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Abstract. The representation of a spherical picture fuzzy set (SPFS) employs a spherical framework to depict uncertainty

across positive, negative, and neutral membership functions, effectively capturing the vagueness inherent in these

degrees. Through this structure, SPFS enable nuanced decision-making, supported by novel ranking mechanisms,

parametric distance measures and Euclidean distance evaluations. Additionally, an extended version of the spherical

picture fuzzy Bonferroni method is introduced, tailored to MCDM scenarios. Applied to diverse stakeholder contexts,

this approach overcomes the limitations of traditional averaging methods, offering a comprehensive representation of

collective opinions within a spherical framework. In contrast to conventional picture fuzz set theories, our research

introduces the SPFS, revolutionizing decision-making paradigms with its geometric model.

1. Introduction

Multi-Criteria Decision Making (MCDM) stands as a pivotal discipline addressing the intricacies

inherent in decision-making processes, particularly when confronted with multiple and often

conflicting criteria. Rather than relying on singular metrics, decision-makers must weigh and

balance numerous factors, each contributing to the overall outcome. MCDM offers a systematic

framework and an array of methodologies to navigate such complex landscapes, empowering

decision-makers to make well-informed and effective choices. Its significance spans across diverse

domains, including engineering, economics, environmental management, healthcare, and public

policy. For instance, in engineering, MCDM aids in selecting optimal designs among competing
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alternatives, while in healthcare, it assists in treatment selection by integrating clinical effectiveness,

patient preferences, and cost-effectiveness. Within the domain of MCDM, PFSs play a pivotal role,

finding applications across a myriad of fields. Several existing MCDM methods employing PFSs

include PF WASPAS [36], PF Analytic Hierarchy Process (AHP) [14], PF TOPSIS [19], PF Electre [24],

PF Promethee [39], PF Simple Additive Weighting (SAW) [15], PF Additive Ratio Assessment

(ARAS) [20], and PF Measurement of Alternatives and Ranking according to Compromise Solution

(MARCOS) [1]. In machine learning, algorithm selection and hyperparameter tuning profoundly

impact model performance and predictive accuracy. Conventional approaches often fall short

in capturing nuanced relationships between algorithms and parameters, leading to sub optimal

outcomes. Here, a MCDM approach emerges as a promising solution, offering a systematic

framework for algorithm selection and hyperparameter tuning. By considering multiple criteria

simultaneously such as predictive accuracy, computational efficiency, and model interpretability

this approach aims to identify the most suitable algorithm and parameter configuration for a given

task.

Introducing the concept of SPFS, our research proposes a novel geometric model transcending

conventional PF set theories. Leveraging SPFS, we present a sophisticated framework for algo-

rithm selection and hyperparameter tuning, enhancing decision-making clarity and effectiveness

in machine learning tasks. By integrating SPFS based representations with specialized operators

and distance measures, our approach offers a robust and intuitive framework for navigating the

complexities of algorithm selection and hyperparameter optimization. Building upon existing

research, such as "A Multi-Criteria Decision Making Approach for Algorithm Selection and Hy-

perparameter Tuning in Machine Learning," our study aims to extend traditional decision-making

methods by incorporating SPFS based representations and methodologies. Through empirical

validation and practical applications, we seek to demonstrate the efficacy and superiority of our

proposed approach in enhancing model performance and facilitating informed decision-making

in machine learning tasks.

2. Literature review

The notion of FSs (FSs) introduced by Zadeh [44] . Any real integer between 0 and 1 in

FSs represents the membership degree of each element in the discourse universe. A number of

applications of FSs have been demonstrated [3], [7], [30], [33], and [37]. Extending this notion,

Atanassov [4] used it to Intuitionistic FSs (IFSs), where each element’s membership is indicated

by both a membership and non-membership grade. Applications for IFSs have been studied

in several studies [2], [8], [18], [27], [35]. The PF Sets (PFSs) introduced by Cuong [9] [10] are

additional expansions of this framework wherein each element’s membership is defined by its

positive, neutral, and negative membership. The BM (BM) [6], introduced by Bonferroni in 1950, is

a widely used aggregation operator in decision-making and data fusion processes. It calculates the

weighted average of input values, where the weights are determined by the relative importance of
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each value in the aggregation process. The BM is particularly useful when dealing with uncertain

or imprecise information, as it allows for the incorporation of multiple sources of data while

considering their respective significance. In [40], different variations of BM based PF pattern

tree models are introduced and utilized for the classification of epileptic EEG signals. Using PF

Aczel-Alsina power BM operator, weighted PF Aczel-Alsina power BM operator, PF Aczel-Alsina

power geometric BM operator, and weighted geometric PF Aczel-Alsina power BM operator, the

selection of capable research scientists to handle MADM issues under the framework of PF values

is done in [29]. Ateş, F. and Akay, D. utilized MCDM in [5] to apply an PFBM operator to the

implementation of an enterprise resource planning (ERP) system for an organization.

The following motivates to present spherical picture fuzzy set. Li et. al. [25] presented a

multi-attribute group decision-making method based on the Elimination and Choice Translating

Reality (EDAS) technique within a PF environment. An emergency management center (EMC)

aims to select an optimal emergency alternative from four feasible options. A committee of

three experts evaluates the alternatives and selects the most suitable emergency alternative,

with the average value of their assessments used for the collective decision matrix. Peng &

Chen [31], proposed a comprehensive approach to group decision-making on a large scale is

proposed, utilizing hesitancy degrees and accounting for non-cooperative behaviors within the

framework of PF information. Thirty decision makers are involved in evaluating the criteria

of each alternative and consolidating the values using a uniform PF linguistic scale. Kou et.

al. [23] introduced an integrated framework of quantum PF rough sets incorporating golden

cuts, aimed at evaluating investment decision policies for sustainable industries based on carbon

footprint considerations. Three decision makers analyze the data and take the average of their

evaluations to create a collective decision matrix. Kamber et al. [21] introduced a methodology

for prioritizing drip-irrigation pump alternatives in agricultural settings, utilizing an integrated

approach combining PF Best Worst Method (BWM) and Complex Proportional Assessment

(CODAS). Two decision makers analyze the data and take the average of their evaluations to

create an average decision matrix. Švadlenka et. al., [38] introduced a decision-making approach

utilizing PF logic for enhancing sustainable last-mile delivery processes. Ten decision makers

evaluate 6 alternatives based on 20 criteria, and the average of their evaluations is taken as the

evaluation matrix. In this paper, we introduce the concept of a spherical picture fuzzy set (SPFS)

for representing a decision maker’s choices geometrically, akin to a sphere within the framework

of PFSs. The SPFS approach offers a solution to the limitation of simply averaging the decision val-

ues of the decision maker, as discussed in [32], [12], [13], [41], [21], [23], [25], [31], [28], [38], [42], [43].

The following contributions have been made to achieve the objectives of the study:

• Introduction of SPFSs: This paper introduces SPFSs as a novel geometric representation of

PFSs, leveraging the spherical framework to capture uncertainties associated with positive,

negative, and neutral membership functions. The SPFSs facilitates intuitive interpretation
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and decision-making processes by converting collections of points into a spherical structure,

enhancing sensitivity and nuance in decision-making.

• Exploration of the Spherical Picture Fuzzy Bobferroni Mean (Υ) Operator: Within the realm

of MCDM, the paper investigates the Υ operator, employing Euclidean Distance measures

to depict evaluation values of alternatives concerning various criteria. By integrating this

operator into decision analysis methodologies, the paper advances theoretical understand-

ings and practical applications in decision-making processes.

• Construction of an Innovative MCDM Framework for Algorithm Selection and Hyperpa-

rameter Adjusting: The methodical strategy suggested in this paper is designed especially

for machine learning algorithm selection and hyperparameter optimization. The frame-

work provides an approach to decision-making that is transparent and allows practitioners

to examine trade-offs and make well-informed judgments based on particular requirements

and restrictions. These criteria include accuracy, interpretability, computational efficiency,

and resilience.

• Practical Benefits of SPFS in Decision Effectiveness: The importance along with effective-

ness of SPFS and the Υ operator in decision-making scenarios is demonstrated through a

numerical case study. The study showcases how SPFS surpasses traditional FSs by enabling

intuitive data interpretation and facilitating visualization of intricate decision landscapes,

thereby enhancing decision effectiveness.

