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Abstract. In the paper, we introduce gD∗ -closed sets and gD-closed sets using ideal spaces, and some of the properties and

characterizations are discussed. Further, the relationships among some of the existing generalizations are investigated

with the closed sets. Every Ig-closed set is gD∗ -closed is proved in general and some results are investigated.

1. Introduction

Given an ideal space Y with the ideal I and topology τ, a local function [3] of C set of Y is

defined as C∗ = {y ∈ Y | V ∩C < I for every V ∈ τ(y)} where in τ(y) = {V ∈ τ | y ∈ V}. The notion

of generalized closed sets was introduced by Levin [1] in 1970. A set C of space Y is said to be

g-closed if cl(C) ⊆ V when C ⊆ V and V is open in Y. The concept ofIg-closed sets was introduced

by Dontshev. J, Ganster. M, and Noiri. T [2]in 1999. This was further studied by Navaneetha

Krishnan and Paulraj Joseph [4] in 2008. A set C of an ideal space Y is said to be Ig-closed [10] if

C∗ ⊆ V when C ⊆ V and V ∈ τ. ∆-open sets were introduced by M. Veera Kumar [5]. All ∆-open set

collections satisfying the topology criterion are given by τD for Y. Local function was defined by

using ∆-open sets denoted by CD∗(I, τ) in [6]. Assume A ⊆ Y, then CD∗(I, τ) = {y ∈ Y | V ∩C < I,

∀ V ∈ τD(y)} where τD(y) = {V ∈ τD
| y ∈ V} is known as D∗-local function [6] in C related to I,

τ. If C ⊆ CD∗ , then cl(C) = clD∗(C). A kuratowski closure operator clD∗(C) for a topology τD∗ finer

than τ is given by clD∗(C) = C ∪ CD∗ [6]. A set C of Y is ?-closed [7](resp. ?-dense in itself [8])

if C∗ ⊆ C (resp. C ⊆ C∗). We assume the topological space used to be always without separation

properties. For C ⊆ Y, int(C) will denote interior and cl(C) closure of C in (Y, τ). Similarly int∗(C)
will denote the interior of C in (Y, τD∗).
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A set C of Y is a θ-closed set if clθ(C) = C and C is a δ-closed set if clδ(C) = C [9]. In [10]

θg-closed sets are defined. αIg-closed sets were defined by S. Maragathavalli and D. Vinodhini

in [11]. A set C of Y is αIg-closed [11] if C∗ ⊆ V when C ⊆ V and V is α-open also every αIg-closed

set is aIg-closed set. In 2011 Antony Rex Rodrig et al. definedIĝ-closed sets in the following way:

if C∗ ⊆ V whenever C ⊆ V and V is semi-open then C is called Iĝ-closed [12]. A set C of Y is said

to be semi-closed if int(cl(C)) ⊆ C. Its complement is said to be semi-open [13]. Also all Iĝ-closed

sets is αIg-closed. In [14] I-R-closed sets are defined by A. Acikgoz and S. Yuksel. They defined

a set C of Y to be I-R-closed if C = cl∗(int(C)). It is also proved in [15] that every I-R-closed set

is an Ig-closed set. A set C is said to be g∆?-closed [16] if Cδ∗ ⊆ V provided C ⊆ V and V ∈ τ.

Also, A set C is said to be gs∆?-closed [16] if Cδ∗ ⊆ V provided C ⊆ V and V is a semi-open set.

Consider (Y, τ) to be a topological space and x ∈ Y then Ker{x} = ∩{G | G ∈ τ(x)} where τ(x) is

the collection of all open sets of Y [17]. Nitakshi Goyal in “On θI kernel of a set" in 2017 proved

that for each C ⊆ Y, C ⊆ Ker(C). The below given result is used to prove several results in this

paper.The extension of the result [18] will be used .

