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Abstract. In this paper, the main objective is to prove the existence of solutions U ∈ C([0,$], L2(Q)) for a hybrid

delay Itô-differential equation with stochastic feedback control, a problem that incorporates delay effects introducing

memory-like behavior into the system and leading to intricate dynamics. Additionally, the uniqueness of the solutions

with sufficient conditions are provided. Furthermore, the solutions with the continuous dependence on initial data and

certain functions, as well as the concept of Hyers-Ulam stability, are analyzed. These findings serve as a foundational

framework from which well-established results in the literature naturally emerge. The concluding section is dedicated

to applying these results to specific examples, illustrating the uniqueness and existence of solutions for hybrid delay

Itô-differential equations with stochastic feedback control. These examples not only validate the theoretical findings

but also enhance understanding by offering practical insights into the study of such equations.

1. Introduction

Stochastic differential equations have attracted significant attention because they can mathe-

matically describe the behavior of systems with random inputs or parameters. This is particularly

useful in fields such as finance, where they are used in market dynamics to model inherent un-

certainty and randomness. In physics and biology, researchers use stochastic integral equations to

analyze how random fluctuations affect the behavior of complex systems with random elements.

Engineers also use stochastic integral equations to understand and anticipate dynamic systems

under random disturbances and design powerful and flexible systems (see [1] - [3]).

One of the essential points of attention in the theoretical basis of stochastic analysis is discussing

the existence of a unique solution for stochastic integral equations. This process requires an

accurate understanding of many branches in mathematics: probability theory, functional analysis,
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measurement theory, and topology. Researchers use appropriate mathematical techniques, such as

fixed-point theory, to advance in this field; the authors prove the existence of one solution or more

for functional stochastic integral equations in Banach Algebra using Darbo’s fixed-point theorem

related to values of non-compactness [4]. The Schauder fixed-point theorem is applied in many

research studies; for example, El-Sayed and H-Fouad [5], [6] used it to show the existence of a mean

square continuous solution for the coupled systems of stochastic and random differential equations,

subject to a nonlinear nonlocal stochastic integral condition. Also, El-borai and Youssef [7] by

using it proved the uniqueness and existence of the solution for a nonlocal functional stochastic

differential equation in the space of all second-order integrable stochastic processes under sufficient

conditions.

Control theory is one of the branches of applied mathematics interested in studying the funda-

mental principles in the analysis and design of control systems. It has many applications across

various domains aimed at influencing the behavior of an object to achieve a desired result [8], [9].

Feedback control is one such topic, meaning that state measurements can be used to determine a

control action to achieve a desired outcome. It is widely used in everyday scenarios, from basic

home thermostats that maintain certain temperatures to sophisticated devices that keep commu-

nications satellites in position. Feedback control also occurs naturally, such as in the regulation of

blood sugar levels in the body. One added benefit of feedback control is that by examining the

output of a system, unstable processes can be stabilized.

Mao [10], [11] had made great progress in the study of stochastic differential delay equations with

feedback control, he was able to transform unstable stochastic differential problem into a mean-

square exponentially stable solution, and considered delay feedback controls for the exponential

mean-square stabilization of hybrid stochastic differential equations.

In addition, some researchers tended to study the dependence continuous of solutions on the

control variable, such as, El-Sayed et al. [12]- [16] proved that the solution of quadratic nonlinear

integral equations, hybrid delay functional integral equations and the cubic functional equations

subject to feedback control in the real half axis are dependent continuously on the control variable.

The hybrid problems (differential and integral) and the nonlocal boundary value problems have

been considered by some authors ( see, for example [17]- [20].

In our work, we let (Q,F ,℘) be a complete probability space occurring during the time interval

[0,$], ℘ is a probability measure and F is a σ−algebra of events defined on a sample space Q.

LetU ∈ C([0,$], L2(Q)) where C([0,$], L2(Q)) be the space of all second order mean square

(m.s) continuous stochastic processes on [0,$]. The norm ofU is given by

‖U(t) ‖2 =
√

E(U2(t)), ‖U‖C = sup
t∈[0,$]

‖U(t)‖2.

Here, we study the existence of mean square continuous solutions U ∈ C([0,$], L2(Q)) of the

feedback problem of the hybrid delay Itô−differential equation
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d(
U(t) − a(t)
Q(t,U(t))

) = F(t,U(ϑ(t)))dW1(t), U(0) = a(0), t ∈ (0,$] (1.1)

subject to the stochastic feedback control

a(t) =
∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ), t ∈ (0,$], (1.2)

where W1(t), W2(t) are two independent standard Brownian motions on a complete probability

space (Q,F ,℘) [2].

