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Abstract. In this paper, we will introduce the concept of a continuous biframe for Hilbert C∗−modules. Then, we examine

some characterizations of this biframe with the help of an invertible and adjointable operator is given. Moreover, we

study continuous biframe Bessel multiplier and dual continuous biframe in Hilbert C∗−modules. Also, we develop the

concept of continuous biframes in the tensor product of two Hilbert C∗-modules over a unital C∗-algebraA and provide

some properties of invertible transformed biframes and Bessel multipliers in the tensor product.

1. Introduction and preliminaries

Frames for Hilbert spaces were introduced by Duffin and Schaefer [4] in 1952 to study some

deep problems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor

[8] for signal processing. In fact, in 1946 Gabor, showed that any function f ∈ L2(R) can be

reconstructed via a Gabor system {g(x − ka)e2πimbx : k, m ∈ Z} where g is a continuous compact

support function. These ideas did not generate much interest outside of nonharmonic Fourier

series and signal processing until the landmark paper of Daubechies, Grossmannn, and Meyer [2]

in 1986, where they developed the class of tight frames for signal reconstruction and they showed

that frames can be used to find series expansions of functions in L2(R) which are very similar to

the expansions using orthonormal bases. After this innovative work the theory of frames began

to be widely studied. While orthonormal bases have been widely used for many applications, it is

the redundancy that makes frames useful in applications.

The idea of pair frames, which refers to a pair of sequences in a Hilbert space, was first presented

in [6]. Parizi, Alijani and Dehghan [18] studied Biframe, which is a generalization of controlled

frame in Hilbert space. The concept of a frame is defined from a single sequence but to define a
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biframe we will need two sequences. In fact, the concept of biframe is a generalization of controlled

frames and a special case of pair frames. For more detailed information on biframes theory, readers

are recommended to consult: [1, 5, 9, 10, 13–17, 20–30].

In this paper, we will introduce the concept of continuous biframes in Hilbert C∗−modules and

we present some examples of this type of frame. Moreover, we investigate a characterization of

continuous biframe using its frame operator is established. Also, we study continuous biframe

Bessel multiplier and dual continuous biframe in Hilbert C∗−modules. Finally, we introduce the

concept of continuous biframes in the tensor product of two Hilbert C∗-modules over a unital C∗-
algebraA and investigate the properties of invertible transformed biframes and Bessel multipliers

within this framework.

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner product to take

values in a C∗-algebra rather than in the field of complex numbers.

Let’s now review the definition of a Hilbert C∗-module with basic properties and some facts

concerning operators on Hilbert C∗-module.

Definition 1.1. [11] Let A be a unital C∗− algebra and H be a left A− module, such that the linear
structures of A and H are compatible. H is a pre-Hilbert A module if H is equipped with an A−valued
inner product 〈·, ·〉A : H ×H → A such that is sesquilinear, positive definite and respects the module
action. In the other words,

1 - 〈x, x〉A ≥ 0, ∀x ∈ H and 〈x, x〉A = 0 if and only if x = 0.
2 - 〈ax + y, z〉A = a〈x, z〉A + 〈y, z〉A for all a ∈ A and x, y, z ∈ H .

3 - 〈x, y〉A = 〈y, x〉∗
A

for all x, y ∈ H .

For x ∈ H , we define ‖x‖ = ‖〈x, x〉A‖
1
2 . If H is complete with ‖.‖, it is called a Hilbert A−module or a

Hilbert C∗−module overA. For every a in C∗−algebraA, we have |a| = (a∗a)
1
2 and theA−valued norm on

H is defined by |x| = 〈x, x〉
1
2
A

for x ∈ H .

Lemma 1.1. [19] LetH be a HilbertA-module. If T ∈ End∗
A
(H), then

〈T x,T x〉A ≤ ‖T ‖2〈x, x〉A, ∀x ∈ H .

Let F denote a Banach space, and (Ω,µ) represent a measure space with positive measure µ,

with f : Ω → F being a measurable function. Integral of the Banach-valued function f has been

defined by Bochner and others. Most properties of this integral are similar to those of the integral

of real-valued functions. Because every C∗-algebra and Hilbert C∗-module is a Banach space thus

we can use this integral and its properties.

Throughout, we assumeA is a unital C∗-algebra,H is a Hilbert C∗-module overA, and (Ω,µ)

is a measure space. Define,

L2(Ω,A) =

{
ϕ : Ω→A ;

∥∥∥∥∥∫
Ω

∣∣∣(ϕ(ω))∗∣∣∣2 dµ(ω)
∥∥∥∥∥ < ∞}

.
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For every ϕ,ψ ∈ L2(Ω,A), if the inner product is defined by

〈ϕ,ψ〉A =

∫
Ω
〈ϕ(ω),ψ(ω)〉Adµ(ω).

The norm is defined by ‖ϕ‖ = ‖〈ϕ,ϕ〉A‖
1
2 , then L2(Ω,A) is a HilbertA-module [12].

Definition 1.2. Let H be Hilbert A-module and (Ω,µ) be a measure space with positive measure µ. A
mapping X : Ω→H is called a continuous frame with respect to (Ω,µ) if

(i) X is weakly-measurable, i.e., for all f ∈ H , ω 7→ 〈 f ,X(ω)〉A is a measurable function on Ω,
(ii) There exist constants 0 < A ≤ B < ∞ such that

A〈 f , f 〉A ≤
∫

Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ ≤ B〈 f , f 〉A,

for all f ∈ H .

The constants A and B are called continuous frame bounds. If A = B, then it is called a tight

continuous frame. If the mapping X satisfies only the right inequality, then it is called continuous

Bessel mapping with Bessel bound B.

