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Abstract. We investigate two inverse problems (IPs) for the time fractional diffusion equation (TFDE) with an involution.
The determination of a space varying source term, along with solution of a diffusion equation containing # fractional
order derivatives in Caputo’s sense from extra data at a specific time, constitutes the first IP. The second IP investigates
the extracting of a time varying source term as well as the solution of the TFDE from non-local type extra condition.
The second IP has applications to microwave radiations. The existence and uniqueness results for the solutions of both

IPs are presented.

1. INTRODUCTION AND FORMULATION OF THE PROBLEMS

We will define two IPs for the n terms TFDE with involution in domain (z,t) € ), where,
Q :{(z, t):-n<z<m, 0<t< T}. The IPs are described for the following equation,

DLz ) + Y DYz, 1) = dux(2,t) + e~z t) = H(z 1), (1.1)
m=1
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where, D" (z, t) stands for Caputo fractional derivatives (CFDs) of order 0 < a;; < 1 and y, > 0

where m —0 |t() 1,2, ..., n are real constants, subject to the boundary conditions,
o(-m,t) = ¢(m,t), te[0,T], (1.2)
and initial condition,
$(z,0) =¢(z), zel[-nmn], (1.3)

Physically, the mathematical method presented (1.1)-(1.4) describe the anomalous thermal diffu-
sion cycle in a tight copper wire wrapped around a thin sheet of insulating material. It is assumed
that the insulation layer is highly permeable. The temperature on one side has an influence on
the diffusion process from the other. The standard diffusion equation is modified for this reason,
and we add a third term with an involution. Such process leads to the consideration of an IP
for an equation of n parameters TFDE and periodic boundary conditions with respect to a spatial
variable, for more detail see [1]- [3]. The non-integer order derivatives play an important role
in explaining physical process abnormalities. In this article, we consider multi-term fractional
derivative in time because there are anomalies in diffusion/transport process. This non-standard
behavior in diffusion/transport process can be described by many ways. One way is to describe
these anomalies through many techniques already available in literature e.g. non-chaotic slicer
map, continuous time random walk (CTRW), stochastic process etc [4]- [7]. Another way is to
introduce the fractional derivative in corresponding equation. So our motivation to consider
multi-terms fractional derivatives in time is that we will have more parameters to explain the
anomalous behavior in diffusion or transport model. By considering more parameters we are able
to fix these anomalies. If the order of fractional derivative lies between 0 and 1, then our model
describe the sub-diffusion process.

We have another boundary condition by considering a process in such a way that temperature at
one end for all the time t is proportional to the rate of fluctuation of the average speed value of

temperature across the wire. Then,

o, —P(CDSﬁJrZ#mCDSl’?) [(oenac repm (14

Here, p denotes proportionality constant.

From nonlocal boundary condition (1.4), and also by using (1.1), we obtain

o) =p [ ot -eoul-00 +HEAC, tef0T)
which implies that
o(-m0) = pl1=)gctn ) ~ocl-mp)| 4 p [ HEGOE,  refoT

We define a new function

) = o) -p [ HEH)
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Consequently, in terms of U(x, t), we have the following IP,

CDgﬁ‘u z, t —|— Z ymCDg‘l';’U z, t uzz(zl t) +€UZZ(—Z, t) = H(Z’ t)’ (15)

and the boundary conditions become,

U, (-7, t) = Uz(m, t) — bU(7,t) = 0, } w6
U(-mn,t)—-U(n,t) =0.
Physically the background of TFDE with involution which is given in 1.5 is a variation of the
diffusion equation that demonstrates non-local behavior and describes transport processes with
extended memory. It is obtained by substituting the first-order time derivative in the standard dif-
fusion equation with a fractional derivative of order 8, where  belongs to the interval (0, 1) given
in [8]. The physical interpretation of this equation involves the emergence of self-similarity com-
bined with the long-time limit, which is connected to experimental observations [9]. The equation
is employed to examine anomalous diffusion in intricate environments, taking into consideration
the impact of a uniform external field on the dynamics of a particle [10]. Numerical analysis and
simulations of the equation have been performed to comprehend sub-diffusive transport processes
and verify the stability and convergence of numerical schemes [11].The time fractional diffusion
equation with involution is a mathematical model used to describe anomalous diffusion in various
physical systems. It exhibits non-local behavior and is characterized by FDs. The physical interpre-
tation of this equation is still an active area of research. Several papers have explored the physical
background of the TFDE and its applications. Baeumer et al. discuss the derivation of physically
meaningful boundary conditions for fractional diffusion equations and highlight the unsuitability
of the CFD for modeling fractional diffusion [8]. Nadal et al. emphasize the non-local behavior
of the fractional diffusion equation and its implications for physical understanding [13]. Bakalis
and Zerbetto study the influence of a random moving particle in a complex environment using
the TFDE and provide analytical solutions for various properties of the particle’s motion [14].
The second condition in (1.6) refers to the inclusivity of the transmission intensity at the ends
of the interval in a physical sense. While the first condition of (1.6) refers to the difference of flow
rates along with opposite boundaries to the density value at the boundary in a physical sense.
This Dirichlet type condition U(m, t) = U(-n,t) = 0, was used instead of condition (1.6) in [15]

