International Journal of Analysis and Applications

Generalization of Δ -Closed Sets in Ideal Spaces

Yasser Farhat¹, Rock Ramesh^{2,*}, Alphymol Varghese²

¹Academic Support Department, Abu Dhabi Polytechnic, P.O.Box 111499, Abu Dhabi, UAE ²Department of Mathematics, St Joseph's University, Bangalore, 560027, Karnataka, India

*Corresponding author: rock.ramesh@sju.edu.in

Abstract. In the paper, we introduce g_{D^*} -closed sets and g_D -closed sets using ideal spaces, and some of the properties and characterizations are discussed. Further, the relationships among some of the existing generalizations are investigated with the closed sets. Every I_g -closed set is g_{D^*} -closed is proved in general and some results are investigated.

1. Introduction

Given an ideal space *Y* with the ideal *I* and topology τ , a local function [3] of *C* set of *Y* is defined as $C^* = \{y \in Y \mid V \cap C \notin I \text{ for every } V \in \tau(y)\}$ where in $\tau(y) = \{V \in \tau \mid y \in V\}$. The notion of generalized closed sets was introduced by Levin [1] in 1970. A set *C* of space *Y* is said to be g-closed if $cl(C) \subseteq V$ when $C \subseteq V$ and *V* is open in *Y*. The concept of I_g -closed sets was introduced by Dontshev. J, Ganster. M, and Noiri. T [2]in 1999. This was further studied by Navaneetha Krishnan and Paulraj Joseph [4] in 2008. A set *C* of an ideal space *Y* is said to be I_g -closed [10] if $C^* \subseteq V$ when $C \subseteq V$ and $V \in \tau$. Δ -open sets were introduced by M. Veera Kumar [5]. All Δ -open set collections satisfying the topology criterion are given by τ^D for *Y*. Local function was defined by using Δ -open sets denoted by $C_{D^*}(I, \tau)$ in [6]. Assume $A \subseteq Y$, then $C_{D^*}(I, \tau) = \{y \in Y \mid V \cap C \notin I, \tau \in T^D(y)\}$ where $\tau^D(y) = \{V \in \tau^D \mid y \in V\}$ is known as D^* -local function [6] in *C* related to *I*, τ . If $C \subseteq C_{D^*}$, then $cl(C) = cl_{D^*}(C)$. A kuratowski closure operator $cl_{D^*}(C)$ for a topology τ_{D^*} finer than τ is given by $cl_{D^*}(C) = C \cup C_{D^*}$ [6]. A set *C* of *Y* is \star -closed [7](resp. \star -dense in itself [8]) if $C^* \subseteq C$ (resp. $C \subseteq Y$, int(*C*) will denote interior and cl(C) closure of *C* in (Y, τ) . Similarly *int*^{*}(*C*) will denote the interior of *C* in (Y, τ_{D^*}) .

Received: Mar. 4, 2025.

²⁰²⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. non-instantaneous deterioration; port free-of-charge; carbon emission.

A set *C* of *Y* is a θ -closed set if $cl_{\theta}(C) = C$ and *C* is a δ -closed set if $cl_{\delta}(C) = C$ [9]. In [10] θg -closed sets are defined. αI_g -closed sets were defined by S. Maragathavalli and D. Vinodhini in [11]. A set *C* of *Y* is αI_g -closed [11] if $C^* \subseteq V$ when $C \subseteq V$ and *V* is α -open also every αI_g -closed set is a I_g -closed set. In 2011 Antony Rex Rodrig et al. defined $I\hat{g}$ -closed sets in the following way: if $C^* \subseteq V$ whenever $C \subseteq V$ and *V* is semi-open then *C* is called $I\hat{g}$ -closed [12]. A set *C* of *Y* is said to be semi-closed if $int(cl(C)) \subseteq C$. Its complement is said to be semi-open [13]. Also all $I\hat{g}$ -closed sets is αIg -closed. In [14] *I*-R-closed sets are defined by A. Acikgoz and S. Yuksel. They defined a set *C* of *Y* to be *I*-R-closed if $C = cl^*(int(C))$. It is also proved in [15] that every *I*-R-closed set is an I_g -closed set. A set *C* is said to be $g\Delta^*$ -closed [16] if $C_{\delta^*} \subseteq V$ provided $C \subseteq V$ and $V \in \tau$. Also, A set *C* is said to be $g_s\Delta^*$ -closed [16] if $C_{\delta^*} \subseteq V$ provided $C \subseteq V$ and $V \in \tau(x)$ is the collection of all open sets of *Y* [17]. Nitakshi Goyal in "On θ_I kernel of a set" in 2017 proved that for each $C \subseteq Y$, $C \subseteq Ker(C)$. The below given result is used to prove several results in this paper.The extension of the result [18] will be used .

