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Abstract. A certified dominating set D of a graph G is a dominating set in which every vertex in D must have either no

neighbors or at least two neighbors in V\D, where V denotes the set of all vertices in G. A certified domination number

of G represented by γcer(G) is defined as the smallest size of such a certified dominating set of G. The reinforcement

number r(G) is defined to be the cardinality of minimum number of edges F ⊂ E(Ḡ) such that γ(G + F) < γ(G),

broadened this parameter to encompass certified domination and we define certified reinforcement number of a graph

G, rcer(G) to be the cardinality of the minimum number of edges F ⊂ E(Ḡ) such that γcer(G + F) < γcer(G) that is

minimum number of edges to be added to decrease the certified domination number of G at least by one. In this paper,

we characterize the graph G for which rcer(G) = 1 and determine the values of certified reinforcement number for

various classes of graphs.

1. Introduction

A dominating set in a graph G is a set. R ⊆ V with the property that for each vertex u ∈ V\R,

there exists at least a vertex x ∈ R adjacent to u. The least cardinality among all dominating sets

of G is the domination number γ(G), and R is called a γ-set of G if R is minimum. Haynes [9]

presented a key concept in graph theory, widely recognized and researched as domination in
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graphs. Numerous advanced studies are being conducted across various aspects of domination

terminology: [1, 5, 8, 13]. One of the most recent concepts is certified domination, introduced by

Magda Dettlaff et al. [3].

A certified dominating set is defined as D ⊆ V, where D is a dominating set of a graph G, and

each vertex in D has either no neighbors or at least two neighbors in V\D. The certified domination

number γcer(G) is the least cardinality of a certified dominating set of G, and D is the γcer(G)-set of

G if D is minimal. Further results on this parameter can be found in [4, 15–17].

Recently, numerous studies have explored how the domination parameter of a graph changes

with the addition or removal of edges or vertices. Fink et al. [6] introduced the concept of the

bondage number for a graph G. The bondage number b(G) is defined to be the cardinality of

the minimum number of edges. F ⊂ E(G) such that γ(G− F) > γ(G). Additionally, sharp

bounds for b(G) were established, and exact values for various classes of graphs were determined

in [7]. In [19, 20], the authors introduced the certified bondage number, which is defined as the

certified bondage number of a graph G, b+cer(G) [b−cer(G)] to be the cardinality of the minimum

number of edges F ⊂ E(G) such that γcer(G − F) > γcer(G) [γcer(G − F) < γcer(G)]. To increase

or decrease the certified domination number of G, one must remove the minimum number of

edges. Mynhardt and Kok introduced the concept of the reinforcement number to study the

impact of edge addition on the domination number of a graph [19]. The reinforcement number

r(G) is defined to be the cardinality of the minimum number of edges. F ⊂ E(Ḡ) such that

γ(G + F) < γ(G) [11, 14, 18].

In this paper we introduce the certified reinforcement number of a graph G, which we denote

by rcer(G) and define to be the cardinality of the minimum number of edges F ⊂ E(Ḡ) such that

γcer(G+ F) < γcer(G), which is the minimum number of edges to be added to decrease the certified

domination number of G at least by one. Also, we characterize the graph G for which rcer(G) = 1

and determine the values of the certified reinforcement number for various classes of graphs.

1.1. Motivation. The goal of studying the certified reinforcement number of graphs is to improve

and optimize network structures with little human input, making sure that they are both efficient

and strong. Certified domination, in which vertices in the dominating set must meet certain

neighbor constraints, is useful for real-life situations like making sure that communication and

resource allocation systems are stable or redundant. The certified reinforcement number quantifies

the least number of edges required to reduce the certified domination number, providing insights

into improving network performance while minimizing cost. By exploring this parameter across

various graph classes, this research bridges theoretical advancements with practical applications

in designing resilient and efficient networks.

1.2. Novelty. The novelty of this work lies in extending the concept of reinforcement in graph

theory to the domain of certified domination, introducing the certified reinforcement number

rcer(G), which measures the least number of edges required to decrease the certified domination

number of a graph. Traditional reinforcement focuses on lowering the standard domination
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number. The certified variant, on the other hand, adds extra structural constraints that are more

useful in real life, like making sure networks are robust and have backups. This study not only

expands on previous ideas by finding rcer(G) for different types of graphs, but it also gives us new

theoretical insights and tools for improving network performance when domination requirements

are stricter.