2. Quadratic Itô-integral Equation

Consider the feedback problem of the hybrid delay Itô−differential problem (1.1)-(1.2) under the

following hypotheses:

(A1) ϑ : [0,$]→ [0,$] be a continuous function provided that ϑ(t) ≤ t.
(A2) F : [0,$] × L2(Q) → L2(Q) is continuous in t ∈ [0,$], ∀ U ∈ L2(Q), continuous in U ∈

L2(Q),∀t ∈ [0,$] and there exists a positive constant β1 and a second order stochastic

process α1 ∈ C([0,$], L2(Q)), continuous in U ∈ L2(Q),∀t ∈ [0,$] such that

‖F(t,U)‖2 ≤ ‖α1‖C + β1‖U(t)‖2.

(A3) G : [0,$] × L2(Q) → L2(Q) is continuous in t ∈ [0,$], ∀ U ∈ L2(Q) continuous in U ∈

L2(Q),∀t ∈ [0,$] and there exists a positive constant β2 and a second order stochastic

process α2 ∈ C([0,$], L2(Q)) such that

‖G(t,U)‖2 ≤ ‖α2‖C + β2‖U(t)‖2.

(A4) Q : [0,$] × L2(Q) → R \ {0} is continuous in t for every U ∈ L2(Q), continuous in U ∈

L2(Q),∀t ∈ [0,$] and Lipschitz condition is satisfied for everyU1, U2 ∈ L2(Q) as

|Q(t,U1) −Q(t,U2)| ≤ β3 ‖U1(t) −U2(t)‖2, for every t ∈ [0,$], β3 ∈ R+.

From this hypotheses we can deduce that

|Q(t,U)| ≤ α3 + β3 ‖U(t)‖2, α3 = sup
t∈[0,$]

|Q(t, 0)|.

(A5) µ = (B
√
$− 1)2

− 4BA
√
$ > 0, B

√
$(1 + 2A) +

√
µ < 1, such that

A = max{‖α1‖C, ‖α2‖C,α3}, B = max{β1, β2, β3}

Lemma 2.1. The problem (1.1)-(1.2) equivalent to the quadratic Itô−stochastic integral equation

U(t) =
∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ) + Q(t,U(t))

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ) (2.1)

Proof. Using Itô− formula [21], [22], we deduce that the problem (1.1)-(1.2) equivalent to the

stochastic integral equation

U(t) − a(t)
Q(t,U(t))

=

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ).
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substituting the value of a(t) we obtain the Itô-stochastic integral equation (1.1). �

In order to achieve our main goal, studying the existence of solutions U ∈ C([0,$], L2(Q)) of

the nonlinear quadratic stochastic Itô−integral equation (2.1) which involving two independent

Brownian motions W1 and W2, we define the set Θ by

Θ = {U ∈ C([0,$], L2(Q)) : ‖U(t)‖2 ≤ r} ⊂ C([0,$], L2(Q)),

r =
1− B

√
$(1 + 2A) −

√
µ

2B2
√
$

.

It is clear that Θ is a nonempty, closed, bounded and convex set.

Following, we define the mapping F which is used to discuss the existence theory

FU(t) =
∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ) + Q(t,U(t))

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ). (2.2)

Theorem 2.1. Let the hypotheses (A1) − (A5) be satisfied, then there exists at least one solution U ∈
C([0,$], L2(Q)) of the the nonlinear quadratic stochastic Itô−integral equation involving two independent
Brownian motions (2.1).

Proof. LetU ∈ Θ, then we have

‖FU(t)‖2 ≤ ‖

∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ)‖2 + |Q(t,U(t))| ‖

∫ t

0
F(ζ,V(ϑ(ζ)))dW1(ζ)‖2

≤

√∫ $

t
‖G(ζ,U(ϑ(ζ)))‖22dζ+ |Q(t,U(t))|

√∫ t

0
‖F(ζ,U(ϑ(ζ)))‖22dζ

≤

√∫ $

t
(‖α2‖C + β2r)2dζ+ (α3 + β3r)

√∫ t

0
(‖α1‖C + β1r)2dζ

≤ (A + Br)
√
$+ (A + Br)2√$ = r.

By assumption (A5), this implies that the class {FU} is uniformly bounded and FU : Θ→ Θ.