Let X : Ω → H be a continuous frame forH . Then the synthesis operator TX : L2 (Ω,µ) → H

weakly defined by

〈TX(ϕ), h〉A =

∫
Ω
ϕ(ω)〈X(ω), f 〉Adµ,

where ϕ ∈ L2 (Ω,µ) and f ∈ H and its adjoint operator called the analysis operator T ∗
X

: H →

L2 (Ω,µ) is given by

T
∗

X
X(ω) = 〈 f ,X(ω)〉A , f ∈ H , ω ∈ Ω.

The frame operator SX : H →H is weakly defined by

〈SX f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ, ∀ f ∈ H .

Let GL+(H) be the set of all positive bounded linear invertible operators on H with bounded

inverse. We reserve the notation End∗
A
(H) for the set of all adjointable operators fromH toH .

2. Continuous biframe in Hilbert C∗-modules

In this section, we begin by presenting the definition of a continuous biframe in a Hilbert

C∗−modules, followed by a discussion of some of its properties.

Definition 2.1. A pair (X,Y) = (X : Ω→H , Y : Ω→H) of mappings is called a continuous biframe
forH with respect to (Ω,µ) if:

(i) X,Y are weakly-measurable, i.e., for all f ∈ H , ω 7→ 〈 f ,X(ω)〉A and ω 7→ 〈 f ,Y(ω)〉A are
measurable functions on Ω,

(ii) there exist constants 0 < A ≤ B < ∞ such that for all f ∈ H ,
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A〈 f , f 〉A ≤
∫

Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ ≤ B〈 f , f 〉A. (2.1)

The constants A and B are called continuous biframe bounds. If A = B, then it is called a tight continuous
biframe and if A = B = 1, then it is called Parseval continuous biframe .

If (X,Y) satisfies only the right inequality (2.1), then it is called continuous biframe Bessel mapping
with Bessel bound B.

Remark 2.1. Let X : Ω→H be a mapping. Consequently, in light of the Definition 4.1, we express that

(i) If (X,X) is a continuous biframe forH , then X is a continuous frame forH .
(ii) If P ∈ GL+(H), (X, PX) is a continuous biframe forH , thenX is a P–controlled continuous frame

forH ,
(iii) If P, Q ∈ GL+(H), (PX, QX) is a continuous biframe for H , then X is a (P, Q)–controlled

continuous frame forH .

We now provide an example that verifies the description given above.

Example 2.1. Assume thatA =


 a 0

0 b

 : a, b ∈ C

, thenA is a unital C∗-algebra. AlsoA is a Hilbert

C∗-module over itself, with the inner product:

〈., .〉A : A×A→A

(M, N) 7−→M(N̄)t.

Assume that (Ω,µ) is a measure space where Ω = [0, 1] and µ is the Lebesgue measure. DefineX : Ω→A

by

X(ω) =

 2ω 0

0 1−ω

 , ω ∈ Ω,

andY : Ω→A by

Y(ω) =

 3ω 0

0 ω+ 1

 , ω ∈ Ω.

For every f =

 a 0

0 b

 ∈ A, we have

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ(ω) =

∫
[0,1]

〈 a 0

0 b

 ,

 2ω 0

0 1−ω

〉
A

〈 3ω 0

0 ω+ 1

 ,

 a 0

0 b

〉
A

dµ(ω)

=

∫
[0,1]

 2ωa 0

0 (1−ω)b


 3ωā 0

0 (ω+ 1)b̄

 dµ(ω)

=

∫
[0,1]

 6ω2 0

0 1−ω2


 |a|2 0

0 |b|2

 dµ(ω)

=

 |a|2 0

0 |b|2

 ∫
[0,1]

 6ω2 0

0 1−ω2

 dµ(ω)
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=

 2 0

0 2
3


 |a|2 0

0 |b|2


Consequently,

2
3
〈 f , f 〉A ≤

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ ≤ 2〈 f , f 〉A.

Therefore, (X,Y) is a continuous biframe forH with bound
2
3

and 2.

Next, we introduce the continuous biframe operator and provide some of its properties.

Definition 2.2. Let (X,Y) = (X : Ω→H , Y : Ω→H) be a continuous biframe forH with respect to
(Ω,µ). Then the continuous biframe operator SX,Y : H →H is defined by

SX,Y f =
∫

Ω
〈 f ,X(ω)〉AY(ω)dµ,

for all f ∈ H .

For every f ∈ H , we have

〈SX,Y f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ. (2.2)

This implies that, for each f ∈ H ,

A〈 f , f 〉A ≤ 〈SX,Y f , f 〉A ≤ B〈 f , f 〉A.

Hence, AI ≤ SX,Y ≤ BI, where I is the identity operator on H . consequently, SX,Y is positive and

invertible.

Theorem 2.1. Let SX,Y the continuous biframe operator, if the pair (X,Y) is a continuous biframe forH
with respect to (Ω,µ) Then SX,Y is adjointable and S∗

X,Y = SY,X.

Proof. From (2.2), we can write

〈SX,Y f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ

= 〈

∫
Ω
〈 f ,X(ω)〉AY(ω)dµ, f 〉A

=

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ

=

∫
Ω
(〈 f ,Y(ω)〉A〈X(ω), f 〉A)

∗ dµ

=

(∫
Ω
〈 f ,Y(ω)〉A〈X(ω), f 〉Adµ

)∗
= 〈SY,X f , f 〉∗

A

= 〈 f , SY,X f 〉A.

Therefore, SX,Y is adjointable and S∗
X,Y = SY,X. �
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Proposition 2.1. Let SX,Y and SY,X be continuous biframe operators such that SX,Y = SY,X. Then the
pair (X,Y) is a continuous biframe for H with respect to (Ω,µ) if and only if (Y,X) is a continuous
biframe forH with respect to (Ω,µ).

Proof. Let (X,Y) is a continuous biframe for H with bounds A and B. Then for every f ∈ H , we

have

A〈 f , f 〉A ≤ 〈SX,Y f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ ≤ B〈 f , f 〉A.