2. Notation

Let G = (V, E) denote a connected, simple graph of order |V| = n. We use Harary [10] for graph

theoretic notation. For any vertex v ∈ V, the open neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E}
and the closed neighborhood is the set N[v] = N(v)∪ {v}. For a set S ⊆ V, the open neighborhood of S
is N(S) =

⋃
v∈S

N(v); the closed neighborhood of S is N[S] = N(S)∪ S; NX(v) denotes the neighbors

of v in X, where X is a subset of V; and the private neighborhood pn(v, S) of a vertex v ∈ S is defined

by pn(v, S) = {u ∈ V − S : N(u)∩ S = {v}}.
A path is a walk with no repeated vertices, and a non-trivial closed path is called a cycle. A

connected graph without any cycles is referred to as a tree. In a tree, a vertex with degree one is

termed a leaf, while a vertex directly connected to one or more leaves is called a support. A support

connected to only one leaf is classified as a weak support, whereas a support connected to two or

more leaves is termed a strong support. A complete binary tree is a special type of tree where all

leaves are at the same depth, and every internal vertex has a degree of three. In a complete binary

tree rooted at vertex v, the set of all vertices situated at a depth of k is referred to as the vertices at

level k.

3. Main Results

Theorem 3.1. Let G be a graph of order n and D be a γcer-set of G and G′ be a subgraph induced by
D.Choose a vertex x ∈ D such that |pn(x, D)| ≤ |pn(y, D)| for all y ∈ D.Then

rcer(G) =

(|pn(x, D)|+ 1 if x is an isolated vertex in G′

(|pn(x, D)| otherwise.

Proof. Let G be a graph and D be a γcer-set of G, and let G′ be a subgraph induced by D.

Choose a vertex x ∈ D, so that |pn(x, D)| ≤ |pn(y, D)| for all y ∈ D.

Let x1, x2, x3, · · · , xm ∈ pn(x, D). Let G1 be a graph obtained by joining the vertices of pn(x, D) to

a vertex, say y ∈ D, resulting in pn(x, D) = ∅.

Note that m number of edges are added in G. If x is not an isolated vertex in G
′

, then x is adjacent

to some vertex of D1 = D− {x}, where D1 is a γcer-set of G1.

Hence rcer(G) = m = |pn(x, D)|. Otherwise, x is an isolated vertex in G
′

, so x is not dominated

by D1 = D− {x}.
Hence, adding another edge xy results in D1 being a γcer-set of G1 + xy. Therefore, rcer(G) =

m + 1 = |pn(x, D)|+ 1. �
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Figure 1. Logical frame work for the proof of Theorem 3.1

Theorem 3.2. Let G be a graph of order n and D be a γcer- set of G, then rcer(G) = 1 if and only if one of
the following holds.
(i) |pn(v, D)| = 0 for at least one vertex v ∈ D.
(ii) |pn(v, D)| = 1 for at least one vertex v ∈ D with N(v)∩D = ∅.
(iii) 4(G) = n-2.

Proof. Let G be a graph of order n and D be a γcer-set of G. Let rcer(G) = 1.

Assuming that there is a vertex v ∈ D, so that |pn(v, D)| = 0. Then either NV−D(v) = ∅ or

NV−D(v) > 1.

Now, joining the vertex v to the vertex u ∈ D\N(v) by an edge e = uv results in a graph G
′

, and

the γcer-set of G
′

is D
′

≤ D− {v}.
Therefore |D′| < |D|. Otherwise |pn(v, D)| > 0 for all v ∈ D, here either |pn(v, D)| = 1 or

|pn(v, D)| > 1.

In the former case, choose u ∈ pn(v, D). By adding an edge e = uw for some w ∈ D, we ensure

that D− {v} becomes a γcer-set of G + e. This condition is possible only if N(v) ∩D , ∅. Hence (ii)

is proved.

In the lateral case, |pn(v, D)| > 1 for all v ∈ D. In this case, suppose 4(G) = n − 3 and

deg(v) = n− 3. Then v ∈ 4(G), and except for v1, v2 ∈ V(G), all other vertices are adjacent to v.