LetU ∈ Θ and define

ϕ(δ) = sup{|Q(t2,U(t1)) −Q(t1,U(t1))| : t1, t2 ∈ [0,$], t1 < t2, |t2 − t1| < δ, ‖U(t)‖2 ≤ r},

Then from the uniformly continuity ofU and Q, we getϕ(δ)→ 0 as δ→ 0 is independent ofU ∈ Θ.
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Now, letU ∈ Θ, t1, t2 ∈ [0,$], t1 < t2 such that |t2 − t1| < δ,

FU(t2) −FU(t1) =

∫ $

t2

G(ζ,U(ϑ(ζ)))dW2(ζ) + Q(t2,U(t2))

∫ t2

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

−

∫ $

t1

G(ζ,U(ϑ(ζ)))dW2(ζ) −Q(t1,U(t1))

∫ t1

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

=

∫ t1

t2

G(ζ,U(ϑ(ζ)))dW2(ζ) + Q(t2,U(t2)))

∫ t2

t1

F(ζ,U(ϑ(ζ)))dW1(ζ)

+ (Q(t2,U(t2)) −Q(t1,U(t1)))

∫ t1

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

But

|Q(t2,U(t2)) −Q(t1,U(t1))| = |Q(t2,U(t2)) −Q(t2,U(t1)) + Q(t2,U(t1)) −Q(t1,U(t1))|

≤ β3||U(t2))) −U(t1))||2 + ϕ(δ)

≤ β3 ε+ ϕ(δ),

sinceU ∈ Θ, then ||U(t2))) −U(t1))||2 ≤ ε→ 0 as δ→ 0, then we have

‖FU(t2) −FU(t1)‖2 ≤ ||

∫ t1

t2

G(ζ,U(ϑ(ζ)))dW2(ζ)||2 + |Q(t2,U(t2)))| ||

∫ t2

t1

F(ζ,U(ϑ(ζ)))dW1(ζ)||2

+ |Q(t2,U(t2)) −Q(t1,U(t1))| ||

∫ t1

0
F(ζ,U(ϑ(ζ)))dW1(ζ)||2

≤
√

t2 − t1(A + Br) + |Q(t2,U(t2))|
√

t2 − t1(A + Br)

+ (β3 ε) + ϕ(δ))(A + Br)
√
$

This implies that

‖FU(t2) −FU(t1)‖2 → 0 as δ→ 0,

and the class of function {FU} is equicontinuous. Therefore the closure of {FU} is a compact

subset of C (Arzelà-Ascoli theorem [3]).

Now, consider Un ∈ Θ being such that L.i.mn→∞Un = U w.p.1 where L.i.m denotes the limit

of the continuous second order process in the mean square sense ( [21]- [23]), when we apply

Lebesgue dominated theorem [24], we can obtain

L.i.mn→∞FUn = L.i.mn→∞{

∫ $

t
G(ζ,Un(ϑ(ζ))))dW2(ζ)

+ Q(t,Un(t))
∫ t

0
F(ζ,Un(ϑ(ζ)))dW1(ζ)}

=

∫ $

t
G(ζ, L.i.mn→∞Un(ϑ(ζ)))dW2(ζ)

+ Q(t, L.i.mn→∞Un(t))
∫ t

0
F(ζ, L.i.mn→∞Un(ϑ(ζ)))dW1(ζ)}
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=

∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ) + Q(t,U(t))

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ) = FU.

This implies that the operator F : Θ → Θ is continuous, here applying Schauder fixed point

theorem [3] and [24], there exists at least one solutionU ∈ C of the nonlinear quadratic stochastic

Itô−integral equation (2.1). �

3. Uniqueness of The Solution

To discuss the uniqueness of solution of the problem (1.1)-(1.2), let us replace hypotheses

(A2), (A3) by

(A2∗) F : [0,$] × L2(Q) → L2(Q) is continuous in t ∈ [0,$], ∀ U ∈ L2(Q) and satisfies Lipschitz

condition

‖F(t,U(t)) − F(t,V(t))‖2 ≤ β1‖U(t) −V(t)‖2. (3.1)

(A3∗) G : [0,$] × L2(Q) → L2(Q) is continuous in t ∈ [0,$], ∀ U ∈ L2(Q) and satisfies Lipschitz

condition

‖G(t,U(t)) −G(t,V(t))‖2 ≤ β2‖U(t) −V(t)‖2. (3.2)

Theorem 3.1. Let the hypotheses (A1), (A2∗) − (A3∗) and (A4) − (A5) be satisfied, then the solution
U ∈ C([0,$], L2(Q)) of the problem (1.1) and (1.2) is unique.