Since SX,Y = SY,X we have

〈SY,X f , f 〉A = 〈SX,Y f , f 〉A =

∫
Ω
〈 f ,Y(ω)〉A〈X(ω), f 〉Adµ

Thus, for each f ∈ H , we have

A〈 f , f 〉A ≤
∫

Ω
〈 f ,Y(ω)〉A〈X(ω), f 〉Adµ ≤ B〈 f , f 〉A.

Therefore, (Y,X) is a continuous biframe forH .

Likewise, we can establish the converse part of this theorem. �

We suppose that SX,Y is self-adjoint operator. Thus, every f ∈ H has the representations

f = SX,YS−1
X,Y f =

∫
Ω
〈 f , S−1

X,YX(ω)〉AY(ω)dµ,

f = S−1
X,YSX,Y f =

∫
Ω
〈 f ,X(ω)〉AS−1

X,YY(ω)dµ.

In the following theorem, we establish a characterization of a continuous biframe by utilizing

its biframe operator.

Theorem 2.2. Let (X,Y) is a continuous biframe Bessel mapping for H with respect to (Ω,µ).Then
(X,Y) is a continuous biframe with bounds A and B for H if and only if SX,Y ≥ AI, where SX,Y is the
continuous biframe operator for (X,Y).

Proof. Let (X,Y) is a continuous biframe forH with bounds A and B. Then using (2.1) and (2.2),

for each f ∈ H , we get

A〈 f , f 〉A ≤ 〈SX,Y f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ ≤ B〈 f , f 〉A.

Thus,

A〈 f , f 〉A ≤ 〈SX,Y f , f 〉A,

Hence,

SX,Y ≥ AI.

Conversely, assume that SX,Y ≥ AI. Then, for every f ∈ H , we have

A〈 f , f 〉A ≤ 〈SX,Y f , f 〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ.
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Since (X,Y) is a continuous biframe Bessel mapping for H . Therefore, (X,Y) is a continuous

biframe forH . �

Furthermore, we provide a characterization of a continuous biframe with the assistance of an

invertible operator onH .

Theorem 2.3. Let T ∈ End∗
A
(H) be invertible onH . Then the following statements are equivalent:

(1) (X,Y) is a continuous biframe forH with respect to (Ω,µ)

(2) (TX,TY) is a continuous biframe forH with respect to (Ω,µ).

Proof. (1)⇒(2) For each f ∈ H ,

ω 7→ 〈 f ,TX(ω)〉A

and

ω 7→ 〈 f ,TY(ω)〉A

are measurable functions on Ω. Let (X,Y) is a continuous biframe for H with bounds A and B
and T ∈ End∗

A
(H). for f ∈ H , we have∫

Ω
〈 f ,TX(ω)〉A〈TY(ω), f 〉Adµ =

∫
Ω
〈T
∗ f ,X(ω)〉A〈Y(ω),T ∗ f 〉Adµ

≤ B〈T ∗ f ,T ∗ f 〉A

≤ B‖T ∗‖2〈 f , f 〉A.

On the other hand, Since T ∈ End∗
A
(H) is invertible, for each f ∈ H , we have

〈 f , f 〉A = 〈
(
TT

−1
)∗

f ,
(
TT

−1
)∗

f 〉A

= 〈
(
T
−1

)∗
T
∗ f ,

(
T
−1

)∗
T
∗ f 〉A

≤

∥∥∥∥(T −1
)∗∥∥∥∥2
〈T
∗ f ,T ∗ f 〉A.

Consequently, for each f ∈ H , we have∫
Ω
〈 f ,TX(ω)〉A〈TY(ω), f 〉Adµ =

∫
Ω
〈T
∗ f ,X(ω)〉A〈Y(ω),T ∗ f 〉Adµ

≥ A〈T ∗ f ,T ∗ f 〉A

≥ A
∥∥∥∥(T −1

)∗∥∥∥∥−2
〈 f , f 〉A.

Hence, (TX,TY) is a continuous biframe forH with bounds A
∥∥∥∥(T −1

)∗∥∥∥∥−2
and B‖T ∗‖2.
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(2)⇒(1), Assume that (TX,TY) is a continuous biframe forH with bounds A and B. Now, for

each f ∈ H , we have

A‖T ∗‖−2
〈 f , f 〉A = A‖T ∗‖−2

〈

(
T
−1
T

)∗
f ,

(
T
−1
T

)∗
f 〉A

≤ A〈
(
T
−1

)∗
f ,

(
T
−1

)∗
f 〉A

≤

∫
Ω
〈

(
T
−1

)∗
f ,TX(ω)〉A〈TY(ω),

(
T
−1

)∗
f 〉Adµ

=

∫
Ω
〈T
∗
(
T
−1

)∗
f ,X(ω)〉A〈Y(ω),T ∗

(
T
−1

)∗
f 〉Adµ

=

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ.

On the other hand, for each f ∈ H , we have∫
Ω
〈 f ,X(ω)〉A〈Y(ω), f 〉Adµ

=

∫
Ω
〈T
∗
(
T
−1

)∗
f ,X(ω)〉A〈Y(ω),T ∗

(
T
−1

)∗
f 〉Adµ

=

∫
Ω
〈

(
T
−1

)∗
f ,TX(ω)〉A〈TY(ω),

(
T
−1

)∗
f 〉Adµ

≤ B〈
(
T
−1

)∗
f ,

(
T
−1

)∗
f 〉A

≤ B
∥∥∥∥(T −1

)∗∥∥∥∥2
〈 f , f 〉A.

Therefore, (X,Y) is a continuous biframe forH with bounds A‖T ∗‖−2 and B
∥∥∥∥(T −1

)∗∥∥∥∥2
.