Suppose v ∈ D, then there exists one more vertex in D, say w ∈ D, such that |pn(w, D)| > 1. If

not, by (i) and (ii) we are through, hence |pn(w, D)| > 1.
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Now, by Theorem 3.1, we have rcer(G) = |pn(w, D)|+ 1 > 2, a contradiction. Hence 4(G) = n-2.

Conversely, suppose |pn(v, D)| = 0 for at least one vertex v ∈ D. Then either N(v) ∩D = ∅ or

N(v)∩D , ∅.

In both cases, joining the vertices u and v for some u ∈ D\N(v) results in a graph G′ with a

γcer-set D′ = D− {v}. Hence |D| > |D′|. Therefore, rcer(G) = 1. �

Theorem 3.3. [4] For cycle Cn, n ≥ 3, γcer(Cn) =
⌈

n
3

⌉
.

Theorem 3.4. For cycle Cn, n ≥ 3, rcer(Cn) =


1 if n ≡ 1 (mod 3)

2 if n ≡ 2 (mod 3)

3 if n ≡ 0 (mod 3)

Figure 2. rcer(C12) = 3

Proof. Let G � Cn, n ≥ 3, by Theorem 3.3, γcer(Cn) =
⌈

n
3

⌉
. Let D be a γcer-set of G and each vertex

in D dominates at the most three vertices including itself.

Hence |pn(v, D)| ≤ 2 , for all v ∈ D. Now consider the following cases.

Case(i): n ≡ 1 (mod 3)

In this case, D = {v3k−2 : 1 ≤ k ≤
⌈

n
3

⌉
} is a γcer-set of G.

Note that |pn(vn, D)| = 1 and also vn is adjacent to v1 where v1 ∈ D.

Now by the Theorem 3.1, adding the edge v1vn−1 results a graph G1 with γcer-set D1 = D− {vn}.

Therefore, γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 1.

Case(ii): n ≡ 2 (mod 3)

Here D = {v3k−2 : 1 ≤ k ≤
⌈

n+1
3

⌉
} is a γcer-set of G.

Also, |pn(v1, D)| = 1 and |pn(vn−1, D)| = 1. Now by the Theorem 3.1, adding the edges vn−1v1

and vn−2v1 results a graph G1 with γcer-set D1 = D− {vn−1}.

Therefore, γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 2.
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Case(iii): n ≡ 0 (mod 3)

Here D = {v3k−2 : 1 ≤ k ≤
⌈

n
3

⌉
} is a γcer-set of G.

Also |pn(v, D)| = 2, for every v ∈ D. Now by the Theorem 3.1, joining the vertex vn−2 and

the private neighbors of vn−2 [i.e. vn−1, vn−3] to the vertex v1 ∈ D results a graph G1 with γcer-set

D1 = D− {vn−2}.

Therefore, γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 3. �

Figure 3. rcer(P11) = 2

Theorem 3.5. [4] For path Pn, γcer(Pn) =



1 if n=1 or n=3;

2 if n = 2;

4 if n = 4;⌈
n
3

⌉
otherwise.

Theorem 3.6. For path Pn, n > 4, rcer(Pn) =


1 if n ≡ 1 (mod 3);

2 if n ≡ 2 (mod 3);

3 if n ≡ 0 (mod 3).

Proof. Let G � Pn, n > 4, by Theorem 3.5, γcer(Pn) =
⌈

n
3

⌉
. Let D be a γcer-set of G.

Case(i): n ≡ 1 (mod 3).

In this case, D = {v3k−1 : 1 ≤ k ≤ n−4
3 } ∪ {vn−1, vn−3} is a γcer-set of G.

Also, |pn(vn−1, D)| = 1 and |pn(vn−3, D)| = 0. So by Theorem 3.1, adding the edge e = vn−1vn−3

results a graph G1 with certified dominating set D′ = D− {vn−3}.

This implies γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 1.

Case(ii): n ≡ 2 (mod 3).

Here D = {v3k−1 : 1 ≤ k ≤ n−2
3 } ∪ {vn−1} is a γcer-set of G. Also |pn(vn−1, D)| = |pn(vn−3, D)| = 1.

Now by the Theorem 3.1, joining the vertex vn−3 and the vertex vn−4 ∈ pn(vn−3, D) to any of the

vertex of D say vn−1 results a graph G1 with γcer-set D1 = D− {vn−3}.