Proof. LetU1 andU2 be two solutions of the integral equation (2.1)

U1(t) −U2(t) =

∫ $

t
G(ζ,U1(ϑ(ζ)))dW2(ζ) −

∫ $

t
G(ζ,U2(ϑ(ζ)))dW2(ζ)

+ Q(t,U1(t))
∫ t

0
F(ζ,U1(ϑ(ζ)))dW1(ζ) −Q(t,U2(t))

∫ t

0
F(ζ,U2(ϑ(ζ)))dW1(ζ)

=

∫ $

t
[G(ζ,U1(ϑ(ζ))) −G(ζ,U2(ϑ(ζ)))]dW2(ζ)

+ Q(t,U1(t))
∫ t

0
[F(ζ,U1(ϑ(ζ))) − F(ζ,U2(ϑ(ζ)))]dW1(ζ)

+ [Q(t,U1(t)) −Q(t,U2(t))]
∫ t

0
F(ζ,U2(ϑ(ζ)))dW1(ζ),

then we can get

‖U1(t) −U2(t)‖2 ≤ ‖

∫ $

t
[G(ζ,U1(ϑ(ζ))) −G(ζ,U2(ϑ(ζ)))]dW2(ζ)‖2

+ |Q(t,U1(t))| ‖
∫ t

0
[F(ζ,U1(ϑ(ζ))) − F(ζ,U2(ϑ(ζ)))]dW1(ζ)‖2

+ |Q(t,U1(t)) −Q(t,U2(t))| ‖
∫ t

0
F(ζ,U2(ϑ(ζ)))dW1(ζ)‖2

≤ B‖U1 −U2‖C
√
$+ (A + B‖U1‖C)(B‖U1 −U2‖C)

√
$

+ B‖U1 −U2‖C(A + B‖U2‖C)
√
$
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≤ B
√
$(1 + 2A + 2Br)‖U1 −U2‖C.

This gives that

[1− B
√
$(1 + 2A + 2Br)]‖U1 −U2‖C =

√
µ‖U1 −U2‖C ≤ 0.

Then

‖U1 −U2‖C = 0

andU1 = U2 which proves the uniqueness of the solution to the problem (1.1), (1.2). �

4. Continuous Dependence

Stability is one of the essential characteristics of the quality of the solution of any problem, and

if we can prove that the solution of the problem (1.1)-(1.2) dependents continuously on some of the

parameters of the problem, we guarantee stability of the solution on these parameters. Here, we

set the definition of the continuous dependence of the solution. So, the following theorems prove

that the solution of the problem (1.1)–(1.2) dependents continuously on three functions G, Q and

F.

Definition 4.1. The solution U ∈ C([0,$], L2(Q)) of the problem (1.1)–(1.2) depends continuously on
the random function G if for all ε > 0, there exists δ1 > 0 such that

‖G(t,U(t)) −G∗(t,U(t))‖2 ≤ δ1 implies that ‖ U −U∗ ‖C ≤ ε.

whereU∗ be the solution of

U
∗(t) =

∫ $

t
G∗(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q(t,U∗(t))

∫ t

0
F(ζ,U∗(ϑ(ζ)))dW1(ζ).

Theorem 4.1. The unique solution of the problem (1.1)- (1.2) is continuous dependent on the random
function G.

Proof. LetU∗ be the solution of

U
∗(t) =

∫ $

t
G∗(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q(t,U∗(t))

∫ t

0
F(ζ,V∗(ϑ(ζ)))dW1(ζ),

such that ‖G(t,U(t)) −G∗(t,U(t))‖2 ≤ δ1. Then we have

U(t) −U∗(t) =

∫ $

t
[G(ζ,U(ϑ(ζ))) −G∗(ζ,U∗(ϑ(ζ)))]dW2(ζ)

+ Q(t,U(t))
∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ) −Q(t,U∗(t))

∫ t

0
F(ζ,U∗(ϑ(ζ)))dW1(ζ)

=

∫ $

t
[G(ζ,U(ϑ(ζ))) −G(ζ,U∗(ϑ(ζ)))]dW2(ζ)

+

∫ $

t
[G(ζ,U∗(ϑ(ζ))) −G∗(ζ,U∗(ϑ(ζ)))]dW2(ζ)

+ [Q(t,U(t)) −Q(t,U∗(t))]
∫ t

0
F(ζ,U∗ϑ(ζ)))dW1(ζ)
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+ Q(t,U∗(t))
∫ t

0
[F(ζ,U(ϑ(ζ))) − F(ζ,U∗(ϑ(ζ)))]dW1(ζ),

then

‖U(t) −U∗(t)‖2 ≤ (δ1 + B‖U −U∗‖C)
√
$+ B‖U −U∗‖C(A + Br)

√
$

+ (A + Br)B‖V −V∗‖C
√
$,

and we can obtain that

[1− B
√
$(1− 2A + 2Br)]‖U −U∗‖C ≤ δ1

√
$,

which completes our result

‖U −U
∗
‖C ≤

δ1
√
$

√
µ

= ε.

