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ABSTRACT. In this manuscript, we explore the concept of strong-coupled fixed points in the context of intuitionistic
fuzzy metric spaces (IFMS). Our approach is grounded in the idea of intuitionistic fuzzy contractive couplings
(IFCCs), which provide a framework for understanding fixed points in fuzzy settings. We begin by introducing a
novel formulation of coupling, which combines the principles of coupled fuzzy contractions with cyclic mappings.
This combination leads to a more generalized and effective method of identifying strong-coupled fixed points,
extending previous results in fuzzy metric spaces. A key contribution to this paper is the proof of the existence of a
unique strong-coupled fixed point. We establish this result through rigorous theoretical analysis and provide a
corollary that strengthens the foundation of our work. Several non-trivial examples are presented to demonstrate the
applicability of the theory and the robustness of the strong-coupled fixed point in various scenarios. Additionally, we
present a practical application of our findings: the construction of a strong-coupled fractal set within the framework
of intuitionistic fuzzy metric spaces. This is achieved by applying an intuitionistic iterated function system (IIFS),
which is based on a family of intuitionistic fuzzy contractive couplings. The fractal generation process is illustrated
through several examples, demonstrating the theoretical results in action. To further solidify the applicability of our
approach, we introduce an intuitionistic fuzzy version of the Hausdorff distance between compact sets, a crucial tool
in measuring the "closeness" of sets within the intuitionistic fuzzy context. Several examples are provided to clarify
the fractal generation process, showing how the intuitionistic fuzzy metrics and couplings contribute to the creation
of self-similar fractals. This work not only enhances the understanding of fixed points in intuitionistic fuzzy spaces
but also provides new insights into their application in fractal geometry, offering both theoretical advancements and

practical tools for future research in this area.
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1. Introduction

There are several uses for fractals in computer graphics, quantum physics, biology, and other
scientific fields. Ancient mathematicians began using the theory of discrete dynamical systems,
often known as the notion of iterated function systems, extensively to create self-similar and
fractal sets. In addition to being a fractal set's advantage, self-similarity may also be utilized to
create fractal and self-similar sets. Hutchinson [1] used the Banach contraction principle to
construct a theory known as Hutchinson-Barnsley (HB) theory, which is based in the
construction of an unvarying compact subset of a metric space (MS) generated by the iterated
function system (IFS) of contractive mappings.

Fractal image compression, also known as fractal image encoding, is a popular application of
fractal theory, particularly the use of self-similarity property. One of the primary goals of this
perception is to consider the fractal transform operator, which is directly obtained from the
perception by examining the fractal transform maps, and the undertaken image function will be
approximated by the attractor of the associated contractive operator. Rajkumar and
Uthayakumar [2] developed a fuzzy point distance function and used it to create a
comprehensive MS of fuzzy-valued image functions. They added a fractal transform operator to
the newly generated complete MS.

The theory of fuzzy sets (FSs) and other concepts related to fuzzy metric space (FMS) were
pioneered by Zadeh [3], and their properties have been analyzed by many succeeding
mathematicians [4, 5]. Park [6] developed the concept of intuitionistic fuzzy metric space
(IFMS), which was a common idea of fuzzy metric spaces (FMS) introduced by George and
Veeramani [4]. There are several research papers available on the concept of generalized fuzzy
topological spaces, which are like FMS.

Coker [7] introduced intuitionistic fuzzy topological space (IFTS). In this connection, Saadati
and Park [8] launched the notions of intuitionistic fuzzy normed spaces (IFNS), and some of the
results relating to the convergence of sequences in these spaces were encountered by several
mathematicians [9 -12].

Then, the idea of fuzzy Banach spaces and their quotients was introduced by Saadati and
Vaezpour [13]. Moreover, a study of intuitionistic fuzzy metric spaces was carried out by Pandit
et al. [14] and general structures like L-topological vector space were studied (e.g., [15]).
Researchers provided the necessary and sufficient criteria for L-topological vector space to be L-
fuzzy normable, along with a definition of L-fuzzy normed linear space [16].

Schweizer and Sklar [17] introduced the statistical MSs, with particular emphasis on triangle
inequality. George, and Veeramani, [18] defined the Hausdorff topology in FMSs and proved
Baire's theorem in this space. A technique for creating a Hausdorff fuzzy metric on the

collection of nonempty compact subsets of a given FMS was presented by Rodriguez-Lépez and
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Romaguera [19]. Bhaskar and Lakshmikantham [20] generalized the FP results by using partial
order. Kirk et al. [21] generalized the FP results by using cyclical contractive conditions. An
SCFP theorem for a generalized coupling between two subsets of an MS was proven by
Choudhury and Chakraborty [22]. Some new definitions of compatible mappings in IFMS were
demonstrated by Alaca et al. [23] (cfr. [24-26] for more related results).

In this work, we study SCFP results for IFMS by introducing an intuitionistic fuzzy
contractive coupling (IFCC). Next, using such couplings, an intuitionistic fuzzy iterated
coupling system (IFICS) is shown. Furthermore, we apply to the Hutchinson-Barnsley operator
to SCFs using the fixed-point result. In the subsequent work, we demonstrate that an existing
fuzzy coupled fixed-point (FCFP) result is successfully generalized by our SCFP result.

Examples are provided for both the FP theorem and the fractal-generating process.