Therefore, γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 2.
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Case(iii): n ≡ 0 (mod 3).

Here D = {v3k−1 : 1 ≤ k ≤
⌈

n
3

⌉
} is a γcer-set of G and each vertex in D has exactly two private

neighbours.

Hence by the Theorem 3.1, joining the vertex vn−4 and the vertices vn−3, vn−5 ∈ pn(vn−4, D) to any

of the vertex of D say vn−1 results a graph G1 with γcer-set D1 = D− {vn−4}.

Therefore, γcer(G1) =
⌈

n
3

⌉
− 1. Hence rcer(G) = 3. �

We derive the follow lemma in order to find certified reinforcement number for binary trees T.

Lemma 3.1. For binary tree T of level k, 0 ≤ k ≤ n,

γcer(T) =


(2k+2+3)

7 if k ≡ 0, 2 (mod 3);
(2k+2

−2)
7 if k ≡ 1 (mod 3).

Proof. Let Si be the set of vertices in level i. Then |Si| = 2i. We define

D =

S0 ∪ S2 ∪ S5 ∪ · · · ∪ Sk−4 ∪ Sk−1 f or k ≡ 0, 2 (mod 3);

S1 ∪ S4 ∪ S7 ∪ · · · ∪ Sk−4 ∪ Sk−1 f or k ≡ 1 (mod 3).

Clearly D is a γcer-set of T. Hence

γcer(T) =

20 + 22 + 25 + · · ·+ 2k−4 + 2k−1 f or k ≡ 0, 2 (mod3);

21 + 24 + 27 + · · ·+ 2k−4 + 2k−1 f or k ≡ 1 (mod 3).

Case (i): k ≡ 0, 2 (mod3). Now,

γcer(T) = 20 + 22 + 25 + · · ·+ 2k−4 + 2k−1

= 1 + 4(
2k
− 1
7

)

=
2k+2 + 3

7
.

Case(ii): k ≡ 1 (mod 3). Now,

γcer(T) = 21 + 24 + 27 + · · ·+ 2k−4 + 2k−1

=
2(2k+1

− 1)
7

=
2k+2

− 2
7

.

�

Theorem 3.7. For a binary tree T of level k, 0 ≤ k ≤ n,

rcer(T) =

1 if k ≡ 0, 2 (mod 3);

3 if k ≡ 1 (mod 3).
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Proof. Let T be a binary tree of level k and Si be the set of vertices in level i. Let {v0}, {v11, v12},

{v21, v22, v23, v24}, {v31, v32, v33, v34, v35, v36, v37, v38} · · · be the vertex set in level 0,1,2,3,. . . respec-

tively and D be a γcer-set of T.

Every vertex v ∈ D has at most three private neighbors that is |pn(v, D)| ≤ 3 for all v ∈ D .

Figure 4. rcer(P11) = 2

Case(i): k ≡ 0, 2 (mod 3).

By the above lemma, γcer(T) = 2k+2+3
7 for k ≡ 0, 2 (mod 3) and v0 ∈ D with |pn(v0, D)| = 0 as

level 2 vertices are in D.

Now joining v0 to one of the vertices of D results a graph T
′

with γcer-set D′ = D− {v0}.

Hence rcer(T) = 1 for k ≡ 0, 2 (mod 3).

Case(ii): k ≡ 1 (mod 3).

By the above lemma, γcer(T) = 2k+2
−2

7 for k ≡ 1 (mod 3) and v11 ∈ D with |pn(v11, D))| = 2.

Here v21, v22 ∈ pn(v11, D) and each vertex in G
′

[where G
′

is a subgraph induced by D] is isolated

, by Theorem 3.1, rcer(T) = 3. �

4. Conclusion

In this paper, we explored the concept of the certified reinforcement number rcer(G), which

represents the minimum number of edges that must be added to a graph G to reduce its certi-

fied domination number γcer(G). We characterized the cases where rcer(G) = 1 and established

the values of rcer(G) in terms of private neighbors of vertices in a minimum certified dominat-

ing set. Furthermore, we determined the certified reinforcement numbers for various classes of

graphs, providing insights into how edge additions influence certified domination. These findings

contribute to a deeper understanding of domination-based parameters in graph theory and their

structural implications.
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