Lemma 1.1. Suppose *E* and *F* are subsets of *Y*, an ideal space. If so the given conditions can be proved [6]:

- (1) If $E \subseteq F$, $\Rightarrow E_{D^*} \subseteq F_{D^*}$.
- (2) $(E_{D^*})_{D^*} \subseteq E_{D^*}$
- (3) $E_{D^*} \subseteq cl_D(E)$
- $(4) \ cl_{D^*}(E) \subseteq cl^*(E)$
- (5) $E_{D^*} = cl_D(E_{D^*}) \subseteq cl_\theta(E)$
- (6) If $E \in I$, then $E_{D^*} = \phi$
- (7) $E_{D^*} \cup F_{D^*} = (E \cup F)_{D^*}$
- (8) $(E \cap F)_{D^*} \subseteq E_{D^*} \cap F_{D^*}$.

Lemma 1.2. $A_{D^*} \subseteq A^*$ always holds [6].

2. g_{D^*} -Closed Sets

Definition 2.1. Suppose *C* is a set of *Y* in (Y, τ, I) then *C* is g_{D^*} -closed if $C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$.

Definition 2.2. A set C is said to be g_D -closed in (Y, τ) if $cl(C) \subseteq V$ when $C \subseteq V$ and $V \in \tau^D$.

Definition 2.3. Consider C to be a set of (Y, τ, I) then it is $D \star$ -closed if $C_{D^*} \subseteq C$ and $D \star$ -dense in itself if $C \subseteq C_{D^*}$.

Theorem 2.1. Consider (Y, τ, I) is an ideal space and C is a set of Y, then the below given can be compared.

- (1) C is g_{D^*} -closed,
- (2) $cl_{D^*}(C) \subseteq V$ when $C \subseteq V$ and V is open in Y,
- (3) $\forall y \in cl_{D^*}(C), cl_D(x) \cap C \neq \phi$,
- (4) All closed sets of $cl_{D^*}(C) C$ are empty,
- (5) All closed sets of $C_{D^*} C$ are empty.

Proof. 1 \Rightarrow 2: Suppose *C* is g_{D^*} -closed $\Rightarrow C_{D^*} \subseteq V$ when *C* is a set of *V* and $V \in \tau$. Therefore $cl_{D^*}(C) \subseteq V$ when *C* is a set of *V* and *V* is open.

2 ⇒ 3: Assume $y \in cl_{D^*}(C)$. Suppose $cl_D(y) \cap C = \phi \Rightarrow C \subseteq Y - cl_D(y)$ and $Y - cl_D(y)$ is open in Y. Therefore $cl_{D^*}(C) \subseteq Y - cl_D(y)$ by (2). This implies $C_{D^*} \subseteq Y - cl_D(y)$ which is a contradiction since $C_{D^*} \subseteq cl_D(C)$ by Lemma [1.1,3] ⇒ $cl_D(y) \cap C \neq \phi$.

3 ⇒ 4: Assume *G* is a closed set, $y \in G$ and $G \subseteq cl_{D^*}(C) - C$. Hence $G \subseteq Y - C \Rightarrow C \subseteq Y - G$ also $cl_D(y) \cap C = \phi$. This is a contradiction since $\forall y \in cl_{D^*}(C), cl_D(y) \cap C \neq \phi$ by (2). Thus all closed sets of $cl_{D^*}(C) - C$ are empty.

 $4 \Rightarrow 5: \text{ Suppose all closed sets of } cl_{D^*}(C) - C \text{ are empty. } cl_{D^*}(C) - C = (C \cup C_{D^*}) - C = (C \cup C_{D^*}) \cap (Y - C) = \phi \cup (C_{D^*} \cap (Y - C)) = C_{D^*} - C \Rightarrow \text{ all closed subsets of } C_{D^*} - C \text{ are empty.}$

5 ⇒ 1: Suppose *C* is a set of *V* and $V \in \tau \Rightarrow Y - V \subseteq Y - C \Rightarrow C_{D^*} \cap (Y - V) \subseteq C_{D^*} \cap (Y - C) = C_{D^*} - C$. By (5) all closed sets contained in $C_{D^*} - C$ are empty. $C_{D^*} \cap (Y - V)$ is a closed set $\Rightarrow C_{D^*} \cap (Y - V) = \phi \Rightarrow C_{D^*} \subseteq V$ when $C \subseteq V$ and *V* is open. \Box

Theorem 2.2. Suppose Y is an ideal space, each I_g closed set is g_{D^*} -closed.

Proof. Suppose *C* is *I*^{*g*} closed ⇒ *C*^{*} ⊆ *V* when *C* is a set of *V* and *V* ∈ τ. By Lemma [1.2] $C_{D^*} ⊆ C^*$ ⇒ $C_{D^*} ⊆ V$ when *C* is a set of *V* and *V* ∈ τ ⇒ *C* is g_{D^*} -closed.