�

3. Continuous biframe Bessel multiplier and dual continuous biframe inHilbert C∗−modules

In this section, we will delve into the discussion of continuous biframe Bessel multipliers and

we study dual continuous biframe in Hilbert C∗−modules.

Let (X,X) and (Y,Y) be continuous biframe Bessel mappings forH with respect to (Ω,µ) and

let m : Ω→ C be a measurable function. Then the operatorMm,X,Y : H →H defined by

〈Mm,X,Y f , g〉A =

∫
Ω

m(ω)〈 f ,X(ω)〉A〈Y(ω), g〉Adµ, (∀ f , g ∈ H),

is called continuous biframe Bessel multiplier of X andY with respect to m.

Theorem 3.1. The continuous biframe Bessel multiplier of X and Y with respect to m is well defined and
bounded.
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Proof. Let (X,X) and (Y,Y) be continuous biframe Bessel mappings for H with bounds D1 and

D2. Then we have for any f , g ∈ H,

‖〈Mm,X,Y f , g〉A‖ = ‖
∫

Ω
m(ω)〈 f ,X(ω)〉A〈Y(ω), g〉Adµ‖

≤ ‖

(∫
Ω
|m(ω)|2|〈 f ,X(ω)〉A|2dµ

) 1
2
(∫

Ω
|〈g,Y(ω)〉A|2dµ

) 1
2

‖

≤ ‖m‖∞‖
(∫

Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ

) 1
2

‖‖

(∫
Ω
〈g,Y(ω)〉A〈Y, g(ω)〉Adµ

) 1
2

‖

≤ ‖m‖∞
√

D1D2
∥∥∥ f

∥∥∥ ∥∥∥g
∥∥∥ .

This shows that
∥∥∥Mm,X,Y

∥∥∥ ≤ ‖m‖∞√D1D2, meaning thatMm,X,Y is well-defined and bounded. �

After proving Theorem 3.1, for every f ∈ H , we obtain:∥∥∥Mm,X,Y f
∥∥∥ = sup
‖g‖=1

∥∥∥〈Mm,X,Y f , g〉A
∥∥∥ (3.1)

= sup
‖g‖=1

∫
Ω
‖m(ω)〈 f ,X(ω)〉A〈Y(ω), g〉Adµ‖

≤ ‖m‖∞ sup
‖g‖=1

‖

(∫
Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ

) 1
2

‖‖

(∫
Ω
〈g,Y(ω)〉A〈Y(ω), g〉Adµ

) 1
2

‖

≤ ‖m‖∞
√

D2‖

(∫
Ω
〈 f ,X(ω)〉A〈X, f (ω)〉Adµ

) 1
2

‖. (3.2)

Likewise, it can be shown that∥∥∥∥M∗m,X,Yg
∥∥∥∥ = sup
‖ f‖=1

∥∥∥〈Mm,X,Yg, f 〉A
∥∥∥ (3.3)

≤ ‖m‖∞
√

D1‖

(∫
Ω
〈g,Y(ω)〉A〈Y(ω), g〉Adµ

) 1
2

‖. (3.4)

Theorem 3.2. LetMm,X,Y be the continuous biframe Bessel multiplier ofX andY with respect to m. Then
M
∗

m,X,Y =Mm,Y,X.

Proof. For f , g ∈ H, we have

〈 f ,M∗m,X,Yg〉A = 〈Mm,X,Y f , g〉A

=

∫
Ω

m(ω)〈 f ,X(ω)〉A〈Y(ω), g〉Adµ

=

∫
Ω
〈 f , m(ω)〈g,Y(ω)〉AX(ω)〉Adµ

= 〈 f ,
(∫

Ω
m(ω)〈g,Y(ω)〉AX(ω)dµ

)
〉A

= 〈 f ,Mm,Y,Xg〉A.
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Which shows that,M∗m,X,Y =Mm,Y,X. �

Theorem 3.3. LetMm,X,Y be the continuous biframe Bessel multiplier ofX andY with respect to m. Then
(X,X) is a continuous biframe forH provided for each f ∈ H , there exists α > 0, such that∥∥∥Mm,X,Y f

∥∥∥ ≥ α ∥∥∥ f
∥∥∥ .

Proof. For every f ∈ H , using (3.2), we obtain:

α2
〈 f , f 〉A ≤

∥∥∥Mm,X,Y f
∥∥∥2

≤ ‖m‖2∞D2

∫
Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ

Thus,
α2

‖m‖2∞D2
〈 f , f 〉A ≤

∫
Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ ≤ D1〈 f , f 〉A.

Therefore, (X,X) is a continuous biframe forH with bounds
α2

‖m‖2∞D2
and D1. �

Theorem 3.4. Let Mm,X,Y be the continuous biframe Bessel multiplier of X and Y with respect to m.
Suppose 1− α > 0, 1 + β > 0 such that for each f ∈ H , we have∥∥∥ f −Mm,X,Y f

∥∥∥ ≤ α ∥∥∥ f
∥∥∥+ β

∥∥∥Mm,X,Y f
∥∥∥ .

Then (X,X) is a continuous biframe forH .

Proof. For every f ∈ H , we have:∥∥∥ f
∥∥∥− ∥∥∥Mm,X,Y f

∥∥∥ ≤ ∥∥∥ f −Mm,X,Y f
∥∥∥

≤ α
∥∥∥ f

∥∥∥+ β
∥∥∥Mm,X,Y f ‖.

Hence,

(1− α)
∥∥∥ f

∥∥∥ ≤ (1 + β)
∥∥∥Mm,X,Y f

∥∥∥ .

Now, using (3.2), we obtain:(
1− α
1 + β

) ∥∥∥ f
∥∥∥ ≤ ∥∥∥Mm,X,Y f

∥∥∥
≤ ‖m‖∞

√
D2‖

(∫
Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ

) 1
2

‖.