2. Preliminaries

We utilize the following notations throughout the paper: The sets of all non-empty subsets
and compact subsets for any topological space (Z, 1), are denoted by the symbols P (&) and k(Z),
respectively. N,, stands for the set of the first n natural numbers.
Definition 2.1 [17]. A mapping : [0,1]> — [0,1] is said to be a continuous t-norm (CTN), if it
verifies the following axioms:
i. *is associative and commutative,
ii. 9*1=9foralld € [0,1],
iii. 9 * b < ¢ *d wheneverd < c and b < d for each 9, b, c,d € [0,1],
iv. * is continuous.
Definition 2.2 [17]. A mapping A: [0,1]*> — [0,1] is said to be a continuous t-conorm (CTCN), if
it satisfies the following assertions:
i. Ais associative and commutative,
ii. Y9A0 =9 forall 9 €[0,1],
ili. 9Ab < cAd wheneverd < cand b < d for each 9, b,c,d € [0,1],
iv. Ais continuous.
Throughout the study, CTN 9 * b = ¢ - b and CTCN 9Ab = max{d, b} are denoted by =, and A,,
respectively. We have that A,(a,b)<A(a,b)for any a,be[0,1] and any CTCN A . We provide
several definitions provided by George et al. [18].
Definition 2.3 [18]. A 3-tuple (&, ®,*) is said to be an FMS if £ set on & X £ x (0, 00), fulfill the
below conditions for all 7, p,Z € £ and t,g > 0;
FMSI. %1_r)r01 &(m,p,t) =0
FMS2. &(m,p,t) = 1iffwr =p,
FMS3. &(m,p,t) = @(p, 7, 1),
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FMS4. @ (m,p,t) *P(p,Z,9) < (1w, Z,t+ q),
FMS5. @(m,p,.): (0,0) = (0,1] is continuous,
FMS6. forallm,p € &, tlim &d(m,p,t) = 1.

Definition 2.4 [18]. Let (£,®,*) be an FMS. Fort > 0 and 0 < r < 1, 2(m, 1, 1) is an open ball with
center m € £, shown as

Y(mr,t)={p €eZ:d(m,pt)>1—-r}
The family {Z(m,7,t) : m € £,0 <r < 1,t > 0} as a basis for a Hausdorff topology on Z has been
proved in [18].
Definition 2.5 [18]. Let (&, @,*) be an FMS.

i. If there exists some € =, such that lim ®(m,,m,t) = 1, for all t > 0, then
n—oo

sequence {mr,} € £ is said to be a convergent sequence to 7.

ii. If lim ®(m,my,t) =1, for allt >0, then{m.} € Z, called a Cauchy sequence. If every

m,n—oo

Cauchy sequence is convergent, then (£, ®,*) is said complete.
Definition 2.6 [20]. Let {: £ X £ — Z be a mapping. An element (1,p) € £ X £ is called coupled
fixed point (CFP) of { if {(m,p) = m, and {(p, ) = p.
If = p, then the CFP is said to be an SCFP, in which case we have {(r, ) = m. The point
(m,m) € £ X E (or simply m € £) is called a SCFP.
Definition 2.7 [22]. Let £ has two non-empty subsets 2 and X. Let be a mapping {: & X & — Z.
We denote with {:k(2) X k(Z) - k(£) the mapping defined as {(C,D) = {{(9,b) : 9 €C,b €
D} ={(C x D)for any C,D € k(£). The mapping ¢ is called “coupling concerning 2 and X"
if {(m,p) € ¥ and {(p,m) € 2 whenever T € 2 and p € X.
Definition 2.8 [6]. A 5-tuple (&, ®,¥,*,A) is called an IFMS if £ a nonempty set, * is a CTN, A is
CICN, @,¥ are FSs in Z X Z x (0,) satisfying the following conditions for allm,p,Z €
Fandt,g>0:
FM1. &(m,p,t) + ¥ (m,p,t) <1,
FM2. forallm,p € Z, ltl_r)g ®(m,p,t) =0,
FM3. &(m,p,t) =1iffTr =p,
FM4. &(m,p,t) = @(p, 1, 1),
FMb5. &(m,p,t) *®(»,2Z,9) < @(w,Z,t+ g),
FM6. @(m,p,.) : (0,00) = (0,1] is continuous,
FM7. forallm,p € Z, tll)rg o(m,p,t) =1,
FMS8. forallmp€£X, 1i_r)¥)1+ Y(m,pt) =1,
FM9. W¥(m,p,t) =0iffr =p,

FM10. ¥(m,p,t) = ¥(p, 7, 1),
FM11. ¥(mr,p,t) A¥(p,Z,0) 2 ¥(m,2Z,t + g),
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FM12. ¥(m,p,.) : (0,0) — (0,1] is continuous,
FM13. forallm,p € £, tlim Y(m,p,t) =0.
Strictly speaking, we have that (Z,®,,*) must be a FMS. If ¥ =1—¢@ and further define
A'(a,b)=1-x (1 —a,1 = b)for any a,b€[0,1], we point out that also (£,¥’,,A") is a FMS. Note
that FM5 implies that @(m, p, 1) is increasing in t €(0, o0). Similarly, FM11 implies that ¥ (p, 7, 1) is
decreasing in t€(0, o0). Some of the above properties will be tacitly used in the sequel. Slightly
changing Definition 2.5, we now give the following definition:
Definition 2.9. (i)Let {m,} be a sequence in Z. If there exists some 7 € £ such that lim &(m,, m,1) =
n—oo

1 and lim ¥ (m,, ,t) = 0 for all t >0, then the sequence {m, } is said to be convergent to 7.

n—>oo

(ii) Ifmlim &(m,, Ty,t) =1 and mlim Y (1, Ty, t) = 0 for allt > 0, then {m,.} is called a Cauchy
,1—Co ,1—C0

sequence. If every Cauchy sequence is convergent, then (£, @, ¥,*, A) is said complete.