Remark 2.1. The reverse implication is false and can be shown by the below given example.

Example 2.1. Suppose $Y = \{4, 5, 6\}, \tau = \{\phi, Y, \{6\}\}$ and $I = \{\phi\}$. I_g -closed sets are $\{\phi, Y, \{4\}, \{5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}$. g_{D^*} -closed sets are $\{\phi, Y, \{6\}, \{4\}, \{5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}$. $A = \{6\}$ is g_{D^*} -closed not I_g -closed.

Theorem 2.3. All αI_g -closed set are g_{D^*} -closed.

Proof. We know every αI_g -closed set is I_g -closed. Also from the previous theorem, we know every I_g -closed set is g_{D^*} -closed set. This implies that every αI_g -closed set is g_{D^*} -closed.

Theorem 2.4. All \star -closed set are g_{D^*} -closed.

Proof. Suppose *C* is \star -closed then *C*^{*} is a set of *C*. If *C* is a set of *V* and $V \in \tau \Rightarrow C^*$ is a set of *V*. Since $C_{D^*} \subseteq C \Rightarrow C_{D^*} \subseteq V$ when *C* is a set of *V* and $V \in \tau \Rightarrow C$ is g_{D^*} -closed.

Remark 2.2. *The reverse implication of the above theorem is not true and is shown below in an example.*

Example 2.2. $Y = \{1, 5, 8\}, \tau = \{\phi, Y, \{8\}\}$ and $I = \{\phi\}$. Then $C = \{1\}$ is g_{D^*} -closed but not \star -closed.

Theorem 2.5. *All g-closed sets are g_{D*}-closed.*

Proof. Suppose *C* is *g*-closed \Rightarrow $cl(C) \subseteq V$ when *C* is a set of *V* and $V \in \tau$. We know by Lemma [1.1,4] $cl_{D^*}(C) \subseteq cl^*(C) \subseteq cl(C) \Rightarrow cl_{D^*}(C) \subseteq V$ when *C* is a set of *V* and $V \in \tau \Rightarrow C$ is g_{D^*} -closed by Theorem [2.1,2].

Remark 2.3. The reverse of the above implication is false and is given by an example below.

Example 2.3. $Y = \{4, 5, 6, 7\}, \tau = \{\phi, Y, 4, \{4, 5\}, \{4, 6, 7\}\}$ and $I = \{\phi, \{4\}, \{7\}, \{4, 7\}\}$. Then $C = \{4, 5\}$ is g_{D^*} -closed but not g-closed.

Theorem 2.6. If *C* is a θ -closed set then *C* is g_{D^*} -closed but the reverse implication is false and can be shown by an example.

Proof. If *C* is θ -closed then, $C = cl_{\theta}(C)$. Assume *C* is a set of *V* and $V \in \tau$. we know by Lemma [1.1,5] $C_{D^*} \subseteq cl_{\theta}(C) \Rightarrow C_{D^*} \subseteq V$ when *C* is a set of *V* and $V \in \tau \Rightarrow C$ is g_{D^*} -closed.

Example 2.4. Consider $Y = \{e, i, j, f\}, \tau = \{\phi, Y, \{e\}, \{j\}, \{e, j\}, \{e, f\}, \{e, j, f\}\}$ and $I = \phi, \{e\}, \{i\}, \{e, i\}$. If C = e, then C is g_{D^*} -closed but not θ -closed.

Theorem 2.7. If *C* is a θ *g*-closed set then *C* is g_{D^*} -closed but the reverse implication is false and can be shown by an example.

Proof. If *C* is θg -closed set then $cl_{\theta}(C) \subseteq V$ provided $C \subseteq V$ and $V \in \tau$. We know $C_{D^*} \subseteq cl_{\theta}(C)$ by Lemma [1.1,5]. Thus $C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$.

Example 2.5. Consider $Y = \{l, a, j, f\}, \tau = \{\phi, Y, \{l\}, \{j\}, \{l, j\}, \{l, j\}, \{l, j\}, \{l, j, f\}\}$ and $I = \phi, \{l\}, \{a\}, \{l, a\}$. If C = l, then C is g_{D^*} -closed but not θg -closed.

Theorem 2.8. *If C is a* δ *-closed set then C is* g_{D^*} *-closed but the reverse implication is not true and can be shown by an example.*

Proof. If *C* is δ -closed then, $C = cl_{\delta}(C)$. Assume $C \subseteq V$ and *V* is open. we know by Lemma [1.1,4] $cl_{D^*}(C)$ is a set of $cl^*(C)$ also $cl^*(C) \subseteq cl^*_{\delta}(C) \Rightarrow cl_{D^*}(C) \subseteq V$ when *C* is a set of *V* and $V \in \tau \Rightarrow C$ is g_{D^*} -closed by Theorem [2.1,2].