Therefore, (
1− α

‖m‖∞
√

D2 (1 + β)

)2

〈 f , f 〉A ≤
∫

Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ ≤ D1〈 f , f 〉A. (3.5)

Therefore, (X,X) is a continuous biframe forH with bounds
(

1− α
‖m‖∞

√
D2 (1 + β)

)2

and D1. �
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Theorem 3.5. Let Mm,X,Y be the continuous biframe Bessel multiplier of X and Y with respect to m.
Suppose α ∈ [0, 1) such that for each f ∈ H , we have∥∥∥ f −Mm,X,Y f

∥∥∥ ≤ α ∥∥∥ f
∥∥∥

and ∥∥∥∥ f −M∗m,X,Y f
∥∥∥∥ ≤ β ∥∥∥ f

∥∥∥ .

Then (X,X) and (Y,Y) are continuous biframes forH .

Proof. Putting β = 0 in (3.5), we get(
1− α

‖m‖∞
√

D2

)2

〈 f , f 〉A ≤
∫

Ω
〈 f ,X(ω)〉A〈X(ω), f 〉Adµ.

Thus, (X,X) is a continuous biframe forH .

On the other hand, for every f ∈ H , we have∥∥∥ f
∥∥∥2
−

∥∥∥∥M∗m,X,Y f
∥∥∥∥2
≤

∥∥∥∥ f −M∗m,X,Y f
∥∥∥∥2

= 〈
(
I −Mm,X,Y

)∗
f ,

(
I −Mm,X,Y

)∗
f 〉A

≤

∥∥∥∥I −M∗m,X,Y

∥∥∥∥2
〈 f , f 〉A

≤ β2
〈 f , f 〉A.

Hence, (
1− β2

)
〈 f , f 〉A ≤

∥∥∥∥M∗m,X,Y f
∥∥∥∥2

.

Now, using (3.4), we get

1− β2

‖m‖2∞D1
〈 f , f 〉A ≤

∫
Ω
〈 f ,Y(ω)〉A〈Y(ω), f 〉Adµ.

Thus, (Y,Y) is a continuous biframe forH with bounds
1− β2

‖m‖2∞D1
and D2. �

Definition 3.1. Let (X,Y) be a continuous biframe forH . Then (X,Y) is called a dual continuous biframe
forH . If

〈 f , g〉A =

∫
Ω
〈 f ,X(ω)〉A〈Y(ω), g〉Adµ. (∀ f , g ∈ H) .

Theorem 3.6. Let (X,Y) be a continuous biframe for H with continuous biframe operator SX,Y. Then(
S−1
X,YX,Y

)
and

(
X, S−1

X,YY
)

are dual continuous biframes forH .
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Proof. For every f , g ∈ H , we have

〈 f , g〉A =

∫
Ω
〈 f , S−1

X,YX(ω)〉A〈Y(ω), g〉Adµ,

〈 f , g〉A =

∫
Ω
〈 f ,X(ω)〉A〈S−1

X,YY(ω), g〉Adµ.

This confirms that
(
S−1
X,YX,Y

)
and

(
X, S−1

X,YY
)

are dual continuous biframes forH . �

In the forthcoming theorem, we establish a dual continuous biframe for H in terms of the

multiplier operator.

Theorem 3.7. LetMm,X,Y be invertible withM−1
m,X,Y ∈ End∗

A
(H) and (X,Y) be a continuous biframe

forH . Then
(
m

(
M
−1
m,X,Y

)∗
X,Y

)
is a dual continuous biframe forH .

Proof. Given the definition ofMm,X,Y, we can write

〈Mm,X,Y f , g〉A =

∫
Ω

m(ω)〈 f ,X(ω)〉A〈Y(ω), g〉Adµ.

Now, by substituting f withM−1
m,X,Y f , we obtain:

〈 f , g〉A = 〈Mm,X,YM
−1
m,X,Y f , g〉A =

∫
Ω

m(ω)〈M−1
m,X,Y f ,X(ω)〉A〈Y(ω), g〉Adµ

=

∫
Ω

m(ω)〈 f ,
(
M
−1
m,X,Y

)∗
X(ω)〉A〈Y(ω), g〉Adµ

=

∫
Ω
〈 f , m(ω)

(
M
−1
m,X,Y

)∗
X(ω)〉A〈Y(ω), g〉Adµ.

This shows that,
(
m

(
M
−1
m,X,Y

)∗
X,Y

)
is a dual continuous biframe forH . �

4. Continuous biframes in the tensor product

Suppose thatA,B are unital C∗-algebras andA⊗B is the completion ofA⊗alg Bwith the spatial

norm. A⊗B is the spatial tensor product ofA andB, also suppose thatH is a HilbertAmodule and

K is a HilbertB-module. We want to defineH ⊗K as a Hilbert (A⊗B)-module. Start by forming

the algebraic tensor productH ⊗alg K of the vector spacesH ,K (over C ). This is a left module over(
A⊗alg B

)
(the module action being given by (a⊗ b)(x⊗ y) = ax⊗ by(a ∈ A, b ∈ B, x ∈ H , y ∈ K)

). For (x1, x2 ∈ H , y1, y2 ∈ K) we define
〈
x1 ⊗ y1, x2 ⊗ y2

〉
A⊗B

= 〈x1, x2〉A ⊗
〈
y1, y2

〉
B

. We also know

that for z =
∑n

i=1 xi ⊗ yi inH ⊗algK we have 〈z, z〉A⊗B =
∑

i, j

〈
xi, x j

〉
A
⊗

〈
yi, y j

〉
B
≥ 0 and 〈z, z〉A⊗B =

0 iff z = 0. This extends by linearity to an
(
A⊗alg B

)
-valued sesquilinear form onH ⊗algK , which

makesH ⊗algK into a semi-inner-product module over the pre- C∗-algebra
(
A⊗alg B

)
. The semi-

inner-product onH ⊗alg K is actually an inner product, see [12]. ThenH ⊗algK is an inner-product

module over the pre- C∗-algebra
(
A⊗alg B

)
, and we can perform the double completion discussed

in chapter 1 of [12] to conclude that the completionH ⊗K ofH ⊗algK is a Hilbert (A⊗B)-module.