alongside initial and final conditions

Ue0) = () -p [ HLOIO, ze [ (1)

U(z, T) f H(C t)d z € [-m, |, (1.8)

and U(z,t) as a solution of Eq (1.5) satisfies (1.7)-(1.8), where ¢(z) and ¥(z) are given smooth
functions; such that || < 1; and b = PESIk
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Physically IPs arise in almost all areas of science and technology, in modeling of problems moti-
vated by various physical and social processes. Most of these models are governed by differential
and integral equations. If all the necessary inputs in these models are known, then the solution can
be computed and behavior of the physical system under various conditions can be predicted. In
terms of differential problems, the necessary inputs include such information as initial or boundary
data, coefficients and force term, also shape and size of the domain. If all these data are enough to
describe the system adequately, then it is possible to use the mathematical model for studying the
physical system [16].

The investigation into boundary-value problems that are not localized is prompted by the
realization that, in numerous instances, a nonlocal condition is a more accurate approach to
addressing physical problems in comparison to the conventional local conditions. The examination
of IPs with nonlocal boundary conditions is explored, for instance, in the works of [17]- [19].

In [20]- [22], for space TFDE by using a novel modified quasi-reversibility regularization method,
conjugate gradient method and non-stationary iterative Tikhonov regularization method have
been used for simultaneous identification of source term and initial data. IPs for time fractional
diffusion-wave equation have been considered in [23]-[25]. In the articles [26]- [27], IPs of stochastic
as well as distributed order diffusion equation are discussed.

Prior research has looked into the well-posedness of direct and IPs for parabolic equations
with involution [28]- [30]. The solvability of many IPs for parabolic equations was investigated
in articles by Anikonov, Y. E., and Belov, Y. Y., Bubnov, B. A., Prilepko, A. I, and Kostin, A.
B., Monakhov, V. N., Kozhanov, A. 1., Kaliev, I. A., Sabitov, K. B., and several others [31]- [32].
In Ahmad et al, [15] there are good references to publications on these types of problem. The
article [33]- [45] from literature are close to our article’s theme. In these articles, various types of
direct and inverse initial-boundary value problems for evolutionary equations are considered,
including problems with nonlocal boundary conditions and problems for equations with fractional
derivatives. Some of these articles use the concept of smart microgrids to solve inverse problems
to understand, predict, and control their internal dynamics under uncertainty. For equation (1.1),

we define two IPs.

Inverse Source Problem-I for TFDE (ISP-I): In the ISP-I the right hand side of the TFDE will be
considered a space dependent source term. In ISP-I we define H(z,t) := h(z) along with U(z,t)
which is the solution of the system (1.5)-(1.8) along with over-specified condition ¢(z,T) = ¥(z).
The strong solution of the ISP-I means a couple of functions {U(z, t), h(z)} that satisfies

the system (1.5) — (1.8), such that t*™*l(z,t) € Citl (Q), totanp(z) e C([-n,m]), and
n

taotam (CDST; + Z ymcDS‘l';’ U(z,t) € C((0,T]), when 0 < a;; < 1 and py, is a real number. We
m=1

proved that under certain regularity conditions on the given data the ISP-I has a unique strong

solution.
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Inverse Source Problem-II for TFDE (ISP-II): In the ISP-II, we want to recover time varying source
term s(t) and U(z, t) for the system (1.5) — (1.8), with H(z,t) = s(t)h(z,t) for ISP-IL This structure
of the source term arise in microwave heating process, in which the external energy is supplied to a
target at a controlled level represented s(t) and h(z, t) is the local conversion rate of the microwave
energy. The ISP-II does not give us unique solution, so for the uniqueness result of ISP-II we
introduce an over-determination condition. Then, with the help of over-determination condition
we are able to find the unique solution for the ISP-II. As, the over-determination condition is
followed by
n
f U(z, t)dz = E(t). (1.9)
-
The condition (1.9) is consider for the unique solution of the IP-II. ISP-II has a strong solution
under some assumptions, that is, there exist a pair {U(z,t),s(t)} with Yt l(z,t) € Cﬁtl (5),

s(t) € ([0, T]), and t“ﬁa‘m(CDgﬁ + Z ymCDglf;) 2,t) € C((0,T)).