2.1. Preliminaries.

Definition 2.1. [6] Let ρ, σ ≥ 0, and α1,α2,α3, ...,ακ be non negative numbers. Then BM (BM) is defined
as

BMρ,σ(α1,α2, . . . ,ακ) =


1

κ(κ− 1)

κ∑
ψ,η=1
ψ,η

α
ρ
ψα

σ
η


1

ρ+σ

Definition 2.2. [9, 10] A PF set A on universe of discourse Γ = {ς1, ς2, .....ςn} is an object of the form:
A = {

〈
µA(ςi), ηA(ςi), νA(ςi)

〉
ςi ∈ Γ}, where µA(ςi) : Γ→ [0, 1] is called the degree of membership of ςi in

A, ηA(ςi) : Γ→ [0, 1] is called the degree of neutral membership of ςi in A, and νA(ςi) : Γ→ [0, 1] is called
the degree of non-membership of ςi in A, µA(ςi), ηA(ςi), νA(ςi) satisfy 0 ≤ µA(ςi) + ηA(ςi) + νA(ςi) ≤

1∀ςi ∈ X, πA(ςi) = 1− (µA(ςi) + ηA(ςi) + νA(ςi)) is called the degree of refusal membership of ςi in A.

The set of all PF subsets on universe of discourse Γ = {ς1, ς2, .....ςn} is denoted by PFSs(Γ).

3. Spherical Picture Fuzzy Sets

Definition 3.1. Let Γ be the universal set containing elements known as Spherical Picture Fuzzy
sets (SPFSs). Each ςi ∈ Γ is defined as Ωςi = {

〈
ςi,T (ςi),I(ςi),N(ςi); ξi

〉
: ςi ∈ Γ}, where
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T (ςi),I(ςi),N(ςi) : Γ → [0, 1], represent the degrees of membership, non-membership, and indeter-
minacy of ςi. This degrees satisfy 0 ≤ T (ςi) + I(ςi) +N(ςi) ≤ 1 for all ςi ∈ Γ and i = 1, 2, ......k. We
construct the center of the sphere by

〈
T (ςi),I(ςi),N(ςi)

〉
=

〈∑k
j=1Ti, j

k
,

∑k
j=1 Ii, j

k
,

∑k
j=1Ni, j

k

〉
(3.1)

and the radius is

ξi = min
{ max
1 ≤ j ≤ k

√
(T (ςi) −Ti, j)2 + (I(ςi) −Ii, j)2 + (N(ςi) −Ni, j)2, 1

}
(3.2)

Example 3.1. Let A = {〈ς1, 0.4, 0.3, 0.3〉 , 〈ς1, 0.2, 0.4, 0.2〉 , 〈ς1, 0.5, 0.2, 0.3〉 , 〈ς1, 0.2, 0.5, 0.2〉 ,

〈ς1, 0.1, 0.3, 0.4〉 , 〈ς1, 0.4, 0.2, 0.1〉} and B = {〈ς2, 0.4, 0.3, 0.3〉 , 〈ς2, 0.2, 0.4, 0.2〉 , 〈ς2, 0.4, 0.2, 0.4〉 ,

〈ς2, 0.2, 0.5, 0.3〉 , 〈ς2, 0.2, 0.3, 0.5〉 , 〈ς2, 0.4, 0.2, 0.2〉} be the collection of PFSs.
Then T (ς1) =

0.4+0.2+0.5+0.2+0.1+0,4
6 = 0.3, I(ς1) =

0.3+0.4+0.2+0.5+0.3+0.2
6 = 0.32,

N(ς1) =
0.3+0.2+0.3+0.2+0.4+0.1

6 = 0.25, T (ς2) =
0.4+0.2+0.4+0.2+0.2+0.4

6 = 0.3,

I(ς2) =
0.3+0.4+0.2+0.5+0.3+0.2

6 = 0.32 andN(ς2) =
0.3+0.2+0.4+0.3+0.5+0.2

6 = 0.35.

The radii are
ξi = min

{ max
1 ≤ j ≤ k

√
(T (ςi) −Ti, j)2 + (I(ςi) −Ii, j)2 + (N(ςi) −Ni, j)2, 1

}
ξ1 = min{max{

√
(0.3− 0.4)2 + (0.32− 0.3)2 + (0.25− 0.3)2,√

(0.3− 0.2)2 + (0.32− 0.4)2 + (0.25− 0.2)2,√
(0.3− 0.5)2 + (0.32− 0.2)2 + (0.25− 0.3)2,√
(0.3− 0.2)2 + (0.32− 0.5)2 + (0.25− 0.2)2,√
(0.3− 0.1)2 + (0.32− 0.3)2 + (0.25− 0.4)2,√
(0.3− 0.4)2 + (0.32− 0.2)2 + (0.25− 0.1)2}, 1}

= min{max{0.11, 0.14, 0.24, 0.22, 0.25, 0.22}, 1} = min{0.25, 1} = 0.25

ξ2 = min{max{
√
(0.3− 0.4)2 + (0.32− 0.3)2 + (0.35− 0.3)2,√

(0.3− 0.2)2 + (0.32− 0.4)2 + (0.35− 0.2)2,√
(0.3− 0.4)2 + (0.32− 0.2)2 + (0.35− 0.4)2,√
(0.3− 0.2)2 + (0.32− 0.5)2 + (0.35− 0.3)2,√
(0.3− 0.2)2 + (0.32− 0.3)2 + (0.35− 0.5)2,√
(0.3− 0.4)2 + (0.32− 0.2)2 + (0.35− 0.2)2}, 1}

= min{max{0.11, 0.14, 0.16, 0.22, 0.18, 0.22}, 1} = min{0.22, 1} = 0.22.

Then the SPFSs are κA = 〈0.3, 0.32, 0.25; 0.22〉 and κB = 〈0.3, 0.32, 0.35; 0.22〉 .

Definition 3.2. Let κA =
〈
T (ς1),I(ς1),N(ς1); ξ1

〉
, κB =

〈
T (ς2),I(ς2),N(ς2); ξ2

〉
are two SPFSs

over the universal Γ, and 5, 4 are denotes minimum and maximum respectively. Then the following
operations are defined as follows:
1. κA ∪ κB = < 4(T (ς1),T (ς2)),4(I(ς1),I(ς2)),5(N(ς1),N(ς2));4(ξ1; ξ2) > .

2. κA ∪ κB =< 4(T (ς1),T (ς2)),4(I(ς1),I(ς2)),5(N(ς1),N(ς2));5(ξ1; ξ2) > .

3. κA ∪ κB =< 4(T (ς1),T (ς2)),4(I(ς1),I(ς2)),4(N(ς1),N(ς2));4(ξ1; ξ2) > .

4. κA ∪ κB =< 4(T (ς1),T (ς2)),4(I(ς1),I(ς2)),4(N(ς1),N(ς2));5(ξ1; ξ2) > .
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5. κA ∪ κB =< 4(T (ς1),T (ς2)), (
I(ς1)+I(ς2)

2 ),5(N(ς1),N(ς2));4(ξ1; ξ2) > .

6. κA ∪ κB =< 4(T (ς1),T (ς2)), (
I(ς1)+I(ς2)

2 ),5(N(ς1),N(ς2));5(ξ1; ξ2) > .

7. κA ∪ κB =< 4(T (ς1),T (ς2)), 1− (I(ς1)+I(ς2)
2 ),5(N(ς1),N(ς2));4(ξ1; ξ2) > .

8. κA ∪ κB =< 4(T (ς1),T (ς2)), 1− (I(ς1)+I(ς2)
2 ),5(N(ς1),N(ς2));5(ξ1; ξ2) > .

9. κA ∪ κB =< 4(T (ς1),T (ς2)),
∣∣∣I(ς1) −I(ς2)

∣∣∣ ,4(N(ς1),N(ς2));4(ξ1; ξ2) > .

10. κA ∪ κB =< 4(T (ς1),T (ς2)),
∣∣∣I(ς1) −I(ς2)

∣∣∣ ,4(N(ς1),N(ς2));5(ξ1; ξ2) > .

11. κA ∩ κB =< 5(T (ς1),T (ς2)),5(I(ς1),I(ς2)),4(N(ς1),N(ς2));4(ξ1; ξ2) > .