We callH ⊗K the exterior tensor product ofH andK . WithH ,K as above, we wish to investigate

the adjointable operators on H ⊗K . Suppose that S ∈ End∗
A
(H) and T ∈ End∗

B
(K). We define
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a linear operator S ⊗ T on H ⊗K by S ⊗ T(x ⊗ y) = Sx ⊗ Ty (x ∈ H , y ∈ K). It is a routine

verification that is S∗ ⊗ T∗ is the adjoint of S ⊗ T, so in fact S ⊗ T ∈ End∗
A⊗B

(H ⊗K). For more

details see [3, 12]. We note that if a ∈ A+and b ∈ B+, then a ⊗ b ∈ (A⊗B)+. Plainly if a, b are

Hermitian elements ofA and a ≥ b, then for every positive element x of B, we have a⊗ x ≥ b⊗ x.

Now, we will start by defining the new concept of continuous biframes in the tensor product

setting.

Definition 4.1. Let H1 and H2 be Hilbert A-modules over a unital C∗-algebra A. We consider, H :=

H1 ⊗AH2. A pair
(X,Y) =

(
X : Ω→H , Y : Ω→H

)
is called a continuous biframe forH with respect to (Ω,µ) if:

(i) X,Y are weakly-measurable; i.e., for every pure tensor f ⊗ g ∈ H1 ⊗AH2, the maps

ω 7−→ 〈 f ⊗ g, X(ω)〉A and ω 7−→ 〈 f ⊗ g, Y(ω)〉A

are measurable on Ω.
(ii) There exist constants 0 < A ≤ B < ∞ such that, for all f ⊗ g ∈ H1 ⊗AH2,

A 〈 f ⊗ g, f ⊗ g〉A ≤

∫
Ω
〈 f ⊗ g, X(ω)〉A 〈Y(ω), f ⊗ g〉A dµ(ω) ≤ B 〈 f ⊗ g, f ⊗ g〉A.

The constants A and B are the biframe bounds. If A = B, then it is a tight continuous biframe; if
A = B = 1, a Parseval continuous biframe. If only the upper bound holds, it is a continuous biframe

Bessel mapping with Bessel bound B.

Theorem 4.1. Let (Ω,µ) = (Ω1 ×Ω2, µ1 ⊗ µ2) be a product measure space, and let H1,H2 be Hilbert
A-modules. Suppose

X = X1 ⊗A X2, Y = Y1 ⊗AY2 : Ω −→ H1 ⊗AH2,

where X1,Y1 : Ω1 →H1 and X2,Y2 : Ω2 →H2. Then the following are equivalent:

(a)
(
X,Y

)
is a continuous biframe for H1 ⊗AH2 w.r.t. (Ω,µ). In other words, there exist A, B > 0

such that

A 〈 f ⊗ g, f ⊗ g〉A ≤

∫
Ω
〈 f ⊗ g, X(ω)〉A 〈Y(ω), f ⊗ g〉A dµ(ω) ≤ B 〈 f ⊗ g, f ⊗ g〉A,

for all f ⊗ g ∈ H1 ⊗AH2.
(b)

(
X1,Y1

)
is a continuous biframe for H1 w.r.t. (Ω1,µ1) and

(
X2,Y2

)
is a continuous biframe for

H2 w.r.t. (Ω2,µ2).

Moreover, if
(
X1,Y1

)
has biframe bounds (A1, B1) and

(
X2,Y2

)
has bounds (A2, B2), then

(
X,Y

)
has

biframe bounds A1A2 and B1B2.

Proof. (a) ⇒ (b). Assume
(
X,Y

)
is a continuous biframe onH1 ⊗AH2 with bounds A, B. For any

f ∈ H1 and g ∈ H2, we have

A 〈 f ⊗ g, f ⊗ g〉A ≤
∫

Ω
〈 f ⊗ g, X(ω)〉A 〈Y(ω), f ⊗ g〉A dµ(ω) ≤ B 〈 f ⊗ g, f ⊗ g〉A.
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By hypothesis, X(ω1,ω2) = X1(ω1) ⊗A X2(ω2), and similarly for Y. Since µ = µ1 ⊗ µ2, a Fubini-

type argument gives∫
Ω1×Ω2

〈 f ⊗ g, X1(ω1) ⊗X2(ω2)〉A 〈Y1(ω1) ⊗Y2(ω2), f ⊗ g〉A d(µ1 ⊗ µ2)(ω1,ω2)

=
(∫

Ω1

〈 f , X1(ω1)〉H1
〈Y1(ω1), f 〉H1

dµ1(ω1)
)
·

(∫
Ω2

〈g, X2(ω2)〉H2 〈Y2(ω2), g〉H2 dµ2(ω2)
)
.

Since 〈 f ⊗ g, f ⊗ g〉A = 〈 f , f 〉H1
〈g, g〉H2 , it follows that

A 〈 f , f 〉H1
〈g, g〉H2

≤

∫
Ω1

〈 f , X1(ω1)〉H1
〈Y1(ω1), f 〉H1

dµ1(ω1)

∫
Ω2

〈g, X2(ω2)〉H2
〈Y2(ω2), g〉H2

dµ2(ω2)

≤ B 〈 f , f 〉H1
〈g, g〉H2 .

Hence
(
X1,Y1

)
is a continuous biframe onH1, and

(
X2,Y2

)
is a continuous biframe onH2.