3. Coupled Fixed-Point
In the sequel we consider the topology defined in IFMS (&, @, ¥,*, A) (cfr.e.g., [27]). We recall

that the set B(x,1,t) = {yeZ:@(x,y,t)>1-1, ¥(x,y,t) <1} is called open ball with center x and radius
r with respect to t. Then this topology is defined as a topology on = which has as base the family
of open sets of the form {B(x,r,t):xeZ, r€(0,1), t>0}. The properties of this topology shall be

tacitly used in the sequel. In this section, we study the SCF mapping in a complete IFMS.
Definition 3.1. Let (Z,®,¥,*,A) be a IFMS and 7j: k(&) X k(&) = k(Z) be mapping. 2 € k(&) is
called a SCF of 71 if j(2, 2) = Q.

Definition 3.2. An IFICS consists of a IFMS (&, ®,¥,*, A), with two closed subsets £2,X of £ and
of a finite collection of couplings {; : & X Z — £ concerning (2, X for alli € N,. We denote it
by ((Z,®, W, A); 0,%,{;,i € N,).

Definition 3.3. Let (£, @, ¥,*,A) be an IFMS and 2 and X be two non-empty subsets of Z. We call

a coupling { : £ X & — Z concerning 2 and X' is an IFCC if there exists ¢ € (0,1) such that
1 1
O (), ¢ (w o), 01) = (@(m,u, ) « (2(p,0,0)?, M

1 1
Y({(m,p),{(w,0),0t) < (P(r,u,1))2A(P(p,0,1)?. (2)

where ,v € 2 and u,p € X. Here the constant o is the CF.

Theorem 3.1. Assume that the complete IFMS (E,®,¥,%, A, ) has two subsets 0, % closed of £,0 N 3 #

¢.Let(:ZxXE—>E be an IFCC concerningQandX. Let * be such that axb=>

ax, b forany a,bel0,1]. For anymy € 2 andp, € X, define {m,},{p,} two sequences asm,,, =

{(py, ) and pyq = {(my, py) foralln = 0,1,2,... Then they converge to the unique SCFP.

Proof. By definition 2.8, the two sequences {m,},{p,} as defined in the statement fulfill that

m, €ENandp, € X foralln=0,1,2,.... Then
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Nt Nt
d)(nnr pn't) = dj(((pn—l;nn—l)'Z(nn—l 'pn—l)it) = <¢) (pn—llnn—l’g>> * ((D (nn—l;pn—1!5)>

1 1

t\\2 t\\2 t
2|P (pn—l y =1, E) *p @ (T[n—l » Pn—1, ;) =9 (pn—l y -1, E)
1 1
t t\\2 t\)\2
=0 (((Pn—z ’ T[n—Z)J ((T[n—z ’ pn—Z)J ;) =\|® (pn—Z » T2, ;) * | D (T[n—Z » Pn—2, F)

t % t\\2 1
= <(D (Pn—z » -2, ?)) *p <(,‘D (T[n—z » Pn—2, ?)) =9 (T[n—z »Pn—-2, ?)

t
Z ce Z ¢ (7‘[0,})0,5),

[

and

t\\? t\\?
l‘U(T[nr Prs t) = l‘”(((pn—l , T[n—l)J ((T[n—l , pn—l): t) =< (l}l (pn—l y -1y ;)) Ap (l}l <7Tn—1 »Pr-1 E))

t
= <lp (pn—l » -1, ;))
1 1
t t\\2 t\)2
=¥ (((Pn—z T-2),{ (T2, p"_Z)'E> <\¥ (pn—z ) T[n—ZIF) Ay | ¥ (”n—z :Pn—z;?)

1
t\\2 t
=¥ (pn—Z » -2, ;) <¥ (nn—Z » Pn—2> ?)

t
< < ‘I’(ﬂo,po,;)-
By n — o and using (FM7) and (FM13), we get,

N[

t
<y (pn—l » -1, ;)

lim &(m,, p,t) =1, 3)
n—oo

lim ¥(m,, p,t) =0, (€))
n—-oo

forallt > 0. Again foralln € Nandt > 0,
d)(nn+1' pn' t) = d)(g(p‘m T[n)' {(T[n—l! pn—l): t)

1 1 1
* (d) (T[n:pn—l:é))Z = (d) (T[n—l » P é))z *p (d) (nn'pn—lré))2=A

1
2

> (cb (Tuet P i))

and

l‘U(T[n+1' P t) = W(C(Pn; T[n)' Z(T[n—l' pn—l)v 1)

1 1

t\\2 £\ \2
< ((Ij (T[n—llpm ;)) Ap <l[/ (T[nlpn—lrg)> =B
So we have that

A= \/cp (((pn—z' Ty—2), { (a1, Pne1), i) *p \[(1) ({(pn—lr Ty-1),§(TTn_2, Pn—z),i)
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t 2 t
2{ (¢ (mrreagz) ) w0 (@ (mezpinz))
1 1
t\\2 t\\z
o (¢ (merergz) ) o0 (2 (rrspasz))

t t
=o (T[n—lJ Pn-2, ?) *p P (T[n—Zv Prn-1, ;)

_ t
=0 (C(Pn—z; ”n—z)' Z(pn—Sr T[n—3)’ ?)