12. κA ∩ κB =< 5(T (ς1),T (ς2)),5(I(ς1),I(ς2)),4(N(ς1),N(ς2));5(ξ1; ξ2) > .

13. κA ∩ κB =< 5(T (ς1),T (ς2)),4(I(ς1),I(ς2)),4(N(ς1),N(ς2));4(ξ1; ξ2) > .

14. κA ∩ κB =< 5(T (ς1),T (ς2)),4(I(ς1),I(ς2)),4(N(ς1),N(ς2));5(ξ1; ξ2) > .

15. κA ∩ κB =< 5(T (ς1),T (ς2)),5(I(ς1),I(ς2)),5(N(ς1),N(ς2));4(ξ1; ξ2) > .

16. κA ∩ κB =< 5(T (ς1),T (ς2)),5(I(ς1),I(ς2)),5(N(ς1),N(ς2));5(ξ1; ξ2) > .

17. κA ∩ κB =< 5(T (ς1),T (ς2)), (
I(ς1)+I(ς2)

2 ),4(N(ς1),N(ς2));4(ξ1; ξ2) > .

18. κA ∩ κB =< 5(T (ς1),T (ς2)), (
I(ς1)+I(ς2)

2 ),4(N(ς1),N(ς2));5(ξ1; ξ2) > .

19. κA ∩ κB =< 5(T (ς1),T (ς2)), 1− (I(ς1)+I(ς2)
2 ),4(N(ς1),N(ς2));4(ξ1; ξ2) > .

20. κA ∩ κB =< 5(T (ς1),T (ς2)), 1− (I(ς1)+I(ς2)
2 ),4(N(ς1),N(ς2));5(ξ1; ξ2) > .

21. κA ∩ κB =< 5(T (ς1),T (ς2)),
∣∣∣I(ς1) −I(ς2)

∣∣∣ ,4(N(ς1),N(ς2));4(ξ1; ξ2) > .

22. κA ∩ κB =< 5(T (ς1),T (ς2)),
∣∣∣I(ς1) −I(ς2)

∣∣∣ ,4(N(ς1),N(ς2));5(ξ1; ξ2) > .

Definition 3.3. Let κA =
〈
T (ς1),I(ς1),N(ς1); ξ1

〉
, κB =

〈
T (ς2),I(ς2),N(ς2); ξ2

〉
are two SPFSs

over the universal Γ. Then the following operations are defined as follows:
1. κA = κB if and only if ξ1 = ξ2 and T (ς1) = T (ς2), I(ς1) = I(ς2),N(ς1) = N(ς2).

2. κA = κB if and only if ξ1 = ξ2 and T (ς1) ≤ T (ς2), I(ς1) ≤ I(ς2),N(ς1) ≤ N(ς2).

3. κA = κB if and only if ξ1 = ξ2 and T (ς1) ≥ T (ς2), I(ς1) ≥ I(ς2),N(ς1) ≥ N(ς2).

4. κA ⊂ κB if and only if ξ1 < ξ2 and T (ς1) < T (ς2), I(ς1) < I(ς2),N(ς1) > N(ς2).

5. κA ⊆ κB if and only if ξ1 ≤ ξ2 and T (ς1) ≤ T (ς2), I(ς1) ≤ I(ς2),N(ς1) ≥ N(ς2).

6. κA ⊆ κB if and only if ξ1 ≤ ξ2 and T (ς1) ≤ T (ς2), I(ς1) ≥ I(ς2),N(ς1) ≥ N(ς2).

7. κA ⊆ κB if and only if ξ1 ≤ ξ2 and T (ς1) ≤ T (ς2), I(ς1) < I(ς2),N(ς1) > N(ς2).

8. κA ⊆ κB if and only if ξ1 < ξ2 and T (ς1) ≤ T (ς2), I(ς1) ≥ I(ς2),N(ς1) ≥ N(ς2).

9. κA ⊃ κB if and only if ξ1 > ξ2 and T (ς1) > T (ς2), I(ς1) > I(ς2),N(ς1) < N(ς2).

10. κA ⊃ κB if and only if ξ1 > ξ2 and T (ς1) > T (ς2), I(ς1) < I(ς2),N(ς1) < N(ς2).

11. κA ⊇ κB if and only if ξ1 ≥ ξ2 and T (ς1) ≥ T (ς2), I(ς1) ≥ I(ς2),N(ς1) ≤ N(ς2).

12. κA ⊇ κB if and only if ξ1 ≥ ξ2 and T (ς1) ≥ T (ς2), I(ς1) ≤ I(ς2),N(ς1) ≤ N(ς2).

13. κA ⊇ κB if and only if ξ1 ≥ ξ2 and T (ς1) ≥ T (ς2), I(ς1) < I(ς2),N(ς1) < N(ς2).

14. κA ⊇ κB if and only if ξ1 ≥ ξ2 and T (ς1) > T (ς2), I(ς1) ≤ I(ς2),N(ς1) ≤ N(ς2).

Example 3.2. Let A = {〈ς1, 0.4, 0.3, 0.3〉 , 〈ς1, 0.2, 0.4, 0.2〉 , 〈ς1, 0.5, 0.2, 0.3〉 , 〈ς1, 0.2, 0.5, 0.2〉 ,

〈ς1, 0.1, 0.3, 0.4〉 , 〈ς1, 0.4, 0.2, 0.1〉}, B = {〈ς2, 0.4, 0.3, 0.3〉 , 〈ς2, 0.2, 0.4, 0.2〉 , 〈ς2, 0.4, 0.2, 0.4〉 ,

〈ς2, 0.2, 0.5, 0.3〉 , 〈ς2, 0.2, 0.3, 0.5〉 , 〈ς2, 0.4, 0.2, 0.2〉}, C = {〈ς3, 0.3, 0.4, 0.3〉 , 〈ς3, 0.2, 0.6, 0.2〉 ,
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〈ς3, 0.3, 0.3, 0.4〉 , 〈ς3, 0.4, 0.4, 0.2〉 , 〈ς3, 0.4, 0.2, 0.4〉 . 〈ς3, 0.6, 0.2, 0.2〉}, D = {〈ς4, 0.6, 0.3, 0.1〉 ,

〈ς4, 0.4, 0.4, 0.2〉 , 〈ς4, 0.4, 0.2, 0.4〉 , 〈ς4, 0.2, 0.5, 0.3〉 , 〈ς4, 0.2, 0.4, 0.4〉 . 〈ς4, 0.3, 0.4, 0.3〉} be the collec-
tion of PFSs and SPFSs are κA = 〈0.3, 0.32, 0.25; 0.25〉 , κB = 〈0.3, 0.32, 0.35; 0.21〉 , κC =

〈0.37, 0.35, 0.28; 0.28〉 , κD = 〈0.35, 0.37, 0.28; 0.21〉 . Then

By Definition 3.2, the union of two SPFSs is
3.2 1. κA ∪ κB = 〈0.3, 0.32, 0.35; 0.25〉 3.2 2. κC ∪ κD = 〈0.37, 0.37, 0.28; 0.21〉

3.2 3. κC ∪ κD = 〈0.37, 0.36, 0.28; 0.28〉 3.2 4. κC ∪ κD = 〈0.37, 0.36, 0.28; 0.28〉

3.2 5. κA ∪ κB = 〈0.3, 0.68, 0.25; 0.21〉 3.2 6. κA ∪ κB = 〈0.3, 0.68, 0.25; 0.25〉

3.2 7. κA ∪ κB = 〈0.3, 0.00, 0.35; 0.25〉 3.2 8. κA ∪ κB = 〈0.3, 0, 0.35; 0.21〉

3.2 9. κC ∪ κD = 〈0.35, 0.35, 0.28; 0.28〉 3.2 10. κA ∪ κB = 〈0.3, 0.32, 0.35; 0.21〉

By Definition 3.2, the intersection of two SPFSs is
3.2 11. κC ∩ κD = 〈0.35, 0.37, 0.28; 0.28〉 3.2 12. κC ∩ κD = 〈0.35, 0.37, 0.28; 0.21〉

3.2 13. κA ∩ κB = 〈0.3, 0.32, 0.25; 0.25〉 3.2 14. κC ∩ κD = 〈0.35, 0.35, 0.28; 0.21〉

3.2 15. κC ∩ κD = 〈0.35, 0.36, 0.28; 0.28〉 3.2 16. κC ∩ κD = 〈0.35, 0.36, 0.28; 0.21〉