Example 2.6. Consider $Y = \{e, i, j, f\}, \tau = \{\phi, Y, \{e\}, \{j\}, \{f\}, \{e, j\}, \{e, f\}, \{j, f\}, \{e, j, f\}\}$ and $I = \{\phi, \{e\}, \{i\}, \{e, i\}\}$. If $C = \{j\}$, then C is g_{D^*} -closed not δ -closed.

Theorem 2.9. If *C* is a $g\Delta^*$ -closed set then *C* is g_{D^*} -closed but the reverse implication is not true and can be shown by an example.

Proof. Suppose *C* is $g\Delta^*$ -closed $\Rightarrow C_{\delta^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$. Thus $C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$ since $C_{D^*} \subseteq C_{\delta^*}$. Therefore *C* is g_{D^*} -closed.

Example 2.7. Consider $Y = \{e, i, j, f\}, \tau = \{\phi, Y, \{e\}, \{j\}, \{f\}, \{e, j\}, \{e, f\}, \{j, f\}, \{e, j, f\}\}$ and $I = \{\phi, \{e\}, \{i\}, \{e, i\}\}$. If $C = \{f\}$, then C is g_{D^*} -closed not g^*_{Λ} -closed.

Theorem 2.10. Every $g_s \Delta^*$ -closed set is g_{D^*} -closed.

Proof. Suppose *C* is $g_s \Delta^*$ -closed implies $C_{\delta^*} \subseteq V$ when $C \subseteq V$ and *V* is a semi-open set. Thus $C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$ since $C_{D^*} \subseteq C_{\delta^*}$ and every open set is semi-open. Therefore *C* is g_{D^*} -closed.

Remark 2.4. Counterexample to the converse of the above theorem is given below.

Example 2.8. Consider $Y = \{e, i, j, f\}, \tau = \{\phi, Y, \{e\}, \{j\}, \{f\}, \{e, j\}, \{e, f\}, \{j, f\}, \{e, j, f\}\}$ and $I = \{\phi, \{e\}, \{i\}, \{e, i\}\}$. If $C = \{e, j\}$, then C is g_{D^*} -closed not $g_s \Delta^*$ -closed.

Theorem 2.11. Every g_D -closed set is g_{D^*} -closed.

Proof. Suppose *C* is g_D -closed \Rightarrow $cl(C) \subseteq V$ when *C* is a set of *V* and $V \in \tau^D$. We know by Lemma [1.1,4] $cl_{D^*}(C) \subseteq cl^*(C) \subseteq cl(C) \subseteq V \forall V \in \tau^D \Rightarrow cl_{D^*}(C) \subseteq V$ when $C \subseteq V$ and *V* is open $\Rightarrow C$ is g_{D^*} -closed by Theorem [2.1,2].

Remark 2.5. Counterexample to the converse of the above theorem is given below.

Example 2.9. $Y = \{4, 5, 6, 7\}, \tau = \{\phi, Y, 4, \{4, 5\}, \{4, 6, 7\}\}$ and $I = \{\phi, \{4\}, \{7\}, \{4, 7\}\}$. Then $C = \{4, 6, 7\}$ is g_{D^*} -closed not g_D -closed.

Theorem 2.12. Every *I*-*R*-closed set is *g*_{*D**}-closed.

Proof. We know *I*-R-closed set is a subset of I_g -closed set. Also, every I_g -closed set is g_{D^*} -closed. Thus Every *I*-R-closed set is g_{D^*} -closed.

Theorem 2.13. All $I\hat{g}$ -closed sets are g_{D^*} -closed.

Proof. We know all \hat{I} closed sets are $\alpha I g$ -closed sets also by Theorem [2.3] we know every $\alpha I g$ -closed sets is g_{D^*} -closed. Therefore all $\hat{I} g$ -closed set is g_{D^*} -closed.

Theorem 2.14. *Every g*_{*D*}*-closed set is a g-closed set.*

Proof. Suppose *G* be a g_D -closed set \Rightarrow $cl(G) \subseteq V$ when $G \subseteq V$ and $V \in \tau^D$. Implies $cl(G) \subseteq V$ when $G \subseteq V$ and $V \in \tau$ since $\tau \subseteq \tau^D$. Hence *G* is a *g*-closed set.

Theorem 2.15. All g_D -closed sets are $g\delta$ -closed. Converse of the theorem is not true and is proved using an example.