1
2

t
*p @ (Z(pn—S' Tn—3), § (Ty—2, Prn-2), F)

t % t %
= ({0 i) o (5 s )

1

£\\2 t
o | (#(meiazs) ) oo (@ (meaiags) )

1
2

t t
=@ (”o;pl'ﬁ) *p O (nl,po,;) (5)

and

t t
=¥ (C(Pn—z' ”n—Z)' ((T’:n—l' pn—l)J E) Ap ¥ (Z(pn—lf T[n—l)' ((T[n—Z' pn—Z)r E)

£\ \2 £\ \2
< (IIU (”n—lJ Pn-2, ;) ) Ap (I'U (nn—Z' Pn-1 ;) )
1 1
2 t 2
N (e W T
1 1

2 t 2
() 0 (i n )

t t
S'lu(”n 1 Pn— 22 )A '1U<7Tn 2 Pn— vz )'

=¥ (((pn—ZJ Ty-2),{(Pr-3, 7Tn—3)rp)

t
A, ¥ (((Pn—s; Ty-3),{(Tn_2, Pn—z),;)

1 1

1\ \2 t\\z
< ( (s ) o ()
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t\\z t\\z
By | (# (moe2 iz g3) ) 80 (¥ (e 33) ) )

t t
<Y (T[n—3' Pn-2, F) Apllu (Tfn—z; Pn-3, ;);

<

t t
...'P(no,pl,;> Ap'{’(nl,po,;). (6)
Continuing this process with the sequence @ (m,, p,41,1), ¥ (T, Pnt1,1), foralln € Nandt > 0,

we obtain that
t t
D (T Pry1, ) = P (770;131';> *p P <7T1,P0,;) ) (7)

t t
lP(nn' Prt1, t) L 4 (T[(), P F) Aplp (7-[1' Po, ;) . (8)

By setting for alln € Nand t > 0,
t t
@ =@ (T[O' P F) *p @ (T[lr Po, F)r

B.() =¥ (ﬂo; P %) AW (7T1, Po, %)

using (5)-(8), (FM6), and (FM13), we get il_)rgj @) =1 ,gl_)rg pn(t) = 0, for all t > 0. Note that
form>nand0 <o <1,

1>1-0™"=1-0)(1+0+0c%++am "),
Therefore, for every t > 0,

t>t(1—-0)(1+0+0%+-+o™m" 1),
Using definition 2.15, we prove that {r,} is a Cauchy sequence in 2. For m > n, we can have
two cases:
Case I: m — nis even.
D (1, T, 1) = @(my, T, (L —0) (L + 0+ 0% + -+ 0™ 1))
= ‘p(”n: Prir 11— U)) * D (Pny1, Tnp2, t(1 — 0)0) * -
* D(Tm-2, Pm-1,1(1 = Yo" ")+ B (g, Ty, 1(1 — 0)0™ ")

t(1 - t(1— t(1— t(1 -
(o). oo o200

t(1 —o)o™ ™1 t(1 —o)o™ 1
* ...x @ Ty, pli O'm_l *p ) Ty, pO: O_m_1

= Vn(t(l - 0)) * Vn(t(l - 0)) Kok Vn(t(l - 0)) ’

m—n times
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using (5) and (7) and
Y(m,, Ty, 1) < 'P(nn, Tt(l—0)(1+0+0%+ -+ Gm_“_l))

= lp(”n: pn+1't(1 - 0))Ap lIl(pn+1r7.[n+2't(1 - J)J)
Ay 4y Y (Tm—2, Pm-1,1(1 — U)Um_n_l)Ap Y (Pm—1, T, 1(1 — o)™ 1)

t(1—-o0) t(1—o0) t(1—-o0)o
<|¥ Tl.'o,pl,T Aplzu ﬂl,pO,T Apl[l ﬂo,pl,T

t(1 —o)o™ "1
Apllu T1,Po, O-m—l

= B.(t1 — ))A B, (11 — 0))A -+ A B, (t(1 — o))

m-n times

using (6) and (8).

Case II: m — n is odd.

O.m—n—l O.m—n—l
(T, T, ) = @ | Ty, Ty, t(1 — 0) <1+a+02+---+0m'”'2+ 3 + 3 >

= qD(T[m Pre, t(1 — U)) * D (Pry1, Ta2, (1 —0)0) * ...

O.m—n—l
* O (1, P, (1 — 0)a™ " 2) x @ <7rm_1,pm, t(1—o) > >

m—-n-—1

o
* <pm, T, t(1 — 0) 3 >
t(1—o0) t(1-o0)
= (d’ <”0,p1,T> *p @ <7T1.D0,T
t(1—-o0) t(1—-o0)o
* <(D <n0’pl’W> *, @ <n1,po,T *

t(1 —o)o™ ™1 t(1 — o)™ "2
*| @ (o, P 2gm-1 *p P | M1, Po, gm—2

t(1 — a)am‘“‘1>

20™m

* ¢ (T[Ol pOi

using (3), (5) and (7)
(1 - (1 -
= 7, (t(1 = 0) * yu (11 = ) % -+ % Vn< ( . 0)) « P <n0,po,%).

m—n times

and

O.m—n—l O.m—n—l
Yy, T, t) S W\ my, T, t(1 — 0) <1+0+02 + et o™mT2 4 + )