3.2 17. κA ∩ κB = 〈0.3, 0.68, 0.35; 0.25〉 3.2 18. κA ∩ κB = 〈0.3, 0.68, 0.35; 0.21〉

3.2 19. κC ∩ κD = 〈0.35, 0.02, 0.28; 0.28〉 3.2 20. κC ∩ κD = 〈0.35, 0.02, 0.28; 0.21〉

Definition 3.4. Let κ =
〈
T (ς),I(ς),N(ς); ξ

〉
, κA =

〈
T (ς1),I(ς1),N(ς1); ξ1

〉
,

κB =
〈
T (ς2),I(ς2),N(ς2); ξ2

〉
are three SPFSs over the universal Γ and 0 ≤ α ≤ 1. Then the following

operations are defined as follows:

(1) κA ⊕ κB =< T (ς1) +T (ς2) −T (ς1)T (ς2),I(ς1)I(ς2),N(ς1)N(ς2); ξ1 + ξ2 − ξ1ξ2 >

(2) κA ⊗κB =< T (ς1)T (ς2),I(ς1)+I(ς2)−I(ς1)I(ς2),N(ς1)+N(ς2)−N(ς1)N(ς2); ξ1ξ2 >

(3) ακ =< 1− (1−T (ς))α, (I(ς))α, (N(ς))α; 1− (1− ξ)α >

(4) κα =< T (ς)α, 1− (1−I(ς))α, 1− (1−N(ς))α; ξα >

(5) ¬κ =< N(ς),I(ς),T (ς); ξ >

(6) ¬κ =< N(ς), 1−I(ς),T (ς); ξ >

(7) ¬κ =< 1−T (ς), 1−I(ς), 1−N(ς); ξ >

(8) ¬κ =< 1−T (ς),I(ς), 1−N(ς); ξ >

(9) κc =< N(ς),I(ς),T (ς); 1− ξ >

Example 3.3. Let A = {〈ς1, 0.4, 0.3, 0.3〉 , 〈ς1, 0.2, 0.4, 0.2〉 , 〈ς1, 0.5, 0.2, 0.3〉 , 〈ς1, 0.2, 0.5, 0.2〉 ,

〈ς1, 0.1, 0.3, 0.4〉 , 〈ς1, 0.4, 0.2, 0.1〉}, B = {〈ς2, 0.4, 0.3, 0.3〉 , 〈ς2, 0.2, 0.4, 0.2〉 , 〈ς2, 0.4, 0.2, 0.4〉 ,

〈ς2, 0.2, 0.5, 0.3〉 , 〈ς2, 0.2, 0.3, 0.5〉 , 〈ς2, 0.4, 0.2, 0.2〉} be the collection of PFSs and the SPFSs are κA =

〈0.3, 0.32, 0.25; 0.25〉 , κB = 〈0.3, 0.32, 0.35; 0.21〉 . Then

Proposition 3.1. For any three SPFSs κA,κB,κC, the following results are valid.

(1) κA ∩ κB = κB ∩ κA

(2) κA ∪ κB = κB ∪ κA
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3.4 1. κA ⊕ κB = 〈0.51, 0.12, 0.09; 0.41〉 3.4 2. κA ⊗ κB = 〈0.09, 0.54, 0.51; 0.05〉

3.4 3. ακA = 〈0.16, 0.57, 0.5; 0.13〉 3.4 4. καA = 〈0.55, 0.18, 0.13; 0.5〉

3.4 5. ¬κA = 〈0.25, 0.32, 0.3; 0.25〉 3.4 6. ¬κA = 〈0.25, 0.68, 0.3; 0.25〉

3.4 7. ¬κA = 〈0.7, 0.68, 0.75; 0.75〉 3.4 8. ¬κA = 〈0.7, 0.32, 0.75; 0.25〉

3.4 9. κc
A = 〈0.25, 0.32, 0.3; 0.75〉 .

(3) κA ⊕ κB = κB ⊕ κA

(4) κA ⊗ κB = κB ⊗ κA

(5) (κA ∩ κB)∩ κC = κA ∩ (κB ∩ κC)

(6) (κA ∪ κB)∪ κC = κA ∪ (κB ∪ κC)

(7) (κA ⊕ κB) ⊕ κC = κA ⊕ (κB ⊕ κC)

(8) (κA ⊗ κB) ⊗ κC = κA ⊗ (κB ⊗ κC)

(9) (κA ∪ κB)∩ κC = (κA ∩ κC)∪ (κB ∩ κC)

(10) (κA ∩ κB)∪ κC = (κA ∪ κC)∩ (κB ∪ κC)

(11) (κA ∩ κB) ⊕ κC = (κA ⊕ κC)∩ (κB ⊕ κC)

(12) (κA ∩ κB) ⊗ κC = (κA ⊗ κC)∩ (κB ⊗ κC)

(13) (κA ∪ κB) ⊕ κC = (κA ⊕ κC)∪ (κB ⊕ κC)

(14) (κA ∪ κB) ⊗ κC = (κA ⊗ κC)∪ (κB ⊗ κC)

(15) κA ∩ κA = κA

(16) κA ∪ κA = κA

(17) ¬(¬κA ∩¬κB) = κA ∪ κB

(18) ¬(¬κA ∪¬κB) = κA ∩ κB

(19) ¬(¬κA ⊕¬κB) = κA ⊗ κB

(20) ¬(¬κA ⊗¬κB) = κA ⊕ κB

Definition 3.5. Let κA and κB be a SPFSs and r any real number such that for each
0 ≤ r ≤ 1 the convex combination of κA and κB is defined as follows:
Cr(κA,κB) = (Tcr(ς),Icr(ς),Ncr(ς); ξcr(ς)), where
Tcr(ς) = r.TκA(ς) + (1− r)TκB(ς)

Icr(ς) = r.IκA(ς) + (1− r)IκB(ς)

Ncr(ς) = r.NκA(ς) + (1− r)NκB(ς)

ξcr(ς) = r.ξκA(ς) + (1− r)ξκB(ς).

Example 3.4. Let A = {〈ς1, 0.4, 0.3, 0.3〉 , 〈ς1, 0.2, 0.4, 0.2〉 , 〈ς1, 0.5, 0.2, 0.3〉 , 〈ς1, 0.2, 0.5, 0.2〉 ,

〈ς1, 0.1, 0.3, 0.4〉 , 〈ς1, 0.4, 0.2, 0.1〉}, B = {〈ς2, 0.4, 0.3, 0.3〉 , 〈ς2, 0.2, 0.4, 0.2〉 , 〈ς2, 0.4, 0.2, 0.4〉 ,

〈ς2, 0.2, 0.5, 0.3〉 , 〈ς2, 0.2, 0.3, 0.5〉 , 〈ς2, 0.4, 0.2, 0.2〉}, be the collection of PFSs, r = 0.2, and SPFSs are
κA = 〈0.3, 0.32, 0.25; 0.25〉 , κB = 〈0.3, 0.32, 0.35; 0.21〉 . Then Tcr(ς) = 0.3, Icr(ς) = 0.3, Ncr(ς) =

0.33, ξcr(ς) = 0.22 and Cr(κA,κB) = (0.3, 0.3, 0.33, 0.22).
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Proposition 3.2. Let κA and κB be two SPFSs. Let r be a real number such that 0 ≤ r ≤ 1. Then

(1) If r = 1, then Cr(κA,κB) = κA and if r = 0, then Cr(κA,κB) = κB

(2) If κA ⊆ κB, then ∀r, κA ⊆ Cr(κA,κB) ⊆ κB

(3) If κA ⊇ κB and r1 ≥ r2, then Cr1(κA,κB) ≥ Cr2(κA,κB).

Definition 3.6. For any two SPFSs κA and κB defined as κA =
〈
T (ς1),I(ς1)),N(ς1)); ξ1

〉
,

κB =
〈
T (ς2),I(ς2),N(ς2); ξ2

〉
the distance between two SPFSs defined by:

D =
√
(T (ς1) −T (ς2))2 + (I(ς1) −I(ς2))2 + (N(ς1) −N(ς2))2-(ξ1 + ξ2)

For example, consider the two picture fuzzy sets (0.6, 0.3, 0.1) and (0.6, 0.3, 0.1), then center of

spherical picture fuzzy set is (0.6, 0.3, 0.1) and the radius of spherical picture fuzzy set is 0.1. the

distance between the of spherical picture fuzzy set is d = 0 since they are the same. This indicating

Two spherical picture fuzzy sets overlap completely.