Proof. Suppose *G* be a g_D -closed set that is $cl(G) \subseteq V$ provided $G \subseteq V$ and *V* is Δ -open in *Y*. Since all δ -open sets are Δ -open we get $cl(G) \subseteq V$ provided $G \subseteq V$ and *V* is δ -open. Therefore all g_D -closed set is $g\delta$ -closed.

Example 2.10. Consider $Y = \{4, 8, 3, 7\}$ and $\tau = \{\phi, Y, \{4\}, \{8\}, \{4, 3, 7\}\}$. If $C = \{4\}$, then C is g δ -closed not g_D -closed.

Theorem 2.16. Suppose *Y* is an ideal space, for all $C \in I$, *C* is g_{D^*} -closed.

Proof. Assume $C \subseteq V$ and $V \in \tau$. If $C \in I$ then C_{D^*} is empty by Lemma [1.1,6] $\Rightarrow C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau \Rightarrow C$ is g_{D^*} -closed.

Theorem 2.17. Suppose Y is an ideal space then for all $C \subseteq Y$, C_{D^*} is g_{D^*} -closed.

Proof. Assume $C_{D^*} \subseteq V$ and $V \in \tau$. Since $(C_{D^*})_{D^*} \subseteq C_{D^*}$ by Lemma [1.1,2] $\Rightarrow (C_{D^*})_{D^*} \subseteq V$ when $C_{D^*} \subseteq V$ and $V \in \tau \Rightarrow C_{D^*}$ is g_{D^*} -closed.

FIGURE 1. The diagram illustrates the relationships between various generalized closed sets that are discussed in the above stated theorems.

Theorem 2.18. Consider C is g_{D^*} -closed set that is also open then C is $D \star$ -closed.

Proof. Given that $C \in \tau$ and $C \subseteq C$ then since C is g_{D^*} -closed, $C_{D^*} \subseteq C$ implies that C is D*****-closed. \Box

Theorem 2.19. Suppose Y is an ideal space and C is g_{D^*} -closed, Then the below given are identical.

- (1) C is $D \star$ -closed,
- (2) $cl_{D^*}(C) C$ is a closed set,
- (3) $C_{D^*} C$ is a closed set.

Proof. $1 \Rightarrow 2$: If *C* is $D \star$ -closed $\Rightarrow C_{D^*} \subseteq C$. $cl_{D^*}(C) - C = (C \cup C_{D^*}) - C = C_{D^*} - C = \phi$. Therefore $cl_{D^*}(C) - C$ is a closed set.

 $2 \Rightarrow 3$: Suppose $cl_{D^*}(C) - C$ is a closed set. $cl_{D^*}(C) - C = C_{D^*} - C \Rightarrow C_{D^*} - C$ is a closed set.

3 ⇒ 1: Assume $C_{D^*} - C$ is a closed set and *C* is g_{D^*} -closed. ⇒ $C_{D^*} - C = \phi$ by Theorem [2.1,5]. Hence $C_{D^*} \subseteq C$.

Theorem 2.20. Suppose Y is an ideal space, a set C of Y is $D \star$ -dense in itself and C is g_{D^*} -closed implies C is g-closed.

Proof. Assume *C* is $D \star$ -dense in itself then $cl(C) = cl_{D^*}(C)$. Assume $C \subseteq V$ and $V \in \tau$, since *C* is g_{D^*} -closed $\Rightarrow cl_{D^*}(C) \subseteq V$ by Theorem [2.1,2]. Thus $cl(C) \subseteq V$ when $C \subseteq V$ and $V \in \tau \Rightarrow C$ is g-closed.

Corollary 2.1. Suppose Y is an ideal space and $I = \phi$ then, C is g_{D^*} -closed if and only if C is g-closed.

Proof. When $I = \phi$ implies $C_{D^*} = cl(C)$ also $C \subseteq cl(C) \Rightarrow C \subseteq C_{D^*} \Rightarrow C$ is $D \star$ -dense in itself. Assuming *C* is g_{D^*} -closed then by the above theorem *C* is g-closed. Conversely, assuming *C* is g-closed then by Theorem [2.11] *C* is g_{D^*} -closed.

Theorem 2.21. Suppose Y is an ideal space. If $H \subseteq M \subseteq H_{D^*}$ then $H_{D^*} = M_{D^*}$ and M is $D \star$ -dense in itself.

Proof. If $H \subseteq M \Rightarrow H_{D^*} \subseteq M_{D^*}$. But $M \subseteq H_{D^*} \Rightarrow M_{D^*} \subseteq H_{D^*} \Rightarrow H_{D^*} = M_{D^*}$. Also $M \subseteq H_{D^*} = M_{D^*}$. Therefore $D \star$ -dense in itself.

Theorem 2.22. Suppose Y is an ideal space with H and M as sets of Y, H is g_{D^*} -closed and $H \subseteq M \subseteq cl_{D^*}(H)$ implies M is g_{D^*} -closed.