Lemma 1.1. Suppose E and F are subsets of Y, an ideal space. If so the given conditions can be proved [6]:

(1) If E ⊆ F,⇒ ED∗ ⊆ FD∗ .
(2) (ED∗)D∗ ⊆ ED∗

(3) ED∗ ⊆ clD(E)
(4) clD∗(E) ⊆ cl∗(E)
(5) ED∗ = clD(ED∗) ⊆ clθ(E)
(6) If E ∈ I, then ED∗ = φ

(7) ED∗ ∪ FD∗ = (E ∪ F)D∗

(8) (E ∩ F)D∗ ⊆ ED∗ ∩ FD∗ .

Lemma 1.2. AD∗ ⊆ A∗ always holds [6].

2. gD∗-Closed Sets

Definition 2.1. Suppose C is a set of Y in (Y, τ,I) then C is gD∗-closed if CD∗ ⊆ V when C ⊆ V and V ∈ τ.

Definition 2.2. A set C is said to be gD-closed in (Y, τ) if cl(C) ⊆ V when C ⊆ V and V ∈ τD.

Definition 2.3. Consider C to be a set of (Y, τ,I) then it is D?-closed if CD∗ ⊆ C and D?-dense in itself
if C ⊆ CD∗ .

Theorem 2.1. Consider (Y, τ,I) is an ideal space and C is a set of Y, then the below given can be compared.

(1) C is gD∗-closed,
(2) clD∗(C) ⊆ V when C ⊆ V and V is open in Y,
(3) ∀y ∈ clD∗(C), clD(x)∩C , φ,
(4) All closed sets of clD∗(C) −C are empty,
(5) All closed sets of CD∗ −C are empty.
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Proof. 1 ⇒ 2: Suppose C is gD∗-closed ⇒ CD∗ ⊆ V when C is a set of V and V ∈ τ. Therefore

clD∗(C) ⊆ V when C is a set of V and V is open.

2⇒ 3: Assume y ∈ clD∗(C). Suppose clD(y)∩C = φ⇒ C ⊆ Y− clD(y) and Y− clD(y) is open in Y.

Therefore clD∗(C) ⊆ Y − clD(y) by (2). This implies CD∗ ⊆ Y − clD(y) which is a contradiction since

CD∗ ⊆ clD(C) by Lemma [1.1,3]⇒ clD(y)∩C , φ.

3 ⇒ 4: Assume G is a closed set, y ∈ G and G ⊆ clD∗(C) − C. Hence G ⊆ Y − C⇒ C ⊆ Y −G also

clD(y) ∩ C = φ. This is a contradiction since ∀y ∈ clD∗(C), clD(y) ∩ C , φ by (2). Thus all closed

sets of clD∗(C) −C are empty.

4⇒ 5: Suppose all closed sets of clD∗(C)−C are empty. clD∗(C)−C = (C∪CD∗)−C = (C∪CD∗)∩

(Y −C) = φ∪ (CD∗ ∩ (Y −C)) = CD∗ −C⇒ all closed subsets of CD∗ −C are empty.

5 ⇒ 1: Suppose C is a set of V and V ∈ τ ⇒ Y −V ⊆ Y − C ⇒ CD∗ ∩ (Y −V) ⊆ CD∗ ∩ (Y − C) =

CD∗ − C. By (5) all closed sets contained in CD∗ − C are empty. CD∗ ∩ (Y − V) is a closed set

⇒ CD∗ ∩ (Y −V) = φ⇒ CD∗ ⊆ V when C ⊆ V and V is open. �

Theorem 2.2. Suppose Y is an ideal space, each Ig closed set is gD∗-closed.

Proof. Suppose C is Ig closed⇒ C∗ ⊆ V when C is a set of V and V ∈ τ. By Lemma [1.2] CD∗ ⊆ C∗

⇒ CD∗ ⊆ V when C is a set of V and V ∈ τ⇒ C is gD∗-closed. �

Remark 2.1. The reverse implication is false and can be shown by the below given example.

Example 2.1. Suppose Y = {4, 5, 6}, τ = {φ, Y, {6}} and I = {φ}. Ig-closed sets are
{φ, Y, {4}, {5}, {4, 5}, {4, 6}, {5, 6}}. gD∗-closed sets are {φ, Y, {6}, {4}, {5}, {4, 5}, {4, 6}, {5, 6}}. A = {6} is
gD∗-closed not Ig-closed.