2 2

=< l[/(r[n, pn+1:t(1 - G))A qj(pn+1:nn+2:t(1 - G)G)
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O.m—n—l
A--A llu(n-m—ll pm't(l - U)Um_n_z)A 4 (T[m—ll pm't(l - O-) 2 >

O.m—n—l
AW <pm, T, 1(1 — 0) > )

t(1—-o0) t(1—-o0)
S ((p <T[0J pll T) Apl}, <T[11 pO; O_n
(1 - o) t(1—-o0)o
Ap ('P <7T0; P W) Ap¥ <7T1; pO:T

t(1 —o)o™ ™1 t(1—og)o™ "2
AP".AP 4 o, P1s ZO'm_l Apllu T1,¥Po, O_m_z

t(1 — a)am'“'1>

Ap lp(T[o,po, 2o

using (4), (6) and (8)

t(1— t(1 —
= Bu(t(1 = 0))A, Bu(t(1 — 0))A, -+ A, By (%) AW (no,po,%)

m-n times

Combining the above two cases, (FM6), (FM13) and y, (1) » 1, 5,(f) » 0 asn — oo for allt > 0.
Then we see that {rr,,} € 2 is a Cauchy sequence, and similarly we can prove that {p,} € 2 is a
Cauchy sequence. Since, 2, X' are closed subsets, there exists m € 2 and p € 2, then

Tll_)tg &d(m,,mt) =1, V>0,

Tll_)l‘g) ®(p,p,H) =1, Vi>0, 9
and
41_{210 Y(m,mt) =0, vVit>0,
lim ¥(py,p,) = 0, V>0, (10)
Now,
o(m,p,t) =P <7r, nmm> * @ (1, py, 01) * D <pn ,p,@), (11)
Y(mpt) <YW (n, . M) AW (1, P, o)A, Y <pn P, g), (12)

asn — oo in (11), (12) and using (3), (4), (9) and (10), we obtain © = p. Moreover, 2 N X # ¢
andmT =p €N nX Also,
(p(nn' ((Tl’, p); t) = (D(T[ni Z(Tl’, p); O-t) = (D(Z(pn—ll T[n—l)' ((T[' p)' O't)

= (d)(pn—ll T, t))E * (d)(nn—b P, t))E = (q)(pn—ll P, t))} * ((D(T[n—lrnl t))E;
and

¥ (1, {(m,9),1) < ¥ (1, {(7,p), 01) = ¥ ({(P-1, 1), { (7, p), 1)
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1 1 1 1
< (Y Pn-1,m D)2 (P (-1, 9,D)2 = (P (-1, 9,D)28p (¥ (e, 1)),
Taking the limit as n — oo in the above inequalities and using (9), and (10) we get w, — {(m, 7).
Since the topology of the IFMS is Hausdorff [27], we have {(r, w) = m. Thus, (7, ) is a SCFP of .
To show the uniqueness of the SCFP, let Z # m € = be another SCFP of { and {(Z,2) = Z. Then
1 1

& (m,2,t) = P (n,1),{(Z,2),t) > (dD (7T,,‘Z,§))E " <¢J (n,Z,£>>E

s (o(m2)) o (o (n2)) ~o(n2t). a3

2

1 1
t\\? t\\? t
Y(m,2Z,t) =¥({(m,m),{(Z,2)1t) < (‘I’ (n,Z,E>> A, <1P (n,Z,E)> < <1P (n,Z,E>) . (14)
By a repeated application of (13) and (14) we have for all n:
t t t
&(m,2Z,1) =@ (n,Z,—) > (n,Z,—Z) =29 (n,Z,—n),
o o o
t t t
W(m, Z,t) < ‘I’(n,Z,—) < W(n,Z,—Z) <<y (n,Z,—n>.
o o o

Taking limit as n — ooin the above inequality, by using (FM7) and (FM13), we get ®(m, Z,1) = 1,
¥Y(m,Z,t) = 0. Hence m = Z. Thus, ¢ has a unique SCFP.

Example 3.1. Assume thatZ =R and 2 = [0, %],Z = [—%, 0], and the IFMS (5, D, %, Ap) with
CINY * b=9-b,and CTCN 9 A, b = max {9, b}. ® and ¥ are FSs on £2 x (0, ) defined by,

|—pl

d(m,p,t)=e t,

|—pl

Y(mpt)=1—e .
Let {:Z X £ —» & be a mapping given by
p—m ) 1 1
swm =5 TEmelog]x]-39
21, otherwise
1

By definition, { is a coupling and { is also an IFCC concerning {2, . Suppose that o = 2

Form,v € N and p,u € X, we have

1 m—u 1 -
(P(m,u, )2 = e_% and (®(v,p,1))? = e_%,

[p—o|

1 T—u 1
(E”(n,u, t))E =1- e_lz_tI and (l}’(n,p,t))z =1—e 2,

and

_I8Gmp) - Sm)| _olp-m)— (-] [(u—10)+(p—0)|
d)(Z(T[J p)l Z(u) D); O-t) =e ot =e 2 6t =e 2t ,

also,

((u=—m)+(—v)| < |lu—n[+]p—o],
or
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|u-—m+ G-l _[u—ml+]p— ol
2t h 2t

or

|(u—m)+(p-0)| [u—Tz|+|p—0]|
e 2t >e 2t

or

@ ({(m,p),{(w,0),0t) = (@(m,1,1))? * (D(p,0,1))>

(15)