(b) ⇒ (a). Conversely, assume
(
X1,Y1

)
is a continuous biframe onH1 with bounds (A1, B1), and(

X2,Y2

)
is a continuous biframe onH2 with bounds (A2, B2). Then

A1 〈 f , f 〉H1
≤

∫
Ω1

〈 f , X1(ω1)〉H1
〈Y1(ω1), f 〉H1

dµ1(ω1) ≤ B1 〈 f , f 〉H1
,

and similarly

A2 〈g, g〉H2 ≤

∫
Ω2

〈g, X2(ω2)〉H2 〈Y2(ω2), g〉H2 dµ2(ω2) ≤ B2 〈g, g〉H2 .

Multiplying these inequalities and applying a Fubini argument once again yields

A1A2 〈 f ⊗ g, f ⊗ g〉A ≤
∫

Ω1×Ω2

〈 f ⊗ g, X1(ω1)⊗X2(ω2)〉A 〈Y1(ω1)⊗Y2(ω2), f ⊗ g〉A d(µ1⊗µ2) ≤ B1B2 〈 f ⊗ g, f ⊗ g〉A.

Thus
(
X1 ⊗A X2, Y1 ⊗AY2

)
is a continuous biframe onH1 ⊗AH2. �

Example 4.1. LetA be a unital C∗-algebra. Define two finite-rank free HilbertA-modules:

H1 = A2, H2 = A3.

They carry the standardA-valued inner products,

〈x, y〉Hi =
∑

k

x∗k yk.

Let (X1,µ1) be partitioned into two disjoint measurable sets Ω1, Ω2, each of finite nonzero measure. On
each Ω j ⊂ X1, define

F1(ω) =
1√

µ1(Ω j)
(1, 0)T, G1(ω) =

1√
µ1(Ω j)

(0, 1)T.

(Or pick other standard vectors inA2 to ensure a nontrivial frame.) One can check, by integrating piecewise,
that (F1,G1) meets

A1 〈x, x〉H1
≤

∫
X1

〈x, F1(ω)〉H1
〈G1(ω), x〉H1

dµ1(ω) ≤ B1 〈x, x〉H1
,



Int. J. Anal. Appl. (2025), 23:104 15

for some A1, B1 > 0. Hence (F1,G1) is a continuous biframe inH1.

Similarly, let (X2,µ2) be partitioned into subsets ∆1, ∆2, ∆3, each nonempty and finite measure. On ∆ j,
define vectors inA3 so that

F2(ω
′) = 1√

µ2(∆ j)
(1, 0, 0)T, G2(ω

′) = 1√
µ2(∆ j)

(0, 1, 0)T,

and so on. By a similar calculation, (F2,G2) is a continuous biframe inH2 with bounds A2, B2.

Consider the product space

X = X1 ×X2, µ = µ1 ⊗ µ2.

Define

F (ω1,ω2) = F1(ω1) ⊗A F2(ω2), G(ω1,ω2) = G1(ω1) ⊗A G2(ω2).

Then by Theorem 4.1, (F ,G) is a continuous biframe in H1 ⊗AH2 � A2
⊗AA

3 � A6, with biframe
bounds A1A2 and B1B2. The integrals factor through a Fubini argument exactly as stated in the theorem,
and we see how two continuous biframes inH1 andH2 produce a biframe in their tensor product.

Definition 4.2. Let
(
X,Y

)
be a continuous biframe forH1 ⊗AH2 with respect to the measure space

(
Ω,µ

)
.

Define the continuous biframe operator

S(X,Y) : H1 ⊗AH2 −→ H1 ⊗AH2

by

S(X,Y)

(
f ⊗ g

)
=

∫
Ω

〈
f ⊗ g, X(ω)

〉
A
Y(ω) dµ(ω),

for all pure tensors f ⊗ g ∈ H1 ⊗AH2, and then extend by linearity and continuity to the whole module
H1 ⊗AH2.

Theorem 4.2. Suppose

(X,Y) =
(
X1 ⊗A X2, Y1 ⊗AY2

)
is a continuous biframe for H1 ⊗AH2. Let S(X,Y) be the continuous biframe operator, and similarly let
S(X1,Y1) and S(X2,Y2) be the associated single-module biframe operators onH1 andH2. Then

S(X,Y) = S(X1,Y1) ⊗A S(X2,Y2).

Proof. For any f ⊗ g ∈ H1 ⊗AH2. By definition,

S(X,Y)

(
f ⊗ g

)
=

∫
Ω

〈
f ⊗ g, X1(ω1) ⊗A X2(ω2)

〉
A

(
Y1(ω1) ⊗AY2(ω2)

)
d
(
µ1 ⊗ µ2

)
(ω1,ω2).

A Fubini-type argument, plus the factorization ofA-valued inner products,〈
f ⊗ g, X1(ω1) ⊗A X2(ω2)

〉
A

=
〈

f , X1(ω1)
〉
H1

〈
g, X2(ω2)

〉
H2

,

shows that

S(X,Y)

(
f ⊗ g

)
=

(∫
Ω1

〈
f , X1(ω1)

〉
H1
Y1(ω1) dµ1(ω1)

)
⊗A

(∫
Ω2

〈
g, X2(ω2)

〉
H2
Y2(ω2) dµ2(ω2)

)
.
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But those two integrals are exactly S(X1,Y1)( f ) ∈ H1 and S(X2,Y2)(g) ∈ H2. Hence

S(X,Y)

(
f ⊗ g

)
=

(
S(X1,Y1) ⊗A S(X2,Y2)

)(
f ⊗ g

)
.

By linearity, this holds for all f ⊗ g ∈ H1 ⊗AH2, so

S(X,Y) = S(X1,Y1) ⊗A S(X2,Y2).