Theorem 2.3. All αIg-closed set are gD∗-closed.

Proof. We know every αIg-closed set is Ig-closed. Also from the previous theorem, we know

every Ig-closed set is gD∗-closed set. This implies that every αIg-closed set is gD∗-closed. �

Theorem 2.4. All ?-closed set are gD∗-closed.

Proof. Suppose C is ?-closed then C∗ is a set of C. If C is a set of V and V ∈ τ⇒ C∗ is a set of V.

Since CD∗ ⊆ C⇒ CD∗ ⊆ V when C is a set of V and V ∈ τ⇒ C is gD∗-closed. �

Remark 2.2. The reverse implication of the above theorem is not true and is shown below in an example.

Example 2.2. Y = {1, 5, 8}, τ = {φ, Y, {8}} and I = {φ}. Then C = {1} is gD∗-closed but not ?-closed.

Theorem 2.5. All g-closed sets are gD∗-closed.

Proof. Suppose C is g-closed ⇒ cl(C) ⊆ V when C is a set of V and V ∈ τ. We know by Lemma

[1.1,4] clD∗(C) ⊆ cl∗(C) ⊆ cl(C)⇒ clD∗(C) ⊆ V when C is a set of V and V ∈ τ⇒ C is gD∗-closed by

Theorem [2.1,2]. �

Remark 2.3. The reverse of the above implication is false and is given by an example below.
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Example 2.3. Y = {4, 5, 6, 7}, τ = {φ, Y, 4, {4, 5}, {4, 6, 7}} and I = {φ, {4},

{7}, {4, 7}}. Then C = {4, 5} is gD∗-closed but not g-closed.

Theorem 2.6. If C is a θ-closed set then C is gD∗-closed but the reverse implication is false and can be
shown by an example.

Proof. If C is θ-closed then, C = clθ(C). Assume C is a set of V and V ∈ τ. we know by Lemma

[1.1,5] CD∗ ⊆ clθ(C)⇒ CD∗ ⊆ V when C is a set of V and V ∈ τ⇒ C is gD∗-closed. �

Example 2.4. Consider Y = {e, i, j, f }, τ = {φ, Y, {e}, { j}, { f }, {e, j}, {e, f }{ j, f }, {e, j, f }} and I =

φ, {e}, {i}, {e, i}. If C = e, then C is gD∗-closed but not θ-closed.

Theorem 2.7. If C is a θg-closed set then C is gD∗-closed but the reverse implication is false and can be
shown by an example.

Proof. If C is θg-closed set then clθ(C) ⊆ V provided C ⊆ V and V ∈ τ. We know CD∗ ⊆ clθ(C) by

Lemma [1.1,5]. Thus CD∗ ⊆ V when C ⊆ V and V ∈ τ. �

Example 2.5. Consider Y = {l, a, j, f }, τ = {φ, Y, {l}, { j}, { f }, {l, j}, {l, f }{ j, f }, {l, j, f }} and I =

φ, {l}, {a}, {l, a}. If C = l, then C is gD∗-closed but not θg-closed.

Theorem 2.8. If C is a δ-closed set then C is gD∗-closed but the reverse implication is not true and can be
shown by an example.

Proof. If C is δ-closed then, C = clδ(C). Assume C ⊆ V and V is open. we know by Lemma [1.1,4]

clD∗(C) is a set of cl∗(C) also cl∗(C) ⊆ cl∗δ(C) ⇒ clD∗(C) ⊆ V when C is a set of V and V ∈ τ⇒ C is

gD∗-closed by Theorem [2.1,2]. �

Example 2.6. Consider Y = {e, i, j, f }, τ = {φ, Y, {e}, { j}, { f }, {e, j}, {e, f }, { j, f }, {e, j, f }} and I =

{φ, {e}, {i}, {e, i}}. If C = { j}, then C is gD∗-closed not δ-closed.

Theorem 2.9. If C is a g∆?-closed set then C is gD∗-closed but the reverse implication is not true and can
be shown by an example.