Proof. Assume *H* is g_{D^*} -closed ⇒ all closed sets in $cl_{D^*}(H) - H$ are empty. We know $cl_{D^*}(M) - M \subseteq cl_{D^*}(H) - H$. Therefore all closed sets in $cl_{D^*}(M) - M$ is empty ⇒ *M* is g_{D^*} -closed by Theorem [2.1,4].

Corollary 2.2. Suppose *F* and *R* are sets in *Y* which is an ideal space such that *F* is g_{D^*} -closed and $F \subseteq R \subseteq F_{D^*} \Rightarrow F$ and *R* are *g*-closed.

Proof. Suppose $F \subseteq R \subseteq F_{D^*}$ implies $F \subseteq R \subseteq F_{D^*} \subseteq cl_{D^*}(F)$ and assume F is g_{D^*} -closed then by the above theorem R is g_{D^*} -closed. Since $F \subseteq R \subseteq F_{D^*}$ gives $F_{D^*} = R_{D^*}$ and F, R are $D \star$ -dense in itself by Theorem [2.21]. Then by Theorem [2.20] F and R are g-closed

Theorem 2.23. Suppose C is a set in Y which is an ideal space, C is g_{D^*} -open and $int_{D^*}(C) \subseteq R \subseteq C$ implies R is g_{D^*} -open.

Proof. Since $R \subseteq C \Rightarrow cl_{D^*}(R) \subseteq cl_{D^*}(C) \Rightarrow cl_{D^*}(Y - C) \subseteq cl_{D^*}(Y - R)$. Also since $int_{D^*}(C) \subseteq R$ implies $int_{D^*}(C) \subseteq int_{D^*}(R) \Rightarrow cl_{D^*}(Y - R) \subseteq cl_{D^*}(Y - C)$. Thus $cl_{D^*}(Y - R) = cl_{D^*}(Y - C) \Rightarrow cl_{D^*}(Y - R) = cl_{D^*}(Y - R) \Rightarrow cl_{D^*}(Y - R) \Rightarrow cl_{D^*}(Y - R) = cl_{D^*}(Y - R) \Rightarrow cl_{D^*}($

Theorem 2.24. *Suppose Y is an ideal space and C is a set of Y, then the given below are comparable:*

- (1) C is g_{D^*} -closed,
- (2) $C \cup (Y C_{D^*})$ is g_{D^*} -closed,
- (3) $C_{D^*} C$ is g_{D^*} -open.

Proof. 1 ⇒ 2: Assume C is g_{D^*} -closed. If $V \in \tau$ such that $C \cup (Y - C_{D^*}) \subseteq V \Rightarrow Y - V \subseteq Y - (C \cup (Y - C_{D^*})) = Y \cap (C \cup (C_{D^*})^c)^c = Y \cap (C^c \cap C_{D^*}) = C_{D^*} - C$. That is $Y - V \subseteq C_{D^*} - C$ and since V is an open set Y - V is a closed set. C is g_{D^*} -closed hence all closed sets in $C_{D^*} - C$ is empty by Theorem [2.1,5] implies $Y - V = \phi \Rightarrow Y = V$. Hence $C \cup (Y - C_{D^*}) \subseteq V \Rightarrow C \cup (Y - C_{D^*}) \subseteq Y \Rightarrow (C \cup (Y - C_{D^*}))_{D^*} \subseteq Y = V$ when $C \cup (Y - C_{D^*}) \subseteq V$ and $V \in \tau \Rightarrow C \cup (Y - C_{D^*})$ is g_{D^*} -closed. $2 \Rightarrow 1$: Suppose $C \cup (Y - C_{D^*})$ is g_{D^*} -closed. Consider a closed set G such that it is a set in $C_{D^*} - C$ which implies $G \subseteq C_{D^*}$ and G not in $C \Rightarrow G \subseteq Y - C$. Thus $Y - C_{D^*} \subseteq Y - G$ and $C \subseteq Y - G$ implies $C \cup (Y - C_{D^*}) \subseteq C \cup (Y - G) = Y - G$ also $C \cup (Y - C_{D^*})$ is g_{D^*} -closed $\Rightarrow (C \cup (Y - C_{D^*}))_{D^*} \subseteq Y - G$ is empty as a contradiction. Thus $G = \phi \Rightarrow$ any closed set G in $C_{D^*} - C$ is empty $\Rightarrow C$ is g_{D^*}-closed.