The rest of the article is organized as fallows: Section 2 presents some basic concepts from Fractional
Calculus (FC) and representation of multinomial Mittag-Leffler (ML) type functions and some its
basic results are provided. The spectral problem, properties of eigenvalues and eigenfunctions for
the IBVP (1.5)-(1.8) are described in Section 2.2. Section 3 provides the main results about existence
and uniqueness of the solution of the ISP-I. In Section 4 we discuss the existence and uniqueness
of the solution of ISP-II. Finally, in last section we conclude the paper and present some future

perspectives.

2. PRELIMINARIES

This section provides some preliminary results from FC which will be used in the forthcoming
section. Indeed after providing definition of fractional order integrals and derivatives, we define
the spectral problem (in space variable) of IBVP (1.5)-(1.8).

Let g € AC([a,b]),i.e the space of absolutely continuous function then CFDs left and right sided of
order 0 < 8 < 1, are defined as

t

D 50) = =gy | (=9)7 s

r(1-p
b
fs—t s)ds.
t

Where, for the convince of the reader, we provide the definition of absolutely continuous function

CDﬁ |tg(

Let I C R. A function g : I — R is absolutely continuous on I if for every € > 0, there is a positive

number 6 in a manner that whenever a sequence of disjoint sub-intervals (x, yx) on interval I is in
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a manner that x; < yj € I satisfies the following relation
Z (yk - Xk) <0
k
implies

Y Is(ye) - glx)| <e.

k
2.1. Multinomial Mittag-Leffler Function. In this section, we are going to define multinomial

Mittag-Leffler function and present some important results related to it which are used in the

forthcoming sections.

The multinomial ML function, [48] forn > 0,¢&; > 0,z € C,i = 0,1,..,m, m € N, is defined as
[

where (k, l(], cery lm) = m

Moreover, notice that

E(Eolélln-,ém),ﬂ(ZO’ ZYyeeey Zm) = E(ém,wél,éo),?](zm’ ceey Zl,Zo), (21)
and
S (k== 1 — ..~ )"
ot b
8 22y - Zm '
F(T] + &olo + &1l + ...+ Emlm)
Remark 2.1. For &y # 0, and zo #0,z1 = ... =zy =0, m € N the multinomial ML function become
E¢,n(20,0,0,...,0) = Z = Eg,(20), where Eg, ;(z0) is the ML function of two parameters.

—0 77+50k

For n = 2 the multinomial ML written in series form

0 ok

k! %0 %1
. , _ 2.2
(o) (20,21) kZaO ]04; Io'h! T'(n+ &olo + &1h) .

1p=>0,1;>0

lo. k=Io

iz 2021
== lo'rn+5olo+§1( lo))

For z; = 0,17 = 1 the multinomial ML function takes form E, 1(z0,0) = Eg,1(20), i.e., the one

parameter ML function. Following Lemma 3.2 of, [49] and from 2.1

E(go,60-1r€omn) (200 210 s Zm) = E(gyt, .o iio=e1,60) 1 (Zms 1 21, 20)

we can have the following Lemmata
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Lemma 2.1. [50] ForO0 <n<1land0 < &, < .. <& <1 be given. Assume that Eom/2 < p < &om,
p < larg(zm)| < mand z; > 0,i = 0,1, ...,m. Then, there exists a constant depending only on p,&;,i =

0,1,...,m such that
G
1 4‘|ZnA'

[E 60mErestorea opn (Zms - 21, 20)| <
We use the following notations throughout the paper
E = (&o—<&1,80 — &2 S0 — Ens 0)

and
Exp(t;m, my, ..., my) = tn_lEE,q(_mlt&)_él, —mpt0Te2, L~ t9),

where m; are positive real constants.

Lemma 2.2. [50] Forn, m; > 0,& >0and0< &y <...<éo<1fori=0,1,..,n, n €N the Laplace
transform of the multinomial ML function is given by

5601

.[:{83,,7(1‘; my, My, ...My_1, mn); s} = (2.3)

7
(550 + mysé1 + ... + my,_qsén + mn)
if [my550751 4 s 072 - L g5 75 4 s < 1

Lemma 2.3. [50] For ¢ € C'([a,b]) and m; > 0,A; > 0, fori = 0,1, ..., n, we have

C
|9(8) * 8z g1 (tm0,m1, .y )| < gl o7

where |||l represents a norm given by ligllc1(jo,1) = max lg(H)] + max ¢’ (#)] and CY([0, T]) denotes the

space of a continuous first-order differentiable function.