Proof. Suppose C is g∆?-closed⇒ Cδ∗ ⊆ V when C ⊆ V and V ∈ τ. Thus CD∗ ⊆ V when C ⊆ V and

V ∈ τ since CD∗ ⊆ Cδ∗ . Therefore C is gD∗-closed. �

Example 2.7. Consider Y = {e, i, j, f }, τ = {φ, Y, {e}, { j}, { f }, {e, j}, {e, f }, { j, f }, {e, j, f }} and I =

{φ, {e}, {i}, {e, i}}. If C = { f }, then C is gD∗-closed not g∗∆-closed.

Theorem 2.10. Every gs∆?-closed set is gD∗-closed.

Proof. Suppose C is gs∆?-closed implies Cδ∗ ⊆ V when C ⊆ V and V is a semi-open set. Thus

CD∗ ⊆ V when C ⊆ V and V ∈ τ since CD∗ ⊆ Cδ∗ and every open set is semi-open. Therefore C is

gD∗-closed. �

Remark 2.4. Counterexample to the converse of the above theorem is given below.
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Example 2.8. Consider Y = {e, i, j, f }, τ = {φ, Y, {e}, { j}, { f }, {e, j}, {e, f }, { j, f }, {e, j, f }} and I =

{φ, {e}, {i}, {e, i}}. If C = {e, j}, then C is gD∗-closed not gs∆?-closed.

Theorem 2.11. Every gD-closed set is gD∗-closed.

Proof. Suppose C is gD-closed⇒ cl(C) ⊆ V when C is a set of V and V ∈ τD. We know by Lemma

[1.1,4] clD∗(C) ⊆ cl∗(C) ⊆ cl(C) ⊆ V ∀ V ∈ τD
⇒ clD∗(C) ⊆ V when C ⊆ V and V is open ⇒ C is

gD∗-closed by Theorem [2.1,2]. �

Remark 2.5. Counterexample to the converse of the above theorem is given below.

Example 2.9. Y = {4, 5, 6, 7}, τ = {φ, Y, 4, {4, 5}, {4, 6, 7}} and I = {φ, {4}, {7}, {4, 7}}. Then C = {4, 6, 7}

is gD∗-closed not gD-closed.

Theorem 2.12. Every I-R-closed set is gD∗-closed.

Proof. We know I-R-closed set is a subset of Ig-closed set. Also, every Ig-closed set is gD∗-closed.

Thus Every I-R-closed set is gD∗-closed. �

Theorem 2.13. All Iĝ-closed sets are gD∗-closed.

Proof. We know all Iĝ-closed sets are αIg-closed sets also by Theorem [2.3] we know every

αIg-closed sets is gD∗-closed. Therefore all Iĝ-closed set is gD∗-closed. �

Theorem 2.14. Every gD-closed set is a g-closed set.

Proof. Suppose G be a gD-closed set⇒ cl(G) ⊆ V when G ⊆ V and V ∈ τD. Implies cl(G) ⊆ V when

G ⊆ V and V ∈ τ since τ ⊆ τD. Hence G is a g-closed set. �

Theorem 2.15. All gD-closed sets are gδ-closed. Converse of the theorem is not true and is proved using
an example.

Proof. Suppose G be a gD-closed set that is cl(G) ⊆ V provided G ⊆ V and V is ∆-open in Y.

Since all δ-open sets are ∆-open we get cl(G) ⊆ V provided G ⊆ V and V is δ-open. Therefore all

gD-closed set is gδ-closed. �

Example 2.10. Consider Y = {4, 8, 3, 7} and τ = {φ, Y, {4}, {8}, {4, 3, 7}}. If C = {4}, then C is gδ-closed
not gD-closed.

Theorem 2.16. Suppose Y is an ideal space, for all C ∈ I, C is gD∗-closed.

Proof. Assume C ⊆ V and V ∈ τ. If C ∈ I then CD∗ is empty by Lemma [1.1,6]⇒ CD∗ ⊆ V when

C ⊆ V and V ∈ τ⇒ C is gD∗-closed. �

Theorem 2.17. Suppose Y is an ideal space then for all C ⊆ Y, CD∗ is gD∗-closed.

