][2,   3]𝑥𝑁

𝑥𝑁!
 

𝐶𝑉𝑁 0.598 0.471 0.576 0.481 0.651 0.574 0.635 0.567 0.679 0.609 

𝑅𝐶𝑉𝑁𝑄 0.525 0.559 0.375 0.402 0.750 0.700 0.750 0.703 0.750 0.703 

𝑅𝐶𝑉𝑁𝑀 1.186 3.888 1.186 3.982 4.448 11.86 22.24 61.16 43.74 120.3 

 

Table 4: Classical vs Neutrosophic CVs based on real data 

𝐶𝑉𝑠 Hourly Temp. Dew Point Temp. Relative Humidity 

𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 𝐼𝑁=0 𝐼𝑁 ≠0 

𝐶𝑉𝑁 0.084 0.034 0.110 0.036 0.214 0.183 

𝑅𝐶𝑉𝑁𝑄 0.108 0.105 0.072 0.070 0.154 0.150 

𝑅𝐶𝑉𝑁𝑀 0.321 18.02 0.315 15.06 1.167 36.27 
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Appendix A 

 

Table 5: Climate data of Alabama state, May 2024 

Hourly Temp. Dew Point Temp. Relative Humidity 

𝑀𝑖𝑛 𝑀𝑎𝑥  𝑀𝑖𝑛 𝑀𝑎𝑥  𝑀𝑖𝑛 𝑀𝑎𝑥  

52 88 46 73 33 100 

65 93 47 76 28 94 

52 90 45 72 30 94 

50 89 44 74 28 100 

61 93 52 76 26 100 

56 90 34 75 19 100 

58 92 49 76 35 100 

57 91 47 77 29 100 

64 94 52 77 35 100 

53 89 47 74 30 100 

61 81 61 63 54 100 

57 93 46 79 31 100 

54 92 47 75 29 100 

54 90 48 76 31 100 

62 90 53 76 38 97 

49 83 43 71 36 99 

55 91 50 77 33 97 

51 90 45 74 28 100 

 

 

Data availability: The author confirms that the data backing the findings of this study are 

included in this manuscript and are available in Appendix A. 

Funding: The authors would like to acknowledge the Deanship of Graduate Studies and 

Scientific Research, Taif University for funding this work. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 

 

 

 



20  Int. J. Anal. Appl. (2025), 23:170 

 

References 

[1] G.F. Reed, F. Lynn, B.D. Meade, Use of Coefficient of Variation in Assessing Variability of 

Quantitative Assays, Clin. Vaccine Immunol. 10 (2003), 1162-1162. 

https://doi.org/10.1128/cdli.10.6.1162.2003.  

[2] E.G. Miller, M.J. Karson, Testing Equality of Two Coefficients of Variation, in: American Statistical 

Association: Proceedings of the Business and Economics Section, Part I, Vol. 95, pp. 278-283, (1977). 

[3] A.J. Hamer, J.R. Strachan, M.M. Black, C. Ibbotson, R.A. Elson, A New Method of Comparative Bone 

Strength Measurement, J. Med. Eng. Technol. 19 (1995), 1-5. 

https://doi.org/10.3109/03091909509030263.  

[4] J. Gong, Y. Li, Relationship Between the Estimated Weibull Modulus and the Coefficient of Variation 

of the Measured Strength for Ceramics, J. Am. Ceram. Soc. 82 (1999), 449-452. 

https://doi.org/10.1111/j.1551-2916.1999.tb20084.x.  

[5] T.J. Cole, Establishing a Standard Definition for Child Overweight and Obesity Worldwide: 

International Survey, BMJ 320 (2000), 1240-1240. https://doi.org/10.1136/bmj.320.7244.1240.  

[6] H.M. Shapiro, Practical Flow Cytometry, John Wiley & Sons, (2005). 

[7] F.R. Hampel, The Influence Curve and Its Role in Robust Estimation, J. Am. Stat. Assoc. 69 (1974), 

383-393. https://doi.org/10.2307/2285666.  

[8] C.N.P.G. Arachchige, L.A. Prendergast, R.G. Staudte, Robust Analogs to the Coefficient of Variation, 

J. Appl. Stat. 49 (2020), 268-290. https://doi.org/10.1080/02664763.2020.1808599.  

[9] F. Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing, (2014). 

[10] J. Chen, J. Ye, S. Du, Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint 

Roughness Coefficient Based on Neutrosophic Statistics, Symmetry 9 (2017), 208. 

https://doi.org/10.3390/sym9100208.  

[11] J. Chen, J. Ye, S. Du, R. Yong, Expressions of Rock Joint Roughness Coefficient Using Neutrosophic 

Interval Statistical Numbers, Symmetry 9 (2017), 123. https://doi.org/10.3390/sym9070123.  

[12] A.A. Adepoju, U. Mohammed, S.S. Sani, et al. Statistical Properties of Negative Binomial Distribution 

under Impressive Observation, J. Nigerian Stat. Assoc. 31 (2019), 1-8. 

[13] C. Granados, Some Discrete Neutrosophic Distributions with Neutrosophic Parameters Based on 

Neutrosophic Random Variables, Hacet. J. Math. Stat. 51 (2022), 1442-1457. 

https://doi.org/10.15672/hujms.1099081.  

[14] C. Granados, A.K. Das, B. Das, Some Continuous Neutrosophic Distributions with Neutrosophic 

Parameters Based on Neutrosophic Random Variables, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 

380-389. https://doi.org/10.31197/atnaa.1056480.  

[15] A.A. Alvaracín Jarrín, D.S. Proaño Tamayo, S.A. Montecé Giler, et al. Neutrosophic Statistics Applied 

in Social Science, Neutrosophic Sets Syst. 44 (2021), 01-09. 