2.2. The spectral problem. A spectral problem emerges when the Fourier method is used to
address the problem (1.5)-(1.8). The spectral problem for the operator £ given by the following

equation

£X(z) = -X'(z2) + X" (=2) = AX(z), -m<z<m, (24)

where, A is a spectral parameter, and the boundary conditions are

X (-n) - X (n) = bX(n),
X(-n) = X(n). } @3)

The equation (2.4) and equation (2.5) has two series of the eigenvalues
A= (14e)k, keN,
and

Moo= (1-¢€)(k+0r)? or= M—Llo(l) >0, k€No=NU{0},
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with associating normalized eigenfunctions given by

1
X = T sin(kx), k€ N, X, = wy cos((k+ ox)x), k € No. (2.6)
T

Here, w;, denote the normalization coefficient:

b2
(k + ox) [b2 + (k + ox)?m?]

w,:z = || cos((k + o) x)I> = 7 +

3. THE MAIN RESULTS

In this section, we will provide our main results about both IPs defined for TFDE with involution.
Indeed, this section has been divided into two subsections corresponding to the results of ISP-I
and ISP-II.

3.1. Inverse source problem-I (ISP-I). In ISP-I, we consider H(z,t) = h(z). By eigenfunction

expansion method the solution of the ISP-I can be written as
) 2
U(z,t) = Uoz(t)Xo2(z) + Z[Z uki(t)in(Z)]/ (3.1)
k=1L i=1

where, Ug(t) = (U(.,t), Xo2(.)), Xo2(z) {7’(+ g )}cos(bz) and
Ugi(t) = (U(., 1), X)) -
)i

Expression of h(z) is given by
h(z) = hoaXo2(z) + Z[thzxkz ] (3.2)
k=1l i=
Where, h02 = <h(),X02()> and I’lki = <h()/sz()>
Consider
Ui(t) = U 1), Xa(.)),  i=12 (3.3)

We apply the operator (CDS‘E + Z [umCDgl’f) to (3.3). Then, using Equation (1.1) and integration

by parts, we obtain a n term TFDE

(CDgﬁ T Z #mCDgﬁ)Ukz (1) + Al (t) = I, i=1,2, (3.4)
Upi(0) = i —0pi, i=1,2, (3.5)

Upi(T) = Yri —0ri, i=1,2. (3.6)
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In above equations, we use notations

w= [ Xe(2)dE), = [ () Xu(2)d(2),
T pInh(C)d(C) Inin(Z)d(Z)-

After applying Laplace transformation on equation (3.4), we obtain

Sao—l n Sam—l
Uki(s) = - Uyi(0) + Z Lm
0 ) pons™ o+ A s ) s A
m=1 m=1
1
Ui(0) + hyi - : (3.7)
s|8% + Z pms™ + /\kiJ
m=1

Now apply inverse Laplace transformation on equation (3.7) and by virtue of Lemma 2.2, we have
U(t) = &Ez1(t Aki 1, f2, e tin) Uxi (0)
+ Z HmE gy +1 (6 Atir 1, 2, -, tin) Ui (0)
+hki85,a0+1 (5 Akis 11, 12, -es in), (3.8)

where, Uy;(0) and hy; are unknowns. By using initial condition we obtain

Uk(t) = lPki{aa,l(t;/\ki,pll,yz,--~, Ln)

n
+ Z [JmSE,ao—am—i-l (t; /\kl'l ["lll MZ/ eeey ‘U—n)}
m=1

_6ki{83,1 (5 Akis 41, 12, -os Hn)

n
+ Z UmEg,ag—an+1(t Akis 41, U2, o) [Jn)}
m=1

+hki83,ao+1 (t/ /\ki/ Ui, U2, ey HH) . (39)
By, using the value of (3.6), we obtain

1
| X
K 83,{104—1 (T; Akl/ [ull uZI cees [uI’l)

[(‘I’kz‘ — Oi) — ¢ki{55,1 (T; Akis i1, 12, oo i)

n
+ Z [JmSEl,ao—am+1 (T; /\kll Ml/ [‘12/ eees ‘ul/l)}
m=1

—51«'{83,1 (T; Aki 11, 12, s Hn)
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+ Z ‘UmSE,ao—zxm+1 (T/ /\ki/ Ui, U2, s ‘uVl)}] (310)
m=1