�

Definition 4.2. The solution U ∈ C([0,$], L2(Q)) of the problem (1.1)–(1.2) depends continuously on
the function Q if for all ε > 0, there exists δ2 > 0 such that

|Q(t,U(t)) −Q∗(t,U(t))| ≤ δ2 implies that ‖ U −U∗ ‖C≤ ε.

whereU∗ be the solution of

U
∗(t) =

∫ $

t
G(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q∗(t,U∗(t))

∫ t

0
F(ζ,U∗(ϑ(ζ)))dW1(ζ).

Theorem 4.2. The unique solution of the problem (1.1)- (1.2) is continuous dependent on the random
function Q.

Proof. LetU∗ be the solution of

U
∗(t) =

∫ $

t
G(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q∗(t,U∗(t))

∫ t

0
F(ζ,U∗(ϑ(ζ)))dW1(ζ),

such that ‖Q(t,U(t)) −Q∗(t,U(t))‖2 ≤ δ2. That implies

U(t) −U∗(t) =

∫ $

t
[G(ζ,U(ϑ(ζ))) −G(ζ,U∗(ϑ(ζ)))]dW2(ζ)

+ [Q(t,U(t)) −Q(t,U∗(t))]
∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

+ [Q(t,U∗(t)) −Q∗(t,U∗(t))]
∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

+ Q∗(t,U∗(t))
∫ t

0
[F(ζ,U(ϑ(ζ))) − F(ζ,U∗(ϑ(ζ)))]dW1(ζ),

then

‖U(t) −U∗(t)‖2 ≤ B
√
$‖U −U∗‖C + B

√
$(A + Br)‖U −U∗‖C

+ δ2
√
$(A + Br) + B(A + Br)

√
$‖U −U∗‖C
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arriving at

[1− B
√
$(1− 2A + 2Br)]‖U −U∗‖C ≤ δ2

√
$(A + Br),

resulting in

‖U −U
∗
‖C ≤

δ2
√
$(A + Br)
√
µ

= ε,

thus completing the proof. �

Definition 4.3. The solution U ∈ C([0,$], L2(Q)) of the problem (1.1)–(1.2) depends continuously on
the function F if for all ε > 0, there exists δ3 > 0 such that

|F(t,U(t)) − F∗(t,U(t))| ≤ δ3 implies that ‖ U −U∗ ‖C≤ ε.

whereU∗ be the solution of

U
∗(t) =

∫ $

t
G(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q(t,U∗(t))

∫ t

0
F∗(ζ,U∗(ϑ(ζ)))dW1(ζ).

Theorem 4.3. The unique solution of the problem (1.1)- (1.2) is continuous dependent on the random
function F.

Proof. LetU∗ be the solution of

U
∗(t) =

∫ $

t
G(ζ,U∗(ϑ(ζ)))dW2(ζ) + Q(t,U∗(t))

∫ t

0
F∗(ζ,U∗(ϑ(ζ)))dW1(ζ),

such that ‖F(t,U(t)) − F∗(t,U(t))‖2 ≤ δ3. Then we get

U(t) −U∗(t) =

∫ $

t
[G(ζ,U(ϑ(ζ))) −G(ζ,U∗(ϑ(ζ)))]dW2(ζ)

+ Q(t,U(t))
∫ t

0
[F(ζ,U(ϑ(ζ))) − F(ζ,U∗(ϑ(ζ)))]dW1(ζ)

+ Q(t,V(t))
∫ t

0
[F(ζ,U∗(ϑ(ζ))) − F∗(ζ,U∗(ϑ(ζ)))]dW1(ζ)

+ [Q(t,U(t)) −Q(t,U∗(t))]
∫ t

0
F∗(ζ,U∗ϑ(ζ)))dW1(ζ)

then

‖U(t) −U∗(t)‖2 ≤ B
√
$‖U −U∗‖C + B

√
$(A + Br)‖U −U∗‖C

+ δ3
√
$(A + Br) + B(A + Br)

√
$‖U −U∗‖C

we get to

[1− B
√
$(1− 2A + 2Br)]‖U −U∗‖C ≤ δ3

√
$(A + Br),

resulting in

‖U −U
∗
‖C ≤

δ3
√
$(A + Br)
√
µ

= ε,

and the proof is done. �
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5. Hyers-Ulam Stability

One of the most important ways to study the stability of the problems of differential equations

is Hyers-Ulam stability (see [25]- [27]). Below we present our definition and theorem to discuss

Hyers-Ulam stability in relation to our problem (1.1)-(1.2).

Definition 5.1. Let the solutionU ∈ C([0,$], L2(Q)) of the problem (1.1)-(1.2) exists, then the problem
(1.1)-(1.2) is Hyers-Ulam stable if for every κ > 0, ∃ δ(κ) such that for any δ−approximate solutionUs of
the problem (1.1)-(1.2) satisfies,∣∣∣∣∣∣

∣∣∣∣∣∣Us −

∫ $

t
G(ζ,Us(ϑ(ζ)))dW2(ζ) −Q(t,Us(t))

∫ t

0
F(ζ,Us(ϑ(ζ)))dW1(ζ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2
≤ δ (5.1)

implies ‖ Us −U ‖C < κ.