Figure 1. The left-hand side with light color blue and the right-hand side with the blue color of

the last inequality (15)

and
_[g@p)- L)l _|Gp-m)~(-u)|
Y({(m,p),{(n,0),0t) =1—¢ ot =1-—e¢e 6ot =
also,
lu—m)+ G- <|lu-n|+[p—ol
or
|u-—m) + G-l _[u—ml+fp—ol
2t - 2t
or
|(u—1)+(p—0)| [u—7t|+|p—|
e 2t >e 2t
_u-m+G-0)| _ lu—mr|+]p—v]|
1—e 2t <l-e 2t
_1u-m+@-0)| Ju—mt| _lp—ol

l1—e 2t <maxjl—e 2zt ,1—¢e 2t

1—e

_u—m+ -l

2t
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or

Y ({(m,p),{(4,0),0t) < (¥(m,u, t))%A (¥(m,», t))%. (16)

Figure 2. The left-hand side with light color blue and the right-hand side with the blue color of
the last inequality (16)

We determine that{ is an IFCC with a contractivity factor o = 1/3. Therefore, in Theorem
3.1 the conditions are fulfilled. This theorem states that there is an SCFP of ¢, which is (0, 0).

Corollary 3.1. Let (£,®,¥,% A,) be a complete IFMS with * as CTN and A, as CTCN. Let * be
such that axb = a=, b for any a,b€0,1] Let{:EZ X E - £ be a mapping to fulfill the below

inequalities for all , p,u,v € £, t > 0 and for some o€(0,1):

@ ({(m,p),{(w,0),0t) = (@(m,u,1))? * (&(m,0,1))?,

W({(m,p),{(w,0),0t) < (¥(m,u,1))2A,(¥(m,0,1))
Then ¢ has a unique SCFP.
Proof. Take 2 = ¥ = £ in Theorem 3.1 and the result follows.

4. Generations of Fractals
Definition 4.1 [19]. Assume that two non-empty compact subsets 2 and X of an FMS (&, ¥,*).
Hy is a Hausdorff fuzzy metric on k(&) defined as
Hy(2,2,1) = max{w(,2,1), 0 (12,2,1)}.
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where
w(2,2,t) = glég 52?‘"(19'1" 1),

and

w(,2,t) =supinf¥w(®,b,t), t> 0.
bex 9en

Definition 4.2 [27]. Let (2, @, ¥,, A) be an IFMS and 0, X be two non-empty compact subsets of =.
Then we define the functions Hg and Hy on K(£) x K(Z) x (0,1) by

Hy(2,2,1) = min{g(2,2,1), g (2, 2,1)}.
where
g, 2,1) = inf sup @9, b, 1)

and

g @, 2,t) =inf sup®(,b,1t),
bex YeN

and Hy is defined as in Definition 4.1.

Definition 4.3. Let (2, @, ¥,*,A) be an IFMS and 2, X be two non-empty subsets of Z. Then a mapping
F: k(&) X k(&) = k(&) is a “coupling concerning x(2) and k(2)" if forall C € k() and D € k(2),
F(C,D) € k(X)and F(D,C) € k(2).

Definition 4.4. Let (Z,®,¥,x,A) be an IFMS, Q,X be two non-empty compact subsets of Z and a
mapping F: k(Z) X k(Z) - k(&) be a coupling concerning x({2) and k(X). Then F is called an IFCC
with respect to k(2) and k(2) in the IFMS (k(Z), He, Hy,*, A) if there exists a o € (0,1) such that

1 1
He(F(Cy,D1),F(Cy,D,) ,0t) = (He (€1, Cy01))? x (Hg (D1, D2, 1))?,

1 1
Hy(F(Cy,D1),F(Cy,Dy),0t) < (Hy (Cy,Cou1))?A(Hy (D1, Do,1))?
forall Ci,C, € k() and Dy, D, € k(X)

Theorem 4.1: Let (5, ®,¥,*,A) be an IFMS and ,X be two non-empty compact subsets of E,{: E X
Z — E be a IFCC with respect to 2 and X with CF a. Then ¢ is a IFCC with respect to k(2) and k(X)) in
the IFMS (k(&), H g, Hy,*, A) with the same CF.

Proof. From the construction of {(£2, ), it follows that for all C € k() and D € x(2),{ (C,D) €
k(2)and ¢ (D,C) € k(). Let Cy,C, € k() and Dy, D, € k(X). Then

{¢(cy,dy):c1 € Cy, dy € Dy}, )

a)(f(Cl D1).4(C2 Do), Gt) @ ({{(cz,dz): c, € C,, d, €Dy}, 0t
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= sup inf @({(c1,d1),{(cz,dz), 0t)

Cc1EC, C€EC,
d,€D; d,€D,

1 1
> sup inf (@(c1,c2, D)% * (@(dy, dp, D)7,
2

Cq ECl C2
d,€D, 42€D;

1 1
2 2
= <sup inf cD(cl,cz,t)) *( inf sup <D(d1,d2,t))

C1ECy C2EC, 1€D1 d,eD,

= ((,() (Cli CZ' t))E * ((I) (DllDZ!t))E
and

X 5 - - {C(cy,dy):cy €Cy, dy € Dy},
7{4/(((61;1)1);((6211)2) ;O't) < (H(((Cl ,D1),¢(C, 'DZ)’Ut) @ ( {(Eﬁgzldzi?czle Czl dzle Dzl} O't)
= Ssup lnf lp(((cli dl)l ((CZIdZ)FO-t)
c1€C; €2€C2
d,€D, 42€D;

1 1
< sup inf (P(cy, D)2 A (P (dy,dy1))?
2

C1EC1 Cy EC
d,€D, 42€D;

2 2
= <sup inf ‘I’(cl,cz,t)> A<sup inf ‘I’(dl,dz,t)>
C €D,

c1EC, C2€C2 d,€D, 92

= (@ (C1, 2, )2A(w (D1, Dy, ).