By putting values of (3.9) and (3.10) in (3.1) and (3.2), we obtain

2
U(z,t) = Up(t)Xn(z) +Z[Z(%i{(%ﬂ(h’/\ki,}ll,}lz,---,Mn)

i=1
+ Z HmSE,ag—a,,1+l (tl /\ki/ Hl/ ‘UZI ceey Hn)}
m=1
—51«{55,1 (5 Akis 41, 12, -or Hn)
n
+ Z ‘Ung,oco—am—o—l (tl /\kl/ Hl/ ‘U2, ey Hl’l)}
m=1

+hiEz,a9+1 (£ Ak, i1, p2, --v) Hn))in (Z)]- (3.11)

X

o0 2
h = hpX
(z) 02 02 Z[Z‘ anﬂ (T; /\kl,m,,uzl- r#n)

[(Tki — Ogi) — IPki{SE,l (T; Akis 1, 12, - )

n
+ Z HmSE,O(()—OLerl (T/ Aki/ Ui, U2, ey “71)}
m=1

_5](1{8 (T /\kl/ Ui, 12, - /un)

n
+ Z UmEe,ag—an+1(T; Akis 1, H2, o) Mn)}in (Z)]- (3.12)

m=1

Hence, the couple of functions {U(z, t), h(z)} is required solution for the ISP-I.

3.2. Existence of the Solution of the ISP-I. In this subsection, we will prove a classical solution

for the ISP-I, from the following theorem.

Theorem 3.1. If Y(z) and ¢(z) € C*([-n, n]) and V(z), p(z) and V" (z), ¢ (z) satisfy the boundary

conditions (1.6), then the ISP-I has a unique classical solution.
Proof : We need to show that %t fi(z) € C([-m, nt]), 120t U(z,t) € C 41 (Q), trotan

C C m
( Djo + Z un“DY | U

strong solut1on

(z,t) € C((0, T]) represents a continuous functions. Then, the ISP-1 have a
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From the analysis of (3.10), it’s easy to see that the solution (3.1) of the ISP-I, will form a convergent
series iff

kh_{{)lo 5ki{83,1 (T; Akiy 1, M2, s Hin)

n
+ Y i a-an 1 (T Ak 1, 12, - yn)} =0. i=1.2 (3.13)
m=1
As, we know that
n n
kh_{?oék’ = hm(pf (C)dC)kal( ydz, i=1,2.
“n “n
which implies that
n
lim &y; = lim Aikz(p f h(C)dC)in(n)dz —0,i=1,23,.,m (3.14)

=Tt

Now, we shall show of U(z,t) given by (3.11) represents a continuous function. By using Lemma
2.1, we obtained

A n
TaO"Fath(Z)' < |C_02|Tao+am|(P02| _ |¢02|{T0¢m + Z “mTao}
1 m=1
. MT“O+atﬂ .
+ c |(Pk1|
k=1 i=1 1
n
_|¢ki|{Tam + Z HmTao}],
m=1
implies that
o+ |/\02| o+ (2977} - (%]
TR < BT ]~ Yol T+ ) T

m=1

- 1+e€ 1-¢
Ta0+anl 4
) e e

2 n
_Z |¢ki|{Tam + Z HmTaO}]-
i=1 m=1

Hence, T* "% h(z) is uniformly convergent. Now we are going to prove that the series related to

the operator [CDgﬁ + Z ymCDgl’;’ (z,t) also uniformly convergent.

Consider

“Dfp+ Y05 ) = (Df+ 3 n D ottt
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n
Crya Cryam
D0|3+Z“m Do
—

co 2
Z Z[Uki(t)xki(z)]/ (3.15)

by using Lemma 15.2 (page 278, see [47])

n
C C m _ C C m
D+ Y. n0f ) = (Df+ Yo

o 2
First, we will prove that the series | Ao Uoa () X02(2) + Y, X Aki{uki(t)in(z) }] is uniformly conver-
k=1i=1
gent, by using Lemma 2.1, we obtain

o 2 b
1+e€ 1-¢
feto-+a Ml (H)Xu(z)| < i
;; ki kl kl ;Clll’b (Z)l( k2 + (k—|—(7k)2)
n 2
{tam 4y ymtao} + Y gy,
m=1 i=1
and
n
#0070 | Ao Uy () X0z ()] < Cﬂ#’ozl{t“"’ + Z Ht“U} + 180T .

co 2
By virtue of Weierstrass M-test the series 0+ [Aoz Un () Xn(z)+ Y X
k=1i=1

Ml Ui (1) Xki(2)}| represents a continuous function. Furthermore, the uniform convergence of

T0+amp(z) have been proved already. First, we will prove the uniqueness result for the ISP-I.