Theorem 5.1. Let the hypotheses of Theorem 2.1 be satisfied. Then the problem (1.1)-(1.2) is Hyers-Ulam
stable.

Proof. Let Us and U be the approximate and exact solutions of the problem (1.1)-(1.2), then

Us(t) −U(t) = Us(t) −
∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ) −Q(t,U(t))

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ)

= Us −

∫ $

t
G(ζ,Us(ϑ(ζ)))dW2(ζ) −Q(t,Us(t))

∫ t

0
F(ζ,Us(ϑ(ζ)))dW1(ζ)

+

∫ $

t
[G(ζ,Us(ϑ(ζ))) −G(ζ,U(ϑ(ζ)))]dW2(ζ)

+ Q(t,Us(t))
∫ t

0
[F(ζ,Us(ϑ(ζ))) − F(ζ,U(ϑ(ζ)))]dW1(ζ)

+ [Q(t,Us(t)) −Q(t,U(t))]
∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ),

using (5.1), then we can get

‖Us(t) −U(t)‖2 ≤ δ+ ‖

∫ $

t
[G(ζ,Us(ϑ(ζ))) −G(ζ,U(ϑ(ζ)))]dW2(ζ)‖2

+ |Q(t,Us(t))| ‖
∫ t

0
[F(ζ,Us(ϑ(ζ))) − F(ζ,U(ϑ(ζ)))]dW1(ζ)‖2

+ |Q(t,Us(t)) −Q(t,U(t))| ‖
∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ)‖2

≤ δ+ B‖Us −U‖C
√
$+ (A + B‖Us‖C)(B‖Us −U‖C)

√
$

+ B‖Us −U‖C(A + B‖U‖C)
√
$

≤ δ+ B
√
$(1 + 2A + 2Br)‖Us −U‖C.

This implies that

[1− B
√
$(1 + 2A + 2Br)]‖Us −U‖C =

√
µ‖Us −U‖C ≤ δ.
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Then

‖Us −U‖C ≤
δ
√
µ
= κ

and the problem (1.1)-(1.2) is Hyers-Ulam stable. �

6. Examples

(I) Let Q(t,U(t)) = 1. Then our results can be applied to the delay Itô−differential equation

d(U(t) − a(t)) = F(t,U(ϑ(t)))dW1(t), U(0) = a(0), t ∈ (0,$] (6.1)

with stochastic feedback control

a(t) =
∫ $

t
G(ζ,U(ζ))dW2(ζ)

with the solution

U(t) =
∫ $

t
G(ζ,U(ζ))dW2(ζ) +

∫ t

0
F(ζ,U(ϑ(ζ)))dW1(ζ). (6.2)

(II) Let Q(t,U(t)) = 1, $ = 1, and ϑ = tα, α ≥ 1 . Then our results can be applied to the

delay Itô−differential equation

d(U(t) − a(t)) = F(t,U(tα))dW1(t), U(0) = a(0), t ∈ (0, 1] (6.3)

with stochastic feedback control

a(t) =
∫ 1

t
G(ζ,U(ζα))dW2(ζ)

with the solution

U(t) =
∫ 1

t
G(ζ,U(ζα))dW2(ζ) +

∫ t

0
F(ζ,U(ζα))dW1(ζ). (6.4)

(III) Study the hybrid Itô−differential equation

d(
U(t) − a(t)

t3+‖U(t)‖2
20(1+‖U(t)‖2)

) =
tU(tα)

16(1 + ‖U(tα)‖2)
dW1(t), α ≥ 1, t ∈ (0,

1
4
] (6.5)

with stochastic feedback control

a(t) =
∫ 1

4

t

e−ζU(ζα)

30 + ζ2 dW2(ζ), (6.6)

where

‖F(t,U(ϑ(t)))‖2 =
|t|
16
‖
U(tα)

1 + ‖U(tα)‖2
‖2 ≤

1
64

+
‖U(t)‖2

64
,

‖G(t,U(ϑ(t)))‖2 = |
e−t

30 + t2 | ‖U(tα)‖2 ≤
‖U(t)‖2

30
,

|Q(t,U(t))| = |
t3 + ‖U(t)‖2

20(1 + ‖U(t)‖2)
| ≤

1
20

[
1
64

+ ‖U(t)‖2].
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Easily, the problem (6.5)- (6.6) satisfies all the hypotheses (A1) − (A5) of Theorem 2.1 with

A = 1
64 , B = 1

20 , µ = 0.9490625, we see that the problem (6.5)- (6.6) on [0, 1
4 ] has at least one

solution. In addition, the functions F, Q and G satisfy the Lipschitz conditions (A2∗), (A3∗)

and (A4) then the solution is unique.