Separation of two spherical picture fuzzy sets
Two SPFSs are separate. Two PFSs (0.7, 0.2, 0.1), (0.8, 0.1, 0.1) then center of SPFS is (0.75, 0.15,

0.1) and the radius 0.1

Two PFSs (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) then center of SPFS is (0.45, 0.35, 0.2) and the radius 0.1

Distance Calculation: d =
√
(0.75− 0.45)2 + (0.15− 0.35)2 + (0.1− 0.2)2

=
√
(0.3)2 + (−0.2)2 + (−0.1)2

=
√

0.09 + 0.04 + 0.01 =
√

0.14 ≈ 0.374

D = d− (ξ1 +ξ2) = 0.374− (0.1+ 0.1) = 0.374−0.2 = 0.174. indicating separation of two spherical

picture fuzzy sets.

Intersection of two spherical picture fuzzy sets
Two SPFSs intersect : Degrees: (0.5, 0.4, 0.1 ) (0.6, 0.3, 0.1) (0.55, 0.35, 0.1) Radius: ξ1 = 0.1

(0.6, 0.2, 0.2)(0.5, 0.3, 0.2)(0.55, 0.25, 0.2) Radius: ξ2 = 0.1

Distance Calculation D =
√
(0.55− 0.55)2 + (0.35− 0.25)2 + (0.1− 0.2)2 - (0.1 + 0.1)

=
√
(0)2 + (0.1)2 + (−0.1)2 -0.2

D = −0.0586 indicating intersection of two spherical picture fuzzy sets.

4. Spherical Picture Fuzzy BonferroniMean

Definition 4.1. Let pmi = 〈Tni ,Ini ,Nni ; ξni〉 where i = 1, 2, . . . ,ϑ is a collection ofN . For any ψ, η > 0,

the spherical picture fuzzy Bonferroni mean (Υ) is defined as

Υψ,η(pm1, pm2, . . . , pmϑ) =


1

ϑ(ϑ− 1)

ϑ⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β)


1

ψ+η

(4.1)
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Theorem 4.1. For ψ, η > 0 and a collection of SPFSs pmα = 〈Tnα ,Inα ,Nnα ; ξnα〉, α = 1, 2, . . . ,ϑ, the
aggregation Υ is also a SPFS and it is of the form

Υψ,η(pm1, pm2, . . . , pmϑ) =



1−

∏ϑ
α,β=1
α,β

(
1−T ψpmα

T
η
pmβ

) 1
ϑ(ϑ−1)


1

ψ+η

 ,

1−

1−
∏ϑ
α,β=1
α,β

(
1− (1−Ipmα)

ψ(1−Ipmβ)
η
) 1
ϑ(ϑ−1)


1

ψ+η

,

1−

1−
∏ϑ
α,β=1
α,β

(
1− (1−Npmα)

ψ(1−Npmβ)
η
) 1
ϑ(ϑ−1)


1

ψ+η

,1−
∏ϑ
α,β=1
α,β

(
1− ξψpmα

ξ
η
pmβ

) 1
ϑ(ϑ−1)


1

ψ+η

(4.2)

Proof:
From the basic operations, we get

pmψ
α =

(
T
ψ
pmα

, 1− (1−Ipmα)
ψ, 1− (1−Npmα)

ψ; ξψpmα

)
and

pmη
β =

(
T
η
pmβ

, 1− (1−Ipmβ)
η, 1− (1−Npmβ)

η; ξηpmβ

)
Then,

pmψ
α ⊗ pmη

β =



T
ψ
pmα
T
η
pmβ

,

1− (1−Ipmα)
ψ(1−Ipmβ)

η,

1− (1−Npmα)
ψ(1−Npmβ)

η,

ξ
ψ
pmα
ξ
η
pmβ

(4.3)

First let us prove

ϑ⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1−
∏ϑ
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

),∏ϑ
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η),∏ϑ
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η),

1−
∏ϑ
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)

(4.4)

by mathematical induction principle on ϑ.

For ϑ = 2, we get
2⊕

α,β=1
α,β

(pmψ
α ⊗ pmη

β) = (pmψ
1 ⊗ pmη

2) ⊕ (pmψ
2 ⊗ pmη

1)
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2⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1− (1−T ψpm1
T
η
pm2

)(1−T ψpm2
T
η
pm1

),

(1− (1−Ipm1)
ψ(1−Ipm2)

η)(1− (1−Ipm2)
ψ(1−Ipm1)

η),

(1− (1−Npm1)
ψ(1−Npm2)

η)(1− (1−Npm2)
ψ(1−Npm1)

η),

1− (1− ξψpm1
ξ
η
pm2

)(1− ξψpm2
ξ
η
pm1

)

2⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1−
∏2
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

),∏2
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η),∏2
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η),

1−
∏2
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)

Assume that equation (4.4) holds for ϑ = ω, that is,

ω⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1−
∏ω
α,β=1
α,β

(
1−T ψpmα

T
η
pmβ

)
,∏ω

α,β=1
α,β

(
1−

(
1−Ipmα

)ψ (
1−Ipmβ

)η)
,∏ω

α,β=1
α,β

(
1−

(
1−Npmα

)ψ (
1−Npmβ

)η)
,

1−
∏ω
α,β=1
α,β

(
1− ξψpmα

ξ
η
pmβ

)
(4.5)

Now let ϑ = ω+ 1, then

ω+1⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =


ω⊕

α,β=1
α,β

(pmψ
α ⊗ pmη

β)

⊕
 ω⊕
α=1

(pmψ
α ⊗ pmη

ω+1)

 (4.6)

⊕

 ω⊕
β=1

(pmψ
ω+1 ⊗ pmη

β)

⊗


ω⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β)

 (4.7)

By operations 1)-3) given in Definition 3.6, we get

ω⊕
α=1

(pmψ
α ⊗ pmη

ω+1) =



1−
∏ω
α=1(1−T

ψ
pmα
T
η
pmω+1

),∏ω
α=1(1− (1−Ipmα)

ψ(1−Ipmω+1)
η),∏ω

α=1(1− (1−Npmα)
ψ(1−Npmω+1)

η);

1−
∏ω
α=1(1− ξ

ψ
pmα
ξ
η
pmω+1

)

(4.8)

and
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ω⊕
β=1

(pmψ
ω+1 ⊗ pmη

β) =



1−
∏ω
α=1(1−T

ψ
pmω+1

T
η
pmβ

),∏ω
α=1(1− (1−Ipmω+1)

ψ(1−Ipmβ)
η),∏ω

α=1(1− (1−Npmω+1)
ψ(1−Npmβ)

η);

1−
∏ω
α=1(1− ξ

ψ
pmω+1

ξ
η
pmβ

)

(4.9)

From equations (4.5-4.9) we get

ω+1⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1−
∏ω
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

),∏ω
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η),∏ω
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η);

1−
∏ω
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)

⊕



1−
∏ω
α=1(1−T

ψ
pmα
T
η
pmω+1

),∏ω
α=1(1− (1−Ipmα)

ψ(1−Ipmω+1)
η),∏ω

α=1(1− (1−Npmα)
ψ(1−Npmω+1)

η);

1−
∏ω
α=1(1− ξ

ψ
pmα
ξ
η
pmω+1

)

⊕



1−
∏ω
β=1(1−T

ψ
pmω+1

T
η
pmβ

),∏ω
β=1(1− (1−Ipmω+1)

ψ(1−Ipmβ)
η),∏ω

β=1(1− (1−Npmω+1)
ψ(1−Npmβ)

η);

1−
∏ω
β=1(1− ξ

ψ
pmω+1

ξ
η
pmβ

)

=



1−
∏ω+1
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

),∏ω+1
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η),∏ω+1
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η);

1−
∏ω+1
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)

Therefore the result is true for ϑ = ω+ 1. Hence by mathematical induction the equation (4.1)

holds for all ϑ. Now,

1
ϑ(ϑ− 1)

ϑ⊕
α,β=1
α,β

(pmψ
α ⊗ pmη

β) =



1−

∏ϑ
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

)


1

ϑ(ϑ−1)

,∏ϑ
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η)
1

ϑ(ϑ−1) ,∏ϑ
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η)
1

ϑ(ϑ−1) ;

1−

∏ϑ
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)


1

ϑ(ϑ−1)
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Therefore Υψ,η(pm1, pm2, . . . , pmϑ) =



1−
∏ϑ
α,β=1
α,β

(1−T ψpmα
T
η
pmβ

)
1

ϑ(ϑ−1)


1

ψ+η

,

1−

1−
∏ϑ
α,β=1
α,β

(1− (1−Ipmα)
ψ(1−Ipmβ)

η)
1

ϑ(ϑ−1)


1

ψ+η

,

1−

1−
∏ϑ
α,β=1
α,β

(1− (1−Npmα)
ψ(1−Npmβ)

η)
1

ϑ(ϑ−1)


1

ψ+η

;1−
∏ϑ
α,β=1
α,β

(1− ξψpmα
ξ
η
pmβ

)
1

ϑ(ϑ−1)


1

ψ+η

Also Υ has the following propositionerties.