Theorem 3.2. Consider a couple of functions {Ul (z,t), (z)} and {Uz(z, t), hy (z)} be the two classical
solution sets for the ISP-I and zo € (—m, 1), such that Uy(zo,t) = Uy (zo,t), then Uy(z,t) = Uy (z,t)
implies hy(z) = hy(z) forall z € (-7, m).

Proof. The proof of theorem 3.2 can be proved by following the same strategy given in [51]. m]
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4. ISP-II

In this section, we will introduce a pair of function {U(z,t),s(t)h(z,t)} for the system (1.5)-
(1.8), for the ISP-II. Whenever, the over-determination condition (1.9) is given. Furthermore, we

will be proved s(t), £ U(z, t) and o+ | “Dgy ol

Do + Z ‘umCD“’”] z,t) represents a continuous
functions.

4.1. Solution for the ISP-II. By using eigen-function expansion method the solution for the ISP-II

can be written by
Ug(t) = CU(., 1), Xu(.))  i=12 (4.1)

where Uy (t) satisfy the following fractional differential equation

(CDSﬁ + Z b DG | Ui(1) + AiUi(t) = s(8)hga(t), i = 1,2, (4.2)

By following the same strategy which we used for ISP-I, we find Uy, (t), then we write the series
solution for ISP-1I

Uki<t> = l;bkl{ (t Akl/ M1, H2, -, Hn)
+ Z }lmaE,ag—aerl (tl /\ki/ ,ul/ ‘le, ey f’ln)}
m=1

—5ki{85,1 (5 Akis 1, (12, -os tn)

n
+ Z ‘UmSE,ag—am+1 (tl /\ki/ Ui, Y2, ey [Jn)}
m=1

+{5(t)hki(t)} * &g a0+1(E Akis i1, H2) oo i) (4.3)
U(z,t) = [(l,bo {55 (£ Aoz, p1, p2, -y )
+ Z [JmSE,ao—am—&-l (t; AOZ/ [ull lu2/ ey [Jl’l)}
m=1

+{S(t)h02 (t)} * 83,0(0+1 (t; /\02/ l-ll/ [u2/ st MH))XOZ (Z):|

2
Z[(lpkl{ t /\kl/ Ui, 42, ey [’li’l)

1i=

MS

+

»
S

_|_

[JmSEl,ao—am+1 (t; Akl/ [J]/ ‘u2/ ceey Hl’l)}

m=1

Hs (1) i (8)} * Ez a1 (£ Ao 11, 112, -, [Jn))in (z)], (4.4)
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where s(t) is still to be determined.

4.2. Existence of the Solution for the ISP-II. Now, we proved the existence of solution for ISP-II

in the given domain Q, under the assumptions of following theorem:

Theorem 4.1. The following conditions should be satisfied for the existence of solution for the ISP-II.
(i) ¢ € C¥([-n, m]) be such that (—m) = 0 = ().

(ii) h(.,t) € C*>([-m, 7)) be such that h(—m,t) = 0 = h(m, t).

Moreover,

fh(z,t)dz # 0

and

Where, the constant My > 0.
(iii) E € AC([0,T]) and E(t) satisfies the condition

fl,bm(z)dz = E(0). m=0,1,2,..,n.

Then, there exist a unique classical solution for the ISP-II.

. 1 C C m
Proof : To find s(t), we will use extra condition (1.9) and apply the operator ( DOI L+ Z tmn D8‘| ; )

0 (1.9), then we have

TT
f(cDglgu z,t) + Z b DU (z, t) ]d (4.5)

-7
C C m
( Dy + Z Hm Dgu)

from equation (1.5), we obtain

Tt Tt

f (Uez(z,t) — eUz(z, 1) )dz + 5(t) f h(z, t)dz (4.6)

—Tt —Tt

C C m
( Dgﬁ + Z tm Dgu)
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this results in the following: Integral equation of the Volterra kind

(cDS‘ﬁ + Z umCDglf;) f (Unz(z,t) — €Uz (2, ) )dz
s(t) = , 4.7)

first, we solve it

f(llzz(z, t) —ely;(—z, t))dz, (4.8)

-7
after taking integration of (4.8) and then using boundary conditions, we obtain d(1 + €)U(m, f).
Similarly, we have another way to solve equation (4.8), by using Fourier method ,

T(t) f {X'(2) - X" (-2) dz,

-7
by taking integration and boundary conditions (2.5), we obtain
d(1+e)T(t)X(m) = d(1+e)U(m,t).

which, is same in both cases.