�

Lemma 4.1. Let
(
X1,Y1

)
be a continuous biframe onH1 with bounds A, B. Let

(
X2,Y2

)
be a continuous

biframe onH2 with bounds C, D. Denote their continuous biframe operators by S(X1,Y1) and S(X2,Y2). Then
for the induced biframe

(X,Y) =
(
X1 ⊗A X2, Y1 ⊗AY2

)
inH1 ⊗AH2, the continuous biframe operator S(X,Y) satisfies

A C idH1⊗AH2 ≤ S(X,Y) ≤ B D idH1⊗AH2 .

Hence S(X,Y) is a positive, invertible operator in End∗(H1 ⊗AH2), and its spectrum lies in the interval
[AC, BD] ⊂ R+.

Proof. From single-module biframe theory, A idH1
≤ S(X1,Y1) ≤ B idH1

and C idH2 ≤ S(X2,Y2) ≤

D idH2 . Taking theA-linear tensor product of these operator inequalities yields

A C idH1⊗AH2 ≤ S(X1,Y1) ⊗A S(X2,Y2) ≤ B D idH1⊗AH2 .

By Theorem 4.2,

S(X,Y) = S(X1,Y1) ⊗A S(X2,Y2).

Thus,

A C idH1⊗AH2 ≤ S(X,Y) ≤ B D idH1⊗AH2 .

Positivity and invertibility follow by standard Hilbert-module arguments. �

5. Invertible transforms on biframes

Theorem 5.1. Let (F1,G1) be a continuous biframe for H1 with bounds A, B > 0, and (F2,G2) a
continuous biframe forH2 with bounds C, D > 0. Suppose T1 ∈ End∗

A
(H1) and T2 ∈ End∗

A
(H2). Define

∆ =
(
(T1 ⊗A T2)(F1 ⊗A F2), (T1 ⊗A T2)(G1 ⊗A G2)

)
,

a pair of maps Ω1 ×Ω2 → H1 ⊗AH2. Then ∆ is a continuous biframe for H1 ⊗AH2 if and only if
(T1 ⊗A T2) is invertible in End∗(H1 ⊗AH2). Moreover, T1 ⊗A T2 is invertible if and only if both T1 and
T2 are invertible in their respective module-end spaces.
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Proof. ⇒ If ∆ is a continuous biframe, the associated biframe operator is invertible. By factorization

(the Hilbert C∗-module analog of [7]), that operator factors through (T1 ⊗A T2), forcing T1 ⊗A T2

to be invertible. A standard argument in C∗-modules shows that implies T1 and T2 must each be

invertible.

⇐ Conversely, if T1 and T2 are invertible on H1,H2, applying T1 to (F1,G1) preserves biframe

inequalities. Similarly for T2. By the tensor-product biframe theorem (Theorem 4.1),(
(T1 ⊗A T2)(F1 ⊗A F2), (T1 ⊗A T2)(G1 ⊗A G2)

)
remains a continuous biframe onH1 ⊗AH2. �

6. BesselMultipliers in the Tensor Product

Definition 6.1. Let
(
X,Y

)
be a continuous biframe Bessel mapping onH1 ⊗AH2 w.r.t. (Ω,µ). That

is, it satisfies an upper-type inequality∫
Ω
〈 f ⊗ g, X(ω)〉A 〈Y(ω), f ⊗ g〉A dµ(ω) ≤ B 〈 f ⊗ g, f ⊗ g〉A,

for some B > 0. Let m : Ω→ C be a measurable function.
We define the operator

Mm,X,Y : H1 ⊗AH2 −→ H1 ⊗AH2

by

Mm,X,Y

(
f ⊗ g

)
=

∫
Ω

m(ω) 〈 f ⊗ g, X(ω)〉AY(ω) dµ(ω),

extended by linearity and continuity.

Remark 6.1. From the Bessel-type inequality,∥∥∥ m(ω) 〈 f ⊗ g, X(ω)〉AY(ω)
∥∥∥ ≤ |m(ω)| ‖ 〈 f ⊗ g, X(ω)〉A‖ ‖Y(ω)‖.

Hence, the integral converges whenever m ∈ L2 or so, mirroring the Hilbert-space argument. ThusMm,X,Y

is a well-defined adjointable operator onH1 ⊗AH2.

Proposition 6.1. Assume
(
X1,Y1

)
is a continuous biframe Bessel mapping in H1 and

(
X2,Y2

)
in H2.

Suppose m1 : Ω1 → C and m2 : Ω2 → C are measurable, and define

X(ω1,ω2) = X1(ω1) ⊗A X2(ω2), Y(ω1,ω2) = Y1(ω1) ⊗A Y2(ω2).

Then
(
X,Y

)
is a Bessel mapping onH1 ⊗AH2. If m(ω1,ω2) = m1(ω1)m2(ω2), then

Mm,X,Y = Mm1,X1,Y1
⊗A Mm2,X2,Y2 .

Proof. By the usual factorization (the Hilbert C∗-module version of Theorem 4.1),
(
X,Y

)
is Bessel

inH1 ⊗AH2. Then

Mm,X,Y( f ⊗ g) =
∫

Ω1×Ω2

m(ω1,ω2) 〈 f ⊗ g, X(ω1,ω2)〉AY(ω1,ω2) d(µ1 ⊗ µ2).
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With m(ω1,ω2) = m1(ω1)m2(ω2) and X(ω1,ω2) = X1(ω1) ⊗A X2(ω2), a Fubini-type computation

yields

=
(∫

Ω1

m1(ω1) 〈 f , X1(ω1)〉Y1(ω1) dµ1

)
⊗A

(∫
Ω2

m2(ω2) 〈 g, X2(ω2)〉Y2(ω2) dµ2

)
.

These integrals are exactlyMm1,X1,Y1
( f ) inH1 andMm2,X2,Y2(g) inH2. So

Mm,X,Y( f ⊗ g) = Mm1,X1,Y1
( f ) ⊗A Mm2,X2,Y2(g).

ThusMm,X,Y =Mm1,X1,Y1
⊗AMm2,X2,Y2 . �
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