Proposition 4.1 (Idempotency). If the SPFSs, pmα = f n =
(
Tpmα ,Ipmα ,Npmα ; ξpmα

)
for all α =

1, 2, . . . ,ϑ, then Υψ,η (pm1, pm2, . . . , pmϑ) = f n.

Proposition 4.2 (Monotonicity). Consider two SPFSs pmα = (Tpmα ,Ipmα ,Npmα ; ξpmα) and f mα =

(T f mα ,I f mα ,N f mα ; ξ f mα) for α=1, 2, 3, . . . ,ϑ. If Tpmα ≤ T f mα ,Ipmα ≥ I f mα ,Npmα ≥ N f mα ; ξpmα ≤ ξ f mα

for each α, then Υψ,η(pm1, pm2, . . . , pmϑ) ≤ Υψ,η( f m1, f m2, . . . , f mϑ).

Proposition 4.3 (Commutativity). Consider pmα= (Tpmα ,Ipmα ,Npmα ; ξpmα) as a set of SPFSs. Then
Υψ,η(pm1, pm2, . . . , pmϑ)=Υψ,η( ˙pm1, ˙pm2, . . . , ˙pmϑ) where ( ˙pm1, ˙pm2, . . . , ˙pmϑ) is any one arrangement
of (pm1, pm2, . . . , pmϑ).

Proposition 4.4 (Boundedness). Consider pmα = (Tpmα ,Ipmα ,Npmα ; ξpmα) , α = 1, 2, 3, ...,ϑ as a set of
SPFSs, and let

f n− = (min
α
{Tpmα}, max

α
{Ipmα}, max

α
{Npmα}; min

α
{ξpmα})

f n+ = (max
α
{Tpmα}, min

α
{Ipmα}, min

α
{Npmα}; max

α
{ξpmα}).

Then f n− ≤ Υψ,η(pm1, pm2, . . . , pmϑ) ≤ f n+.
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5. Multi-Criteria DecisionMaking (MCDM) Approach Using Spherical Picture Fuzzy

Information

In this section, we propose a Multi-Criteria Decision Making (MCDM) approach using the

spherical picture fuzzy Bonferroni mean operator.

Let Θ = {Θ1, Θ2 . . .Θλ} be a set of alternatives and C = {C1, C2 . . .Cλ} be a set of criteria. Suppose

(δαε)m×n =
〈
Tδα(νε),Iδα(νε),Nδα(νε)

〉
m×n is a picture fuzzy decision matrix, where Tδα(νε) is

the degree of membership of alternatives Θε, Iδα(νε) is the degree of neutral membership of

alternatives Θε, and Nδα(νε) is the degree non-membership of alternatives Θε, each alternatives

Θε satisfy 0 ≤ Tδα(νε) + Iδα(νε) +Nδα(νε) ≤ 1.

We propose the following algorithm to solve MCDM problem with spherical picture fuzzy

information using spherical picture fuzzy Bonferroni mean operator.

Algorithm 5.1 Multi-Criteria Decision Making (MCDM) Process

1: Start.

2: Input: To select the best alternative.

3: We employ the decision information given in matrix (δαε)m×n.

4: For each alternatives Θε, (ε = 1, 2 . . . ,λ) construct the spherical picture fuzzy set Ωε =〈
T (ςε),I(ςε),N(ςε); ξε

〉
where

〈
T (ςε),I(ςε),N(ςε)

〉
is the center of Ωε and ξε is the radius of

the spherical picture fuzzy set Ωε for all ε = 1, 2, . . . λ from the decision matrix (δαε)m×n.

5: Operate spherical picture fuzzy Bonferroni mean operator PMε = Υψ,η(Ω1, Ω2, . . . , Ωλ) to

obtain the overall preference values PMε (ε = 1, 2, . . . λ) of the alternative Θε(ε = 1, 2, . . . λ).

6: Calculate the Euclidean distance D(PMε, ΩI) (ε = 1, 2, . . . λ), where ΩI = (1, 0, 0; 1) is the

positive ideal sphere.

7: The smallest distance value of D(PMε, ΩI) (ε = 1, 2, . . . λ), is the better alternative Θε, because

it is close to the positive ideal alternative ΩI.

8: Rank the alternatives Θε, (ε = 1, 2, . . . λ) based on the spherical picture fuzzy Bonferroni mean

operator PMε, (ε = 1, 2, . . . λ) evaluations and Euclidean distance D(PMε, ΩI) (ε = 1, 2, . . . λ).

9: Output : Best alternative.

10: End.

The presented flowchart outlines a systematic decision-making process using spherical picture

fuzzy information.
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Start

Designing the problem and establish the expert’s opinion

Determine criteria and construct the decision matrix

Classify criteria into efficient and cost types

Normalize the decision matrix

Compute the center and radius

Determine spherical picture fuzzy sets

Determine weights of criteria

Apply spherical picture fuzzy Bonferroni mean

Determine Euclidean distance and rank alternatives

Determine the best solution

End
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6. Numerical Example : A MCDM Approach for Algorithm Selection and Hyperparameter

Tuning inMachine Learning

The rapid evolution of machine learning techniques has led to an abundance of algorithms and

models, each with distinct advantages and limitations. In the pursuit of building effective machine

learning systems, selecting the most suitable algorithm and fine-tuning its hyperparameters are

pivotal steps. However, this decision is often intricate, involving a delicate balance of multiple

competing objectives. Traditional approaches to algorithm selection and hyperparameter tuning

typically prioritize a single objective, such as maximizing accuracy, potentially neglecting other

critical factors like model interpretability or computational efficiency. To surmount this challenge,

we propose a novel MCDM approach that concurrently considers multiple evaluation criteria,

enabling more informed decisions in algorithm selection and hyperparameter tuning.

Criteria Considered in the MCDM Framework.

• Accuracy: Accuracy reflects a machine learning model’s capability to correctly classify or

predict outcomes. It is assessed through metrics such as classification accuracy, precision,

recall, F1-score, or mean squared error for regression tasks. While prioritizing accuracy

is vital, an exclusive focus on this metric may lead to overfitting or favoring complex,

difficult-to-interpret models.

• Interpretability: Interpretability measures how easily a model’s predictions can be un-

derstood and explained by humans. Factors such as model simplicity, transparency in

decision-making, and the ability to provide meaningful insights contribute to interpretabil-

ity. Particularly crucial in real-world applications requiring transparency and trust, inter-

pretable models are easier to validate, debug, and integrate, potentially at the expense of

predictive performance or complexity.

• Computational Efficiency: Computational efficiency quantifies the time and resources

required for training and deploying a machine learning model. It encompasses aspects like

training time, inference time, memory usage, and scalability to large datasets or distributed

environments. Given practical constraints, efficient resource utilization is crucial for real-

time or resource-constrained deployments, even if it entails opting for simpler models at

the t of accuracy or complexity.