7. Conclusions

In this study, we investigated the uniqueness and stability of solutions U ∈ C([0,$], L2(Q)) for

hybrid delay Itâ−differential equations

d(
U(t) − a(t)
Q(t,U(t))

) = F(t,U(ϑ(t)))dW1(t), U(0) = a(0), t ∈ (0,$]

subject to the stochastic feedback control

a(t) =
∫ $

t
G(ζ,U(ϑ(ζ)))dW2(ζ), t ∈ (0,$].

By incorporating delay effects, we demonstrated sufficient conditions when the solution is unique

and explored the continuous dependence of the solutions on initial data and specific functions

such as G; Q and F. Additionally, the concept of Hyers-Ulam stability was analyzed to establish a

robust theoretical foundation. Our results provide a comprehensive framework that bridges theo-

retical findings with practical applications in different fields, such as engineering, ecology, physics,

biology and others. To illustrate the applicability of these results, we presented several examples

and spatial cases that validate the existence and uniqueness of solutions, further enhancing the

understanding of such problems. These examples not only highlight the relevance of our findings

but also offer a clear pathway for extending this work to broader contexts. Future research may

focus on refining these techniques or applying them to more complex problems with additional

stochastic influences.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] C.P. Tsokos, W.J. Padgett, Stochastic Integral Equations in Life Sciences and Engineering, Int. Stat. Rev. 41 (1973),

15–38. https://www.jstor.org/stable/1402785.

[2] S. Cai, Y. Cai, X. Mao, A Stochastic Differential Equation SIS Epidemic Model with Two Correlated Brownian

Motions, Nonlinear Dyn. 97 (2019), 2175–2187. https://doi.org/10.1007/s11071-019-05114-2.

[3] R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, 1977.

[4] A. Deep, S. Abbas, B. Singh, et al. Solvability of Functional Stochastic Integral Equations via Darbo’s Fixed Point

Theorem, Alexandria Eng. J. 60 (2021), 5631–5636. https://doi.org/10.1016/j.aej.2021.04.024.

[5] A.M.A. El-Sayed, H.A. Fouad, On a Coupled System of Random and Stochastic Nonlinear Differential Equations

with Coupled Nonlocal Random and Stochastic Nonlinear Integral Conditions, Mathematics 9 (2021), 2111. https:

//doi.org/10.3390/math9172111.

https://www.jstor.org/stable/1402785
https://doi.org/10.1007/s11071-019-05114-2
https://doi.org/10.1016/j.aej.2021.04.024
https://doi.org/10.3390/math9172111
https://doi.org/10.3390/math9172111


Int. J. Anal. Appl. (2025), 23:214 13

[6] A.M.A. El-Sayed, M. Abdurahman, H.A. Fouad, Existence and Stability Results for the Integrable Solution of a

Singular Stochastic Fractional-Order Integral Equation with Delay, J. Math. Comput. Sci. 33 (2023), 17–26. https:

//doi.org/10.22436/jmcs.033.01.02.

[7] M.M. Elborai, M.I. Youssef, On Stochastic Solutions of Nonlocal Random Functional Integral Equations, Arab J.

Math. Sci. 25 (2019), 180–188. https://doi.org/10.1016/j.ajmsc.2018.11.004.

[8] R. Sakthivel, J.-H. Kim, N.I. Mahmudov, On Controllability of Nonlinear Stochastic Systems, Rep. Math. Phys. 58

(2006), 433–443. https://doi.org/10.1016/S0034-4877(06)80963-8.

[9] N.I. Mahmudov, Mean Square Finite-Approximate Controllability of Semilinear Stochastic Differential Equations

with Non-Lipschitz Coefficients, Mathematics 11 (2023), 639. https://doi.org/10.3390/math11030639.

[10] X. Mao, J. Lam, L. Huang, Stabilisation of Hybrid Stochastic Differential Equations by Delay Feedback Control,

Syst. Control Lett. 57 (2008), 927–935. https://doi.org/10.1016/j.sysconle.2008.05.002.

[11] X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of Hybrid Stochastic Differential Equations by Feedback Control

Based on Discrete-Time State Observations, Syst. Control Lett. 73 (2014), 88–95. https://doi.org/10.1016/j.sysconle.

2014.08.011.