Proof. Assume CD∗ ⊆ V and V ∈ τ. Since (CD∗)D∗ ⊆ CD∗ by Lemma [1.1,2] ⇒ (CD∗)D∗ ⊆ V when

CD∗ ⊆ V and V ∈ τ⇒ CD∗ is gD∗-closed. �
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Figure 1. The diagram illustrates the relationships between various generalized

closed sets that are discussed in the above stated theorems.

Theorem 2.18. Consider C is gD∗-closed set that is also open then C is D?-closed.

Proof. Given that C ∈ τ and C ⊆ C then since C is gD∗-closed, CD∗ ⊆ C implies that C is D?-closed. �

Theorem 2.19. Suppose Y is an ideal space and C is gD∗-closed, Then the below given are identical.

(1) C is D?-closed,
(2) clD∗(C) −C is a closed set,
(3) CD∗ −C is a closed set.

Proof. 1⇒ 2: If C is D?-closed⇒ CD∗ ⊆ C. clD∗(C) −C = (C∪CD∗) −C = CD∗ −C = φ. Therefore

clD∗(C) −C is a closed set.

2⇒ 3: Suppose clD∗(C) −C is a closed set. clD∗(C) −C = CD∗ −C⇒ CD∗ −C is a closed set.

3 ⇒ 1: Assume CD∗ − C is a closed set and C is gD∗-closed. ⇒ CD∗ − C = φ by Theorem [2.1,5].

Hence CD∗ ⊆ C. �

Theorem 2.20. Suppose Y is an ideal space, a set C of Y is D?-dense in itself and C is gD∗-closed implies
C is g-closed.

Proof. Assume C is D?-dense in itself then cl(C) = clD∗(C). Assume C ⊆ V and V ∈ τ, since C
is gD∗-closed ⇒ clD∗(C) ⊆ V by Theorem [2.1,2]. Thus cl(C) ⊆ V when C ⊆ V and V ∈ τ ⇒ C is

g-closed. �

Corollary 2.1. Suppose Y is an ideal space and I = φ then, C is gD∗-closed if and only if C is g-closed.

Proof. When I = φ implies CD∗ = cl(C) also C ⊆ cl(C) ⇒ C ⊆ CD∗ ⇒ C is D?-dense in itself.

Assuming C is gD∗-closed then by the above theorem C is g-closed. Conversely, assuming C is

g-closed then by Theorem [2.11] C is gD∗-closed. �

Theorem 2.21. Suppose Y is an ideal space. If H ⊆ M ⊆ HD∗ then HD∗ = MD∗ and M is D?-dense in
itself.
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Proof. If H ⊆ M ⇒ HD∗ ⊆ MD∗ . But M ⊆ HD∗ ⇒MD∗ ⊆ HD∗ ⇒ HD∗ = MD∗ . Also M ⊆ HD∗ = MD∗ .

Therefore D?-dense in itself. �

Theorem 2.22. Suppose Y is an ideal space with H and M as sets of Y, H is gD∗-closed and H ⊆M ⊆ clD∗(H)

implies M is gD∗-closed.

Proof. Assume H is gD∗-closed⇒ all closed sets in clD∗(H)−H are empty. We know clD∗(M)−M ⊆
clD∗(H) −H. Therefore all closed sets in clD∗(M) −M is empty ⇒ M is gD∗-closed by Theorem

[2.1,4]. �

Corollary 2.2. Suppose F and R are sets in Y which is an ideal space such that F is gD∗-closed and
F ⊆ R ⊆ FD∗ ⇒ F and R are g-closed .

Proof. Suppose F ⊆ R ⊆ FD∗ implies F ⊆ R ⊆ FD∗ ⊆ clD∗(F) and assume F is gD∗-closed then by the

above theorem R is gD∗-closed. Since F ⊆ R ⊆ FD∗ gives FD∗ = RD∗ and F, R are D?-dense in itself

by Theorem [2.21]. Then by Theorem [2.20] F and R are g-closed �

Theorem 2.23. Suppose C is a set in Y which is an ideal space, C is gD∗-open and intD∗(C) ⊆ R ⊆ C
implies R is gD∗-open.