 $2 \Leftrightarrow 3: Y - (C_{D^*} - C) = Y \cap (C_{D^*} \cap C^c)^c = Y \cap ((C_{D^*})^c \cup C) = (Y \cap (C_{D^*})^c) \cup (Y \cap C) = (Y - C_{D^*}) \cup C.$ Suppose $C_{D^*} - C$ is g_{D^*} -open $\Leftrightarrow Y - (C_{D^*} - C)$ is g_{D^*} -closed $\Leftrightarrow C \cup (Y - C_{D^*})$ is g_{D^*} -closed. \Box **Theorem 2.25.** If Y is an ideal space then, all sets in Y is g_{D^*} -closed if and only if all open sets are $D \star$ -closed.

Proof. Suppose all sets in *Y* is g_{D^*} -closed. Assume *V* ∈ τ in *Y* then *V* is g_{D^*} -closed \Rightarrow $V_{D^*} \subseteq V \Rightarrow V$ is *D*★-closed. Suppose all open sets are *D*★-closed. If *V* is open and *C* ⊆ *V* ⊆ *Y* then, $C_{D^*} \subseteq V_{D^*} \subseteq V$ \Rightarrow *C* is g_{D^*} -closed.

Theorem 2.26. *C* is a g_{D^*} -closed set if and only if C = F - N where *F* is $D \star$ -closed and all closed sets in *N* are empty.

Proof. Assume *C* is a g_{D^*} -closed set. Consider $N = C_{D^*} - C$, then by Theorem [2.1,5], all closed sets of *N* are empty. If $F = cl_{D^*}(C)$ then *F* is $D \star$ -closed. $F - N = (C \cup C_{D^*}) - (C_{D^*} - C) = (C \cup C_{D^*}) \cap (C_{D^*} \cap C^c)^c = C \cup (C_{D^*} \cap (C_{D^*})^c) = C$. Conversely, let $C = F - N \Rightarrow C \subseteq F$. Suppose $C \subseteq V$ and $V \in \tau$. $F - N \subseteq V \Rightarrow F - V \subseteq N$. Thus $F \cap (Y - V) \subseteq N$. Since $F_{D^*} \subseteq F$, implies $C_{D^*} \subseteq F$. Therefore $C_{D^*} \cap (Y - V) \subseteq F \cap (Y - V) \subseteq N \Rightarrow C_{D^*} \cap (Y - V) = \phi \Rightarrow C_{D^*} \subseteq V$.

Theorem 2.27. Suppose H and G are g_{D^*} -closed sets in (Y, τ, I) if and only if union of H and G are g_{D^*} -closed

Proof. Suppose $H \cup G \subseteq V$ and $V \in \tau \Rightarrow H \subseteq V$ and $G \subseteq V$ where $V \in \tau$. Since H and G are g_{D^*} -closed $\Leftrightarrow H_{D^*} \subseteq V$ and $G_{D^*} \subseteq V \Leftrightarrow H_{D^*} \cup G_{D^*} \subseteq V$. $\Leftrightarrow (H \cup G)_{D^*} \subseteq V$ by Lemma [1.1,7]. \Box

Theorem 2.28. The intersection of two g_{D^*} -closed sets is g_{D^*} -closed.

Proof. Assume *G* and *H* are g_{D^*} -closed. Consider $G \cap H \subseteq V$ and $V \in \tau$. $\Rightarrow G \subseteq V$ and $H \subseteq V$ $\Rightarrow G_{D^*} \subseteq V$ and $H_{D^*} \subseteq V$ where $V \in \tau$. Then $G_{D^*} \cap H_{D^*} \subseteq V$. Therefore $(G \cap H)^*_D \subseteq V$ since $(G \cap H)^*_D \subseteq G_{D^*} \cap H_{D^*}$ by Lemma [1.1,8].

Theorem 2.29. Suppose *H* and *G* are g_{D^*} -open sets in (Y, τ, I) then the intersection of *H* and *G* are g_{D^*} -open.

Proof. Y − *H* and *Y* − *G* are g_{D^*} -closed since *H* and *G* are g_{D^*} -open \Rightarrow (*Y* − *H*) \cup (*Y* − *G*) is g_{D^*} -closed by using the previous theorem. Hence *Y* − (*H* ∩ *G*) is g_{D^*} -closed. Therefore (*H* ∩ *G*) is g_{D^*} -open. \Box

Definition 2.4. Suppose *C* is a non-empty g_{D^*} -closed set of *Y*. Then *C* is said to be maximal g_{D^*} -closed set if any g_{D^*} -closed set containing *C* is either *C* or *Y*.

Theorem 2.30. The following conditions hold for an ideal space Y:

- (1) Suppose *E* is g_{D^*} -closed and *H* is maximal g_{D^*} -closed then either $E \cup H = Y$ or $E \subseteq H$.
- (2) When *E* and *H* are maximal g_{D^*} -closed sets then either $E \cup H = Y$ or E = H.