• Robustness: Robustness characterizes a model’s ability to withstand variations or per-

turbations in input data and generalize effectively to unseen data. Attributes like model

stability, generalization error, and performance across different datasets or domains con-

tribute to robustness. Essential for ensuring the reliability and effectiveness of machine

learning models in dynamic real-world scenarios, enhancing robustness often involves in-

corporating regularization techniques or data augmentation, potentially influencing other

criteria such as accuracy or interpretability.
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Selecting Decision-Makers for the Problem. Selecting decision-makers for a MCDM problem

in algorithm selection and hyperparameter tuning in machine learning involves identifying indi-

viduals or stakeholders who possess relevant expertise, perspectives, and authority to contribute

meaningfully to the decision-making process. Here’s a systematic approach to selecting decision-

makers: Identify Relevant Stakeholders, Assess Expertise and Knowledge, Consider Perspectives

and Interests, Evaluate Decision-Making Authority, Balance Participation and Efficiency, Facili-

tate Collaboration and Communication, Document Decision-Making Criteria. By following these

steps, we can select decision-makers who are well-equipped to navigate the complexities of algo-

rithm selection and hyperparameter tuning in machine learning projects, fostering collaboration,

and achieving consensus towards optimal decision outcomes. Based on the outlined criteria, here

are three decision-makers selected for the MCDM problem in algorithm selection and hyperpa-

rameter tuning in machine learning: Data Scientist (DS), Domain Expert (DE), Project Manager

(PM). These decision-makers collectively represent a diverse range of expertise, perspectives,

and decision-making authority required to address the complexities of algorithm selection and

hyperparameter tuning in machine learning projects.

Linguistic Terms PFNs (T , I,N) ×10−2

Extremely good (ζ1) (100, 0, 0)

Very good (ζ2) (75, 15, 10)

Good (ζ3) (65, 20, 15)

Medium (ζ4) (55, 30, 15)

Bad (ζ5) (35, 45, 20)

Very bad (ζ6) (25, 55, 20)

Extremely bad (ζ7) (0, 85, 15)
Table 1. Linguistic Terms and Corresponding PF Numbers

Step 1: Three Decision Makers DS, DE and PM evaluates six machine learning algorithm Θ1, Θ2,

Θ3, Θ4, Θ5, and Θ6 with four criteria C1 = Accuracy, C2=Interpretability, C3 = Computational

Efficiency and C4 = Robustness to select the best algorithm to solve a given problem. Each

evaluators decisions in linguistic phrase are given in Table 2. The picture fuzzy numbers that

match to the linguistic phrases in Table 1 will be substituted in Table 3.

Step 2: For each alternatives Θε, ε = 1, 2, . . . 6, we construct spherical picture fuzzy numbers Ωε

=(Tε, Iε,Nε; ξε) using Equation (2) & (3) and shown in Table 4.
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Decision Makers DS DE PM

Algorithm / Criteria C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Θ1 ζ1 ζ6 ζ3 ζ4 ζ3 ζ7 ζ4 ζ5 ζ2 ζ5 ζ7 ζ7

Θ2 ζ3 ζ4 ζ3 ζ6 ζ4 ζ5 ζ1 ζ7 ζ7 ζ7 ζ2 ζ5

Θ3 ζ6 ζ3 ζ4 ζ4 ζ7 ζ4 ζ5 ζ5 ζ5 ζ7 ζ7 ζ7

Θ4 ζ4 ζ3 ζ6 ζ3 ζ5 ζ1 ζ7 ζ5 ζ7 ζ2 ζ5 ζ4

Θ5 ζ2 ζ1 ζ4 ζ5 ζ4 ζ3 ζ5 ζ7 ζ4 ζ2 ζ3 ζ6

Θ6 ζ7 ζ3 ζ6 ζ3 ζ5 ζ4 ζ7 ζ4 ζ6 ζ3 ζ5 ζ3

Table 2. DM’s evaluation of each criteria in Linguistic terms

DM’s Algorithm C1 C2 C3 C4

/ Criteria (T , I,N) × 10−2 (T , I,N) × 10−2 (T , I,N) × 10−2 (T , I,N) × 10−2

Θ1 (100, 0, 0) (25, 55, 20) (65, 20, 15) (55, 30, 15)

Θ2 (65, 20, 15) (55, 30, 15) (65, 20, 15) (25, 55, 20)

DS Θ3 (25, 55, 20) (65, 20, 15) (55, 30, 15) (55, 30, 15)

Θ4 (55, 30, 15) (65, 20, 15) (25, 55, 20) (65, 20, 15)

Θ5 (75, 15, 10) (100, 0, 0) (55, 30, 15) (35, 45, 20)

Θ6 (0, 85, 15) (65, 20, 15) (25, 55, 20) (65, 20, 15)

Θ1 (65, 20, 15) (55, 30, 15) (55, 30, 15) (35, 45, 20)

Θ2 (55, 30, 15) (35, 45, 20) (100, 0, 0) (0, 85, 15)

DE Θ3 (65, 20, 15) (55, 30, 15) (35, 45, 20) (35, 45, 20)

Θ4 (35, 45, 20) (100, 0, 0) (75, 15, 10) (35, 45, 20)

Θ5 (55, 30, 15) (65, 20, 15) (35, 45, 20) (0, 85, 15)

Θ6 (35, 45, 20) (55, 30, 15) (55, 30, 15) (55, 30, 15)

Θ1 (75, 15, 10) (35, 45, 20) (65, 20, 15) (65, 20, 15)

Θ2 (65, 20, 15) (65, 20, 15) (75, 15, 10) (35, 45, 20)

PM Θ3 (35, 45, 20) (65, 20, 15) (65, 20, 15) (65, 20, 15)

Θ4 (65, 20, 15) (75, 15, 10) (35, 45, 20) (55, 30, 15)

Θ5 (55, 30, 15) (75, 15, 10) (65, 20, 15) (25, 55, 20)

Θ6 (25, 55, 20) (65, 20, 15) (35, 45, 20) (65, 20, 15)

Table 3. DM’s decision about each algorithm Θε in picture fuzzy (Tε, Iε,Nε) values.
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Algorithm C1 C2 C3 C4

/ Criteria (T ,I,N ; ξ) × 10−2 (T ,I,N ; ξ) × 10−2 (T ,I,N ; ξ) × 10−2 (T ,I,N ; ξ) × 10−2

Θ1 (80, 12, 8; 25) (38, 43, 18; 22) (62, 23, 15; 9) (52, 32, 17; 22)

Θ2 (62, 23, 15; 9) (52, 32, 17; 22) (80, 12, 8; 25) (20, 62, 18; 31)

Θ3 (42, 40, 18; 31) (62, 23, 15; 9) (52, 32, 17; 22) (52, 32, 17; 22)

Θ4 (52, 32, 17; 22) (80, 12, 8; 25) (45, 38, 17; 39) (52, 32, 17; 22)

Θ5 (62, 25, 13; 17) (80, 12, 8; 25) (52, 32, 17; 22) (20, 62, 18; 31)

Θ6 (20, 62, 18; 31) (62, 23, 15; 9) (38, 43, 18; 22) (62, 23, 15; 9)

Table 4. Spherical picture fuzzy representation Ωε = (Tε,Iε,Nε; ξε) of DM’s eval-

uation of each alternatives Θε.

Step 3: we operate spherical picture fuzzy Bonferroni mean operator PMε = Υψ,η(Ω1, Ω2, . . . , Ωλ)

and obtained the overall preference values PMε (ε = 1, 2, . . . 6) of the alternative Θε(ε = 1, 2, . . . 6)

and shown in Table 5.