Proof. Since R ⊆ C ⇒ clD∗(R) ⊆ clD∗(C) ⇒ clD∗(Y − C) ⊆ clD∗(Y − R). Also since intD∗(C) ⊆ R
implies intD∗(C) ⊆ intD∗(R)⇒ clD∗(Y−R) ⊆ clD∗(Y−C). Thus clD∗(Y−R) = clD∗(Y−C)⇒ clD∗(Y−
R) − (Y −R) ⊆ clD∗(Y −C) − (Y −C). Suppose C is gD∗-open then Y −C is gD∗-closed. By Theorem

[2.1,4] all closed sets of clD∗(Y − C) − (Y − C) are empty⇒ all closed sets of clD∗(Y − R) − (Y − R)
are empty⇒ Y −R is gD∗-closed⇒ R is gD∗-open. �

Theorem 2.24. Suppose Y is an ideal space and C is a set of Y, then the given below are comparable:

(1) C is gD∗-closed,
(2) C∪ (Y −CD∗) is gD∗-closed,
(3) CD∗ −C is gD∗-open.

Proof. 1 ⇒ 2: Assume C is gD∗-closed. If V ∈ τ such that C ∪ (Y − CD∗) ⊆ V ⇒ Y −V ⊆ Y − (C ∪
(Y − CD∗) = Y ∩ (C ∪ (CD∗)c)c = Y ∩ (Cc

∩ CD∗) = CD∗ − C. That is Y −V ⊆ CD∗ − C and since V
is an open set Y −V is a closed set. C is gD∗-closed hence all closed sets in CD∗ − C is empty by

Theorem [2.1,5] implies Y −V = φ ⇒ Y = V. Hence C ∪ (Y − CD∗) ⊆ V ⇒ C ∪ (Y − CD∗) ⊆ Y ⇒
(C∪ (Y −CD∗))D∗ ⊆ Y = V when C∪ (Y −CD∗) ⊆ V and V ∈ τ⇒ C∪ (Y −CD∗) is gD∗-closed.

2⇒ 1: Suppose C∪ (Y −CD∗) is gD∗-closed. Consider a closed set G such that it is a set in CD∗ −C
which implies G ⊆ CD∗ and G not in C⇒ G ⊆ Y −C. Thus Y −CD∗ ⊆ Y −G and C ⊆ Y −G implies

C∪ (Y −CD∗) ⊆ C∪ (Y −G) = Y −G also C∪ (Y −CD∗) is gD∗-closed⇒ (C∪ (Y −CD∗))D∗ ⊆ Y −G
⇒ CD∗ ⊆ Y−G⇒ G ⊆ Y−CD∗ which is a contradiction. Thus G = φ⇒ any closed set G in CD∗ −C
is empty⇒ C is gD∗-closed.

2⇔ 3: Y− (CD∗ −C) = Y∩ (CD∗ ∩Cc)c =Y∩ ((CD∗)c
∪C) = (Y∩ (CD∗)c)∪ (Y∩C) = (Y−CD∗)∪C.

Suppose CD∗ −C is gD∗-open⇔ Y − (CD∗ −C) is gD∗-closed⇔ C∪ (Y −CD∗) is gD∗-closed. �
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Theorem 2.25. If Y is an ideal space then, all sets in Y is gD∗-closed if and only if all open sets are D?-closed.

Proof. Suppose all sets in Y is gD∗-closed. Assume V ∈ τ in Y then V is gD∗-closed⇒ VD∗ ⊆ V⇒ V
is D?-closed. Suppose all open sets are D?-closed. If V is open and C ⊆ V ⊆ Y then, CD∗ ⊆ VD∗ ⊆ V
⇒ C is gD∗-closed. �

Theorem 2.26. C is a gD∗-closed set if and only if C = F −N where F is D?-closed and all closed sets in
N are empty.