[16] Z. Khan, M. Gulistan, N. Kausar, C. Park, Neutrosophic Rayleigh Model with Some Basic 

Characteristics and Engineering Applications, IEEE Access 9 (2021), 71277-71283. 

https://doi.org/10.1109/access.2021.3078150.  

[17] A. AlAita, M. Aslam, Analysis of Covariance Under Neutrosophic Statistics, J. Stat. Comput. Simul. 

93 (2022), 397-415. https://doi.org/10.1080/00949655.2022.2108423.  

https://doi.org/10.1128/cdli.10.6.1162.2003
https://doi.org/10.3109/03091909509030263
https://doi.org/10.1111/j.1551-2916.1999.tb20084.x
https://doi.org/10.1136/bmj.320.7244.1240
https://doi.org/10.2307/2285666
https://doi.org/10.1080/02664763.2020.1808599
https://doi.org/10.3390/sym9100208
https://doi.org/10.3390/sym9070123
https://doi.org/10.15672/hujms.1099081
https://doi.org/10.31197/atnaa.1056480
https://doi.org/10.1109/access.2021.3078150
https://doi.org/10.1080/00949655.2022.2108423


Int. J. Anal. Appl. (2025), 23:170 21 

 

[18] Ahsan-ul-Haq, M. (2022). Neutrosophic Kumaraswamy distribution with engineering application. 

Neutrosophic Sets Syst., 49, 269-276. 

[19] C. Delcea, A. Domenteanu, C. Ioanăș, V.M. Vargas, A.N. Ciucu-Durnoi, Quantifying Neutrosophic 

Research: a Bibliometric Study, Axioms 12 (2023), 1083. https://doi.org/10.3390/axioms12121083.  

[20] Y. Guo, A. Sengur, Ncm: Neutrosophic C-Means Clustering Algorithm, Pattern Recognit. 48 (2015), 

2710-2724. https://doi.org/10.1016/j.patcog.2015.02.018.  

[21] H. Garg, Nancy, Algorithms for Single-Valued Neutrosophic Decision Making Based on Topsis and 

Clustering Methods with New Distance Measure, AIMS Math. 5 (2020), 2671-2693. 

https://doi.org/10.3934/math.2020173.  

[22] Aslam, M. (2023a). Simulating imprecise data: sine–cosine and convolution methods with 

neutrosophic normal distribution. Journal of Big Data, 10(1), 143.  

[23] M. Aslam, Simulating Imprecise Data: Sine–cosine and Convolution Methods with Neutrosophic 

Normal Distribution, J. Big Data 10 (2023), 143. https://doi.org/10.1186/s40537-023-00822-4.  

[24] M. Aslam, Truncated Variable Algorithm Using Dus-Neutrosophic Weibull Distribution, Complex 

Intell. Syst. 9 (2023), 3107-3114. https://doi.org/10.1007/s40747-022-00912-5.  

[25] M. Aslam, Uncertainty-driven Generation of Neutrosophic Random Variates from the Weibull 

Distribution, J. Big Data 10 (2023), 177. https://doi.org/10.1186/s40537-023-00860-y.  

[26] M. Aslam, F.S. Alamri, Algorithm for Generating Neutrosophic Data Using Accept-Reject Method, J. 

Big Data 10 (2023), 175. https://doi.org/10.1186/s40537-023-00855-9.  

[27] Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type 

Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991-3001. 

https://doi.org/10.1007/s40747-021-00439-1.  

[28] G.K. Vishwakarma, A. Singh, Generalized Estimator for Computation of Population Mean Under 

Neutrosophic Ranked Set Technique: An Application to Solar Energy Data, Comput. Appl. Math. 41 

(2022), 144. https://doi.org/10.1007/s40314-022-01820-7.  

[29] A. Singh, M. Aslam, G.K. Vishwakarma, A. Dhital, I. Patrascu, Neutrosophic Regression Cum Ratio 

Estimators for the Population Mean: An Application in Medical Science, in: Cognitive Intelligence 

with Neutrosophic Statistics in Bioinformatics, Elsevier, 2023: pp. 313–333. 

https://doi.org/10.1016/B978-0-323-99456-9.00018-0.  

[30] A. Singh, H. Kulkarni, F. Smarandache, G.K. Vishwakarma, Computation of Separate Ratio and 

Regression Estimator under Neutrosophic Stratified Sampling: An Application to Climate Data, J. 

Fuzzy Ext. Appl. 5 (2024), 605-621. 

[31] A. Singh, V.G. Patkar, H. Kulkarni, G.K. Vishwakarma, Computation of Separate Product and Ratio 

Exponential Estimators Under Neutrosophic Stratified Sampling: Application to Climate Data,   

Research Square (2024). https://doi.org/10.21203/rs.3.rs-5135094/v1.  

[32] M.G. Vangel, Confidence Intervals for a Normal Coefficient of Variation, Am. Stat. 50 (1996), 21-26. 

https://doi.org/10.1080/00031305.1996.10473537.  

 

https://doi.org/10.3390/axioms12121083
https://doi.org/10.1016/j.patcog.2015.02.018
https://doi.org/10.3934/math.2020173
https://doi.org/10.1186/s40537-023-00822-4
https://doi.org/10.1007/s40747-022-00912-5
https://doi.org/10.1186/s40537-023-00860-y
https://doi.org/10.1186/s40537-023-00855-9
https://doi.org/10.1007/s40747-021-00439-1
https://doi.org/10.1007/s40314-022-01820-7
https://doi.org/10.1016/B978-0-323-99456-9.00018-0
https://doi.org/10.21203/rs.3.rs-5135094/v1
https://doi.org/10.1080/00031305.1996.10473537