[12] S.M. Al-Issa, A.M.A. El-Sayed, H.H.G. Hashem, An Outlook on Hybrid Fractional Modeling of a Heat Controller

with Multi-Valued Feedback Control, Fractal Fract. 7 (2023), 759. https://doi.org/10.3390/fractalfract7100759.

[13] A.M.A. El-Sayed, H.H.G. Hashem, S.M. Al-Issa, Analytical Contribution to a Cubic Functional Integral Equation

with Feedback Control on the Real Half Axis, Mathematics 11 (2023), 1133. https://doi.org/10.3390/math11051133.

[14] A.M.A. El-Sayed, H.H.G. Hashem, Integrable and Continuous Solutions of a Nonlinear Quadratic Integral Equa-

tion, Electron. J. Qual. Theory Differ. Equ. 25 (2008), 1–10.

[15] A.M.A. El-Sayed, F. Gaafar, M. El-Gendy, Continuous Dependence of the Solution of Ito Stochastic Differential

Equation with Nonlocal Conditions, Appl. Math. Sci. 10 (2016), 1971–1982. https://doi.org/10.12988/ams.2016.64135.

[16] A.M.A. El-Sayed, H.H.G. Hashem, S.M. Al-Issa, An Implicit Hybrid Delay Functional Integral Equation: Exis-

tence of Integrable Solutions and Continuous Dependence, Mathematics 9 (2021), 3234. https://doi.org/10.3390/

math9243234.

[17] M.I. Abbas, M.A. Ragusa, On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives

of a Function with Respect to a Certain Function, Symmetry 13 (2021), 264. https://doi.org/10.3390/sym13020264.

[18] M.S. Alwan, X. Liu, Recent Results on Stochastic Hybrid Dynamical Systems, J. Control Decis. 3 (2016), 68–103.

https://doi.org/10.1080/23307706.2016.1143787.

[19] B.C. Dhage, V. Lakshmikantham, Basic Results on Hybrid Differential Equations, Nonlinear Anal.: Hybrid Syst. 4

(2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005.

[20] B.C. Dhage, Hybrid Fixed Point Theory in Partially Ordered Normed Linear Spaces and Applications to Fractional

Integral Equations, Differ. Equ. Appl. 5 (2013), 155–184. https://doi.org/10.7153/dea-05-11.

[21] T.T. Soong, Random Differential Equations in Science and Engineering, Academic Press, 1973.

[22] E. Wong, Stochastic Processes in Information and Dynamical Systems, McGraw-Hill, 1971.

[23] N.V. Krylov, On Itô’s Stochastic Integral Equations, Theory Probab. Appl. 14 (1969), 330–336. https://doi.org/10.

1137/1114042.

[24] A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis, Courier Corporation, 1975.

[25] R.P. Agarwal, S. Hristova, D. O’Regan, Ulam Stability for Boundary Value Problems of Differential Equations—Main

Misunderstandings and How to Avoid Them, Mathematics 12 (2024), 1626. https://doi.org/10.3390/math12111626.

[26] N. Limpanukorn, P.S. Ngiamsunthorn, Existence and Ulam Stability of Solution to Fractional Order Hybrid Dif-

ferential Equations of Variable Order, Thai J. Math. 18 (2020), 453–463.

[27] J. Huang, Y. Li, Hyers–Ulam Stability of Delay Differential Equations of First Order, Math. Nachr. 289 (2016), 60–66.

https://doi.org/10.1002/mana.201400298.

https://doi.org/10.22436/jmcs.033.01.02
https://doi.org/10.22436/jmcs.033.01.02
https://doi.org/10.1016/j.ajmsc.2018.11.004
https://doi.org/10.1016/S0034-4877(06)80963-8
https://doi.org/10.3390/math11030639
https://doi.org/10.1016/j.sysconle.2008.05.002
https://doi.org/10.1016/j.sysconle.2014.08.011
https://doi.org/10.1016/j.sysconle.2014.08.011
https://doi.org/10.3390/fractalfract7100759
https://doi.org/10.3390/math11051133
https://doi.org/10.12988/ams.2016.64135
https://doi.org/10.3390/math9243234
https://doi.org/10.3390/math9243234
https://doi.org/10.3390/sym13020264
https://doi.org/10.1080/23307706.2016.1143787
https://doi.org/10.1016/j.nahs.2009.10.005
https://doi.org/10.7153/dea-05-11
https://doi.org/10.1137/1114042
https://doi.org/10.1137/1114042
https://doi.org/10.3390/math12111626
https://doi.org/10.1002/mana.201400298

	1. Introduction
	2. Quadratic It-integral Equation 
	3.  Uniqueness of The Solution
	4. Continuous Dependence
	5. Hyers-Ulam Stability
	6. Examples
	7. Conclusions
	 Conflicts of Interest:

	References