Algorithm Υψ=1,η=1 Υψ=1,η=2 Υψ=2,η=2

/ Υψ,η (T ,I,N ; ξ) × 10−3 (T ,I,N ; ξ) × 10−3 (T ,I,N ; ξ) × 10−3

Θ1 ( 567, 212, 69 ; 72 ) ( 236, 532, 277 ; 9 ) ( 123, 705, 458 ; 2 )

Θ2 ( 482, 280, 68 ; 93 ) ( 222, 583, 260 ; 18 ) ( 96, 762, 456 ; 3 )

Θ3 ( 470, 275, 88 ; 85 ) ( 187, 586, 306 ; 12 ) ( 74, 775, 510 ; 2 )

Θ4 ( 545, 231, 69 ; 137 ) ( 229, 549, 271 ; 27 ) ( 109, 729, 460 ; 5 )

Θ5 ( 469, 296, 66 ; 111 ) ( 179, 636, 272 ; 21 ) ( 90, 778, 451 ; 3 )

Θ6 ( 381, 355, 88 ; 58 ) ( 154, 638, 303 ; 6 ) ( 54, 827, 509 ; 1 )

Algorithm Υψ=2,η=1 Υψ=2,η=3 Υψ=3,η=2

/ Υψ,η (T ,I,N ; ξ) × 10−3 (T ,I,N ; ξ) × 10−3 (T ,I,N ; ξ) × 10−3

Θ1 ( 299, 475, 248 ; 11 ) ( 67, 794, 547 ; 0 ) ( 308, 338, 75 ; 1 )

Θ2 ( 212, 566, 261 ; 12 ) ( 67, 821, 533 ; 1 ) ( 205, 464, 81 ; 1 )

Θ3 ( 185, 591, 309 ; 15 ) ( 39, 844, 590 ; 0 ) ( 149, 509, 122 ; 1 )

Θ4 ( 266, 510, 256 ; 25 ) ( 60, 811, 543 ; 2 ) ( 256, 393, 79 ; 3 )

Θ5 ( 234, 553, 242 ; 16 ) ( 52, 851, 539 ; 1 ) ( 221, 463, 71 ; 1 )

Θ6 ( 130, 684, 310 ; 10 ) ( 31, 876, 587 ; 0 ) ( 108, 622, 123 ; 1 )

Table 5. spherical picture fuzzy Bonferroni mean Υψ,η values for the alternatives Θε.
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Step 4: Table 6 will apply the Euclidean distance formula D(PMε, ΩI) to find the similarity

between each alternative Θε, ε = 1, 2, . . . 6, and the ideal sphere ΩI = (1, 0, 0; 1).

Step 5: The ranking results with proposed method and existing methods are shown in Table 7.

Υψ,η / D( Θε, ΩI ) D( Θ1, ΩI ) D( Θ2, ΩI ) D( Θ3, ΩI ) ( Θ4, ΩI ) D( Θ5, ΩI ) D( Θ6, ΩI )

Υψ=1,η=1 -0.585 -0.501 -0.482 -0.622 -0.499 -0.339

Υψ=1,η=2 -0.038 -0.012 0.036 -0.043 0.053 0.096

Υψ=2,η=2 0.213 0.264 0.308 0.234 0.276 0.354

Υψ=2,η=1 -0.128 -0.008 0.038 -0.095 -0.041 0.139

Υψ=2,η=3 0.341 0.351 0.408 0.353 0.382 0.432

Υψ=3,η=2 -0.228 -0.077 -0.002 -0.157 -0.093 0.094

Table 6. Euclidean Distance between alternatives Θε and positive ideal sphere ΩI=(1,0,0;1)

6.1. Visualization. In this section we visualize the spherical picture fuzzy sets for each criteria C1

- C4 given

x

y

z

C1: (0.80, 0.12, 0.08)

C2 : (0.38, 0.43, 0.18)

C3: (0.62, 0.23, 0.15)
C4: (0.52, 0.32, 0.17)

x

y

z

C1: (0.62, 0.23, 0.15)

C2 : (0.52, 0.32, 0.17)

C3: (0.80, 0.12, 0.08)

C4: (0.20, 0.62, 0.18)

x

y

z

C1 : (0.42, 0.40, 0.18)

C2 : (0.62, 0.23, 0.15)

C3=C4 : (0.52, 0.32, 0.17)

x

y

z

C1=C4 : (0.52, 0.32, 0.17)

C2 : (0.80, 0.12, 0.08)

C3: (0.45, 0.38, 0.17)
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x

y

z

C1: (0.62, 0.25, 0.13)

C2: (0.80, 0.12, 0.08)

C3: (0.52, 0.32, 0.17)

C4: (0.20, 0.62, 0.18)

x

y

z

C1: (0.20, 0.62, 0.18)

C3: (0.38, 0.43, 0.18)

C2=C4 : (0.62, 0.23, 0.15)

6.2. Comparative Analysis and Limitations. We compare our results with the existing methods

of PFAAPGBM [29], PFAAPBM [29], PFDBM [16] PFDGBM [16], PFINBM [26] and PFINWBM [26]

their visualization given. Table 7 displays the ranking orders. It is clear that the suggested method

and the ranking results from the current methods are nearly identical. This confirms even more

how applicable the suggested techniques are. The suggested approach produces more accurate

findings than the current method by getting over the restriction of averaging the values of the

decision makers.

Methods Ranking Best Algorithm

PFAAPGBM [29] Θ6 � Θ5 � Θ2 � Θ3 � Θ4 � Θ1 Θ1

PFAAPBM [29] Θ6 � Θ5 � Θ2 � Θ3 � Θ4 � Θ1 Θ1

PFDBM [16] Θ6 � Θ5 � Θ3 � Θ2 � Θ4 � Θ1 Θ1

PFDGBM [16] Θ6 � Θ3 � Θ5 � Θ2 � Θ4 � Θ1 Θ1

PFINBM [26] Θ6 � Θ3 � Θ2 � Θ5 � Θ4 � Θ1 Θ1

PFINWBM [26] Θ6 � Θ3 � Θ5 � Θ4 � Θ2 � Θ1 Θ1

Proposed Υ0,1 Θ6 � Θ5 � Θ3 � Θ2 � Θ4 � Θ1 Θ1

Proposed Υ1,0 Θ6 � Θ2 � Θ5 � Θ3 � Θ4 � Θ1 Θ1

Proposed Υ1,1 Θ6 � Θ5 � Θ2 � Θ3 � Θ4 � Θ1 Θ1

Table 7. The ranking results with different methods
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We utilize several values for the parameters of the Υψ,η operator to show how the parameters

ψ and η influence the case. Table 8 displays the outcomes of the ranking. Table 8 illustrates how

the ranking of the hyperparameter optimization and machine learning algorithm selection using

various values of parameters ψ and η in the aggregation process differs slightly, but Θ6 is the best

algorithm for all combinations of parameters.

Methods Ranking Best Algorithm

Υψ=1,η=1 Θ6 � Θ3 � Θ5 � Θ2 � Θ1 � Θ4 Θ4

Υψ=1,η=2 Θ6 � Θ5 � Θ3 � Θ2 � Θ1 � Θ4 Θ4

Υψ=2,η=2 Θ6 � Θ3 � Θ5 � Θ2 � Θ4 � Θ1 Θ1

Υψ=2,η=1 Θ6 � Θ3 � Θ2 � Θ5 � Θ4 � Θ1 Θ1

Υψ=2,η=3 Θ6 � Θ3 � Θ5 � Θ4 � Θ2 � Θ1 Θ1

Υψ=3,η=2 Θ6 � Θ3 � Θ2 � Θ5 � Θ4 � Θ1 Θ1

Table 8. Ranking results of different parameters
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In MCDM, the decision maker’s involvement plays a crucial role in determining the weights

and preferences associated with different criteria. It has been suggested that the decision maker’s

influence should be greater than 1 to enable the creation of a sphere representation in SPFSs.

This requirement reflects the need for a significant level of involvement to ensure the meaningful

representation of preferences and uncertainties. Understanding the limitations of SPFSs is essential

for their effective utilization in MCDM. By addressing constraints such as the decision maker’s

involvement, researchers and practitioners can enhance the applicability and reliability of SPFSs

in real-world decision-making contexts.

7. Conclusion

This paper uses Multi-Criteria Decision Making (MCDM) approaches to give a comprehen-

sive framework for machine learning algorithm selection and hyperparameter optimization. We

have aided informed decision-making for maximizing model performance through a series of

methodical processes, such as weighing criteria, choosing decision makers, evaluating language,

converting to fuzzy numbers for spherical pictures, using the BM operator, measuring Euclidean

distance and ranking algorithms. Table 6 displays the total rating of algorithms, which represents

the culmination of our efforts. With a clear hierarchy of algorithm performance, the table identifies

the optimal algorithm based on assessments and similarity computations. It is noteworthy that, for

various Y operator parameter settings, Θ1 constantly shows up as the best-performing algorithm.

The significance of using structured decision-making frameworks to manage the complexity

of algorithm selection and hyperparameter tuning is highlighted by this study. We have shown

a reliable strategy for increasing model efficacy in machine learning tasks by combining MCDM

approaches with cutting-edge methods like the BM operator and spherical picture fuzzy numbers.

Our methodology will be a useful resource going ahead for scholars and practitioners looking to

optimize the processes of hyperparameter tweaking and algorithm selection. Stakeholders can

enhance model performance and decision-making results in machine learning applications by

utilizing the insights obtained from this study to make better-informed judgments.
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