Proof. Assume C is a gD∗-closed set. Consider N = CD∗ − C, then by Theorem [2.1,5], all closed

sets of N are empty. If F = clD∗(C) then F is D?-closed. F − N = (C ∪ CD∗) − (CD∗ − C) =

(C ∪ CD∗) ∩ (CD∗ ∩ Cc)c = C ∪ (CD∗ ∩ (CD∗)c) = C. Conversely, let C = F −N ⇒ C ⊆ F. Suppose

C ⊆ V and V ∈ τ. F−N ⊆ V ⇒ F−V ⊆ N. Thus F∩ (Y −V) ⊆ N. Since FD∗ ⊆ F, implies CD∗ ⊆ F.

Therefore CD∗ ∩ (Y −V) ⊆ F∩ (Y −V) ⊆ N⇒ CD∗ ∩ (Y −V) = φ⇒ CD∗ ⊆ V. �

Theorem 2.27. Suppose H and G are gD∗-closed sets in (Y, τ,I) if and only if union of H and G are
gD∗-closed

Proof. Suppose H ∪ G ⊆ V and V ∈ τ ⇒ H ⊆ V and G ⊆ V where V ∈ τ. Since H and G are

gD∗-closed⇔ HD∗ ⊆ V and GD∗ ⊆ V⇔ HD∗ ∪GD∗ ⊆ V. ⇔ (H ∪G)D∗ ⊆ V by Lemma [1.1,7]. �

Theorem 2.28. The intersection of two gD∗-closed sets is gD∗-closed.

Proof. Assume G and H are gD∗-closed. Consider G ∩H ⊆ V and V ∈ τ. ⇒ G ⊆ V and H ⊆ V
⇒ GD∗ ⊆ V and HD∗ ⊆ V where V ∈ τ.Then GD∗ ∩ HD∗ ⊆ V. Therefore (G ∩ H)∗D ⊆ V since

(G∩H)∗D ⊆ GD∗ ∩HD∗ by Lemma [1.1,8]. �

Theorem 2.29. Suppose H and G are gD∗-open sets in (Y, τ,I) then the intersection of H and G are
gD∗-open.

Proof. Y−H and Y−G are gD∗-closed since H and G are gD∗-open⇒ (Y−H)∪ (Y−G) is gD∗-closed

by using the previous theorem. Hence Y− (H∩G) is gD∗-closed. Therefore (H∩G) is gD∗-open. �

Definition 2.4. Suppose C is a non-empty gD∗-closed set of Y. Then C is said to be maximal gD∗-closed set
if any gD∗-closed set containing C is either C or Y.

Theorem 2.30. The following conditions hold for an ideal space Y:

(1) Suppose E is gD∗-closed and H is maximal gD∗-closed then either E∪H = Y or E ⊆ H.
(2) When E and H are maximal gD∗-closed sets then either E∪H = Y or E = H.

Proof. (1) Since H is maximal gD∗-closed it is obvious from the definition that E∪H = Y. Suppose

E∪H , Y then since H is maximal gD∗-closed E∪H = H⇒ E ⊆ H.

(2) Suppose E , H then since E and H are maximal gD∗-closed it implies that E∪H = Y. Suppose

E∪H , Y then by (1) E ⊆ H and H ⊆ E implies that E = H. �

Theorem 2.31. A set C of Y is gD∗-closed if Ker(C) is gD∗-closed.
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Proof. We know that for C ⊆ Y, C ⊆ Ker(C)⇒ CD∗ ⊆ (Ker(C))D∗ . Since Ker(C) is gD∗-closed implies

(Ker(C))D∗ ⊆ V when Ker(C) ⊆ V and V ∈ τ. Thus CD∗ ⊆ V when C ⊆ V and V ∈ τ. �

Conclusion

We defined gD∗-closed sets and gD-closed sets and made a comparative study between these

newly defined sets and some already existing closed sets such as θ-closed sets, δ-closed sets, g-

closed sets,?-closed sets andIg-closed sets. We also discuss some characterizations and properties

of gD∗-closed sets using definitions of kuratowski closure operator clD∗ , D?-closed sets and some

other sets.
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