Then, we have

d(1+e)U(m,t)
= d(l+e)[(ll}oz{ga,l(t;/\02411/#2/---rlun)
" Z LSz, 00—an+1(5 Aoz, 11, 12, - /#n)}
Hs(Dhoa (1)} * Ez, a1 (8 Ao, 1, 2, un))on(n)]

+Z[(¢k2{8’_‘ (t /\kZ/ H1, 12, - r”n)
k=1
n

+ HYZSE,OL()—O(m-‘rl (tl AkZI ‘L'lll {JZ/ weey ,Un)}

m=1
+{S(t)hk2(t)} *Ega0+1(t Ak, 1, 2, s {Jn))sz(Tf)], (4.9)

which implies that

Tt

s(t) = ( f g(z,t)d ) [(CDgﬁ—FZ‘umCDg{j)

=Tt
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+d(1+ €)(1P02{85,1(t; A02, U1, 2, eer i)

+ Z Hm E,00— a,,,+1 t AOZ/ [Ll‘ll ”2/ /[’ll’l)}
+d(1+¢) Z|(¢k2{55,1 (£ Ak, 11, 2 oo tin)
=

1

n
+ Z UmEg,ag-an+1(E Ak, H1, 12, s yn)}
m=1

+{hk2(f)} * Ex,00+1 (5 Ak, 1, 2, - un))sz(ﬂ)]- (4.10)

E(t) = d(l+G)(IPoz{SE,l(f;Aoz,#l,uz,n-,un)
+Z UmEe,ag—an-+1(t; Aoz, p1, p2, .- ,Hn)})on(ﬂ)

+d(1+¢€) Z(l,bkz{ga,l(t; A2, 11, 12, s n)
k=1
+ Z [Jm =, 00— am-i-l t Aka, Ui, U2, - /Hn)})
cos((k+6k) ), (4.11)

and

k(t,t) = d(l+€)({h02(’f)}*83,a0+1(t—T;/\oz,H1,H2,~--,#n))X02(ﬂ)

Td(1+e) z({hkzm}  Es i1 (=T Ao 1, 2o un))
k=1
cos((k + o) m). (4.12)
Then equation (4.10) can be written as,

s(t) = ( f 2z, t)d ) [(CDgﬁ+ZymCDS‘|’;) )+ F (1)

-7
t

+ f s(’c)k(t,'c)d’c].
0

Now, we consider a space of continuous functions C([0, T]), with the Chebyshev norm. Then, we
are going to define a map M : C([0,T]) — C([0, T]) by
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where, s(t) is given by (4.7).

c1lyoal <
ap+ay A ao
t IF(t)] < d(1+e€) ol [{t + Eﬁ Ut

g fe L]

The uniform convergence of the series involves in (4.13) is ensured by using Lemma 2.1 and

continuity of |,|. Hence, by Weierstrass M-test F(t) presents a continuous function. Now, we

shall show that equation (4.12), represents a continuous function.

Ik(t, T)] < d(1+€)[M |||h02||+| |||hk2||] (4.14)

Then, the uniform convergence of the series involves in (4.14) is ensured by using Lemma 2.3 and
continuity of g(z,t). Hence, by Weierstrass M-test k(t, 7), represents a continuous function such
that

K(t,7)| <M. (4.15)

Hence, the mapping is well defined. Now, we will show that M(s(f)) := s(t), is a contraction

mapping under the assumption T < m For this we consider

T t

-1
M (s(t)) —M(c(t))] S(fh(z,t)dz) fk(t,T)|S(T)—C(T)|dT,
0

—Tt

By assumptions of the Theorem 4.1, we obtain

SE?QM t)) —M(c(t))| SMlMZTSQt?%lS(T) —c(7).

which implies

IM(s (1)) — M(c(t)) < MiMoTlls = clic(om))-

||C([0,T])

Where, M; and M, are positive constants independents of n and M, is given by (4.15) which
implies that the mapping M(-) is contraction map. Hence, by Banach fixed point theorem unique
existence of s(t) is proved.

By using Lemma 2.1 and Lemma 2.3 in equation (4.3), we have the following relation

n
T (1)) < C—l{|¢kz‘|(tam+21«1mt“°)
| Akl —

+ta0+am||5hki||C([O,T])} (4.16)
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Since s € C([0, T]), lIsllc(jo,r)) < M where M > 0, and by using Lemma 2.3

1+e€ - Z
ta0+anz U..(t < C_l 4 t“m taO

+tao+a"lM||hki||C([0,T])}

Next, we will prove the continuity of solution U(z, t), which is given by(4.4) and each term of (1.5),
tha.t iS uZZ (Z, t), uZz(_Z, t) .