Similarly,
B({(C1,01),8(C2,D2) ,0t) = (Ho (C1, Co D)  (Ho (D1, D, 1)),
.‘]-[w(f(cb D,),{(C, D), ‘Tt)—<(5 (¢, CZ't))%A(a (D, Dz’t))g'
Therefore,
. R w(f(Cl. D,),{(C,,Dy) 'Ut)'}
Hy(((Cy,Dy1),((Cy,Dy) ,at) = 5 2
qb((( 1,D1),$(C;, D7) U) max{@((((jl,Dl),((Cz,Dz),Gt)
> (Ho (€1, C2D)? * (Ho (D1, D2, D)2,
and

2 2 _ w(f(CIJDl)JZ\(CZIDZ) :Gt);
}[w (((Cl, Dl)’ ((Cz, DZ) , Gt) - {6(5(6.11 Dl)r Z\(CZI DZ) ’ Gt)} =

max{(a) (Cl, Cz,t))%A(w (DlJ Dth))EJ (a (Cll CZ't))%A((‘_) (Dl’DZ’t))E} =
max{{max{(a) (cy, Cz,t))%, (6 (cy, Cz,t))E}A max {(w (Dl,Dz,t))E, (5 (Dl,DZ,t))E},
max{(a_) (Cl' CZI t))% ’ (w (Cll Cz, t))a)}A max {(6 (Dlr DZI t))gr ((‘) (Dll DZ' t))E}}:

max{(w (Cy,C, t))%, (@ (€1, C2,0)23A max {(w (D1, D,, 1))z, (@ (Dy, Dy, 1))},
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1 1
= (Hlp (C1: Cz:t))EA(}fsv (D1:D2't))5
being A nondecreasing.
Hence, {: k(E) X k(5) > k() is an IFCC with respect tox(2) andk(X) in the
IFMS (k (&), Hg, Hy,*, A) with contractivity factor o.
Definition 4.5 [1]. Let (Z, @,%) be an FMS and Z has two non-empty compact subsets (2,2 and
finite collection of continuous coupling{(; : i € N} concerning 2,X. Then the Hutchinson

operator, corresponding to G:k(5) X k(2) = k(5), is defined as

G(C,D) = U ¢,(C,D)
i=1

forany C,D € k(&)

The following lemma is evident:
Lemma 4.1. Let be given a FMS (=, @,*), a finite collection of couplings {; : Z X Z — Z for alli €
N,,, concerning (2, X, where (2, 2 are closed compact subsets of =. Then the Hutchinson operator

is a coupling concerning x({2), k(2) and, for all C;,C, € k(2) and Dy, D, € k(X), holds:

'7{11)( G(CIJ Dl)! G(CZJ DZ)Jt) = {rsl?s)fl }[(b ((Ai(cli Dl)' éi(CZ'DZ)' t)'
}[‘l’( G(CliDl)i G(Cz,Dz),t) = {Qﬁs)g}[‘W(fl(Cll Dl)l fi(CZI DZ)It)I

Definition 4.6 [1]. Let (Z,®,*) be a FMS and 7: k(&) X k(&) — k(Z) be a mapping. 2 € k(%)
called a strong coupling fractal (SCF) of 7} if j(2,2) = 0.

Lemma 4.2: Let (£, ®,¥,*,A) be an IFMS and 2, X be two non-empty compact subsets of Z,{;: Z X £ —
be a continuous IFCC with respect to 2 and X with CF o;,i € N,. Then the Hutchinson operator
1k(E) X k(&) - k(%) is an IFCC in the IFMS (k(&), He, Hy,*,A) with respect to k(2) and k(X)
with CF o = g, = max{o, ;n € N_}.

Proof. By the definition of G, it satisfies that for all C € k() and D € k(2), G(C,D) € k(2)
and G(D,C) € k(). Let C;,C, € k(2) and Dy, D, € k(2):

D

7'[4)( G(CL D,), 67(Cz' D,), Uht) = {Q?S)T(I Hep (éi(cp D,), fi(Cz' D), Ut) =Hyp (fh (C1,Dy), (Ah(czz D,), Uht):
‘7{‘}’( G(Cll Dl)l G(CZJ DZ)) O-ht)
= {Q?sﬁﬂw(fi(cpl)ﬂ: fi(Cszz):Ut) = }[W(fh(CpDﬂ,fh(Cz»Dz); Uht)'

by Lemma 4.1. Since {}, is an IFCC with respect to k() and k() in the IEMS (k(Z), He, Hy,*, 4)
with the same CFoy, by Theorem 4.1, we have that
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1 1
He ($n(C1,D1),8n(Cy, Dy), 0nt) = (Ho (Cy, Co,1))? % (Hg (D1, Dy, 1)),
and

Hyp ($(C1, D1), $n(C, Do), 0nt) < (Hip (Co, G2, ))?A(Hy (D1, D, D)2,
This completes the proof.