Proof. (1) Since *H* is maximal g_{D^*} -closed it is obvious from the definition that $E \cup H = Y$. Suppose $E \cup H \neq Y$ then since *H* is maximal g_{D^*} -closed $E \cup H = H \Rightarrow E \subseteq H$.

(2) Suppose $E \neq H$ then since *E* and *H* are maximal g_{D^*} -closed it implies that $E \cup H = Y$. Suppose $E \cup H \neq Y$ then by (1) $E \subseteq H$ and $H \subseteq E$ implies that E = H.

Theorem 2.31. A set C of Y is g_{D^*} -closed if Ker(C) is g_{D^*} -closed.

Proof. We know that for $C \subseteq Y$, $C \subseteq Ker(C) \Rightarrow C_{D^*} \subseteq (Ker(C))_{D^*}$. Since Ker(C) is g_{D^*} -closed implies $(Ker(C))_{D^*} \subseteq V$ when $Ker(C) \subseteq V$ and $V \in \tau$. Thus $C_{D^*} \subseteq V$ when $C \subseteq V$ and $V \in \tau$.

CONCLUSION

We defined g_{D^*} -closed sets and g_D -closed sets and made a comparative study between these newly defined sets and some already existing closed sets such as θ -closed sets, δ -closed sets, gclosed sets, \star -closed sets and I_g -closed sets. We also discuss some characterizations and properties of g_{D^*} -closed sets using definitions of kuratowski closure operator cl_{D^*} , $D\star$ -closed sets and some other sets.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo 19 (1970), 89–96. https://doi.org/10.1007/ BF02843888.
- [2] J. Dontchev, M. Ganster, T. Noiri, Unified Operation Approach of Generalized Closed Sets via Topological Ideals, Math. Japon. 49 (1999), 395–402.
- [3] R. Vaidyanathaswamy, Set Topology, Courier Corporation, 1960.
- M. Navaneethakrishnan, J. Paulraj Joseph, g-Closed Sets in Ideal Topological Spaces, Acta Math. Hung. 119 (2008), 365–371. https://doi.org/10.1007/s10474-007-7050-1.
- [5] M.V. Kumar, On δ -Open Sets in Topology, Preprint, 2025.
- [6] Y. Farhat, R. Ramesh, A. Varghese, V. Subramanian, D*-Local Functions in Ideal Spaces, Int. J. Anal. Appl. 22 (2024), 102. https://doi.org/10.28924/2291-8639-22-2024-102.
- [7] D. Jankovic, T.R. Hamlet, New Topologies from Old via Ideals, Amer. Math. Mon. 97 (1990), 295–310. https: //doi.org/10.2307/2324512.
- [8] E. Hayashi, Topologies Defined by Local Properties, Math. Ann. 156 (1964), 205–215. https://doi.org/10.1007/ BF01363287.
- [9] N. Velicko, H-Closed Topological Spaces, Mat. Sb. 70 (1966), 98-112.
- [10] J. Dontchev, H. Maki, On θ-generalized Closed Sets, Int. J. Math. Math. Sci. 22 (1999), 239–249. https://doi.org/10. 1155/S0161171299222399.
- [11] S. Maragathavalli, D. Vinodhini, On α Generalized Closed Sets In Ideal Topological Spaces, IOSR J. Math. 10 (2014), 33–38. https://doi.org/10.9790/5728-10223338.
- [12] J. A. R. Rodrigo, O. Ravi, A. Naliniramalatha, ĝ-closed sets in ideal topological spaces, Methods of functional Analysis and Topology 17 (3), 274–280, 2011.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American mathematical monthly 70 (1), 36–41, 1963. https://doi.org/10.1080/00029890.1963.11990039.
- [14] A. Açikgöz, Ş. Yuksel, Some New Sets and Decompositions of A *I*-R-Continuity, α-*I*-Continuity, Continuity via Idealization, Acta Math. Hung. 114 (2007), 79–89. https://doi.org/10.1007/s10474-006-0514-x.
- [15] E. Ekici, S. Özen, A Generalized Class of τ* in Ideal Spaces, Filomat 27 (2013), 529–535. https://www.jstor.org/stable/ 24896381.
- [16] R. Ramesh, Periyasamy, $g\Delta^*$ and $g_s\Delta^*$ -Closed Sets in Ideal Spaces, Eur. Chem. Bull. 12 (2023), 2916–2925.
- [17] D. Jankov, On Some Separation Axioms and θ -Closure, Mat. Vesnik 4 (1980), 439–450.

[18] Y. Farhat, M. Krishnan, V. Subramanian, M. R. Ahmadi Zand, Submaximality on Bigeneralized Topological Spaces, Eur. J. Pure Appl. Math. 16 (2023), 386–403. https://doi.org/10.29020/nybg.ejpam.v16i1.4655.