By using Lemma 2.1 and Lemma 2.3 in equation (4.4), we obtain

n
ao+am C_l O a ao+am
toTmU(z,t)] < /\OZ[IIPozl{t + Z_: fmt °}+l‘ 0 Mllhozllcqo,ﬂ)]

+iic_1 z 1+€+ 1-¢
— = | k2 (k + 0)?

i=

(ta"' + [Jmtao) + M”hkiuc([orﬂ)t“wram].

m=1

By Weierstrass M-test the above series represent a continuous function.
Now, we are going to prove that the series related to the operator t“““’”( DOI T Z HmCDgﬁ’) 1)

also uniformly convergent, for this we consider the following relation

(CDgﬁ + Z HmCDST:) ) = (CDSE + Z ‘UmCDgﬁl)UQZ )on(Z)
H{eog + Z #mCDS‘r;)
oo 2
Z Z[Uki(t)in (Z)], (4.17)
k=1

=1 i=1

by using Lemma 15.2 (page 278, see [47]), we have

(cDS‘ﬁf + Z MmCDS(:) 1) = (CDSE N Z WCDSI?)UOZ (£) X0z ()

o 2
# 3. Y [0+ Y o)
i= m=

k=1

Juoxca)|

= s(t)h(z, t)—[AozUoz(t)on(Z) +

513 auf et

[o0]
k=1 i=1
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we already prove the local well-posedness of s(t), we will prove that the series [/\02 U (£) Xo2(z) +

oo 2
Yy ¥ )\ki{uki(t)in (z)}] is uniformly convergent, by using Lemma 2.1 and 2.3, we obtain

k=1i=1
= K2 2
k=1 i=1 k=1 (k + )
n 2
{tam _|_ Z ‘umtaﬂ} + Z ta[)+04m
m=1 i=1
Mlillejo,1y)
and
n
gt )\ozuoz(t)on(Zﬂ < Cl|¢02|{ta"' + Z P‘mtao}
m=1

20T Milhoalle o,1)) -

Hence, the above series converge uniformly. Similarly we proved U, (z,t), U.;(—z,t) represent a

continuous function.

4.3. Uniqueness of the Solution of ISP-II. In this Subsection, we will consider the uniqueness of
the ISP-II solution.

Theorem 4.2. Under the assumptions of Theorem 4.1, solution of the ISP-II is unique.

Proof : With the help of Banach fixed point theorem, we prove the uniqueness of the source

term s(t). Now, we will present uniqueness of U(z, ).

Let U(z, t) and V(z, t) be the two regular solution sets of the ISP-II, and let U(z,t) = U(z,t) - V(z, t).
Then, the function U(z, t) satisfy the following equation

CDgﬁU z, t + Z xumCDng ) - UZZ(Z/ t) + EUZZ(—Z, t) =0

with the boundary conditions (1.6) and the initial condition
U(z,0) =0, (4.18)
Consider the functions
Uy(t) = (U(z,b), Xi(z)), i=1,2. (4.19)

Applying the fractional operator to both sides of the first relation in (4.19), we have

(CD“” +Z uDy )ukl t = <(CD“° +ZuZCD“' ) (z,1), Xii(z )>
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By virtue of (1.5), we have the following equation
m
DY Uga (1) + Y wiDg Uga(t) = ~Allia(t) +5(D)h(t),
i=1

The solution of the above equation is

aki(t) = Szt M, th, 2 s yn)ﬁki(o)
+ Z IvlmSE,cxo—aerl (t} Akis Hi, H2, -, [Jn)
m=1

ﬁI(Z(O)—f—{sa.)hkl<t>} * 83,(10+1 (t/ Aki/ Ui, Yz, .-, [/ln)
By equation (4.18), uniqueness of s(#) and completeness of Xj;(z), we obtain
Ug(t) =0, ¥YneNU{0}.

and hence U(z,t) = V(z,t).

5. CoNCLUSIONS

We considered two IPs for TFDE with involution along with one Dirichlet type and second
boundary condition of non-local type. The eigenfunction expansion method is used to have series
representation of the solutions of both IPs. The unique existence of the time dependent source term
is obtained by using Banach fixed point theorem in IP-2. We checked existence and uniqueness
results for both IPs by considering suitable over-specified and certain regularity conditions on
given datum. In future, we consider an another interesting problem by considering multi-time

Hilfer fractional derivatives in time with same spectral problem.
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