Theorem 4.2. Suppose (£, ®@,%¥,*,A) be a complete IEMS such that a b = a =, b for any a,b€[0,1].
Consider an IFICS {(Z,®,¥,*,4); 2,2, {;,i € N,,) has a finite number of continuous IFCC on £ X Z for
two subsets 2,5 of Z, which are compact and assume that G: k(£) X k(&) - x(Z) be the corresponding
Hutchinson operator. Then there exists a unique SCF for G, that is, there exists a P € k() N k(X), then
G(P,P) = P. Further, both the iterations {2} and {Z,} constructed as

Zas1 =G (202, Qnp1 =G (2 02,) ,n20,
with Qg = k(2) and Xy = k(X) being arbitrary chosen, converge to the unique SCF.
Proof. By Lemma 4.2, G is an IFCC with CF ¢ = max{o, : n € N, }. Again, since (Z,®,¥,*,4) is
complete, so, (k(Z), He, Hy,*,A) is complete. Then the thesis comes from an application of
Theorem 3.1 since 2, X' are compact subsets of = which is complete and k({2), k(X) are compact
subsets of the IFMS (k (&), Hg, Hy,*, A).

Example 4.1. SupposeZ =R and 2 =[-2,2], 2 =[-12], and the IFMS (£,®,¥,x,A) with
CINY * b=9-b,and CTCN 9 ¢ b = max {9, b}. & and ¥ are FSs on £2 x (0, ) defined by,

I—pl
& (m,p,t) = e_Tp,
[=p|
w(r, p,t) —1-e 1.
Let{;,{; : £ X Z - Ebe given by {;(m,p) = T (mp) = 1+— Forme N =[-2,2] andp €

X =1[-1,2],{,(m,p), {5 (m,p) € Yand {; (m, p), (2(71, p) €. Then{;,{, are couplings with respect
to 2, 2. Then the IFICS ((£,®,¥,x,A); 2,X,{;, i € N;) generates a SCF.

Letyg =2y =|—= ] The subsequent list contains the first five steps of the iteration that lead to
the SCF (cfr. Figure 4):
13
=2 = [‘5'5 :
7 11
n,=ca=[-5.5 v 5

0, = 2(0,,0,) = 13 5] [ ] [5 13]U[6876]U[7785]U8694
3= W2 0) = 81’ 81 81’81) ~181’81] ~I81’81] ~[81’81l " I81’81)

— Q)_[ 107 U[ 26 26 U[SS 107]
+ =W ) = =575~ 729] Y |~ 729° 7201 Y 729 729

U [622 674] U [703 755 U [784 836
729’729 729’729 729’729
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A4t

A3t

Iteration Step
=
N

A0 = B0
mpm A] =Bl
memm A2 = F(ALAL)
== A3 = F(A2,A2)
mgmm A4 = F(A3,A3)

Aly

AO

-0.50

-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

Figure 3. First five iterations of Example 4.1

Example 4.2. Suppose that Z = Rand 2 = [-2,2], 2 = [-1,2], and an IFMS (£, &, ¥,*, A) with
CINWY*b =19 -b,and CTCN ¥ ¢ b = max{9, b}. ® and ¥ are FSs on 52 x (0, ) defined by,

min{m, p} +t
?(m,p,t) = maxtr p} £
min{m,p} + ¢
(mp, 0 max{m,p} +t
Let{y,{, : £ X EZ — Z be given by {;(m,p) = T @mp) =1 +— Let, =2, = [—— —] Then
the first four iterations of the same are as follows (cfr. Fig. 4):
0. =3 = [ 13
1= <1 — 2 ) 2 .

023 = ({25, 02,) =

117 [79
2, =¢@.00 =|~5.5]v 55
15 617 [63 651 [67 17
[ 16’ 64] [ 64’ 64] [64 64] [16 64] [64’@]U 64’16



Int. J. Anal. Appl. (2025), 23:202 19

59 29 3
4= ¢(125,425) = [_ 128’ 512] [ 1024’ 1024] v _512'_ 128] v [_ﬁ’_ﬁ]
5 29
o~ o 7o) (512 128l [z 2] s sl 5
| 102471024 5127128 128 512 1024’ 1024 512’128
U 1119 477]U 959 965]U 483 121] U 127 509 U [1019 1029
128’512 1024’ 1024 512’128 128’512 1024’ 1024
U 515 129] U 135 541] U 1083 1093] U 547 137
5127128 128’512 1024’ 1024 512’ 128/[
Aal - - - - —— :;:E(IALAU
= A3 = F(AZ2,A2)
——— A4 = F(A3,A3)
A3 0 gupuyp o e=p oo
A2 —— ——
—0.50 —0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Figure 4. First four iterations of Example 4.2
5. Conclusion

In this paper, we provided a new framework of fixed-point theory and fractal generation in
IFMS by means of a SCFP with the concept of an IFCC. We rigorously prove the existence and
uniqueness of SCFPs, which is complemented by a Corollary and a non-trivial example. This
work generalizes existing fuzzy CCFP results with an aim to make them more useful and
significant. In addition, the manuscript illustrates the effectiveness of SCFPs for fractal
generation based on an IFICS and Hutchinson-Barnsley operator to create strong-coupled
fractal sets with respect to an invented intuitionistic fuzzy Hausdorff distance for compact sets.
Future work may extend this framework to other generalized fuzzy metric spaces such as L-
fuzzy or probabilistic metric spaces and study dynamic systems in an intuitionistic fuzzy
context to explain stability and attractor behaviors. We can also generalize this work in
intuitionistic fuzzy controlled metric spaces, neutrosophic metric spaces, and neutrosophic

controlled metric spaces.
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