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ABSTRACT. The purpose and objective of the present work are to show the reliability and effectiveness of the newly 

developed semi-numerical method, i-e, the Optimal Auxiliary Function method OAFM, by solving the fractional 

problems of Fitzhugh-Nagumo. We have developed OAFM mathematical formulations for nonlinear partial 

differential equations PDEs. The implementation of the OAFM achieves a fast serial convergence solution. The 

analysis shows that the proposed method has a simplified implementation and needless computational work, is 

extremely accurate, and converges rapidly. Tables were constructed to compare the numerical results with the 

problems' exact solutions to see the errors.  
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1. Introduction 

Fraction calculation is the addition of the ordinal calculation of an integer. Fractional analysis 

was not applied to the existing problems of the real world. Still, after some time, the concept 

was validated because fractional analysis used relevant and real applications such as the 

propagation of sound waves in a rigid porous substance [1], Ultrasound propagation in human 

bones [2], viscoelastic properties in organic tissues [3], and monitoring tools [4]. In recent times, 

fractional computational work has been the new attraction of researchers because of its wide 

applications in Electromagnetism, physical problems, viscosity, and materialistic science [5-9]. 

Mathematical models of fractional derivatives have been preferred because they are more 

accurate and realistic than classical formulation models [10]. The development of fractional 

calculus motivates researchers, and some researchers are determined to use fractional operators 

and study the solution of nonlinear differential equations used in various problems. They 

developed many analytical and numerical methods containing fractional operators to obtain 

accurate approximate solutions for nonlinear differential equations. Such differential equations 

include various fractional operators like Caputo-Fabrizio, Hilfer, Riemann Liouville, and more. 

[11]. But, these operators have a command law kernel and have some restrictions in modeling 

problems. 

Learning the exact solution to nonlinear problems plays an important role; At the same time, 

most fractional PDEs do not have a definitive solution; for these circumstances, we want other 

more reliable and effective techniques. Basic transformation methods were primarily utilized to 

solve such physical problems [12-15]. Such methods convert a more complex problem into an 

easy one. Scientists also work on perturbation techniques and other analytical and numerical 

methods [16-19] for nonlinear problems. This method requires few input parameters or an 

initial estimate; choosing these options incorrectly affects the accuracy. The homotopy 

definition is combined with the perturbation technique to develop the homotopy perturbation 

method HPM [20-22] and Homotopy Analysis methods (HAM) [23] to solve small parameter 

problems. This method requires an initial estimation and has good flexibility in handling the 

convergence area. To handle the initial assumption problem, the Optimal Homotopy 

Asymptotic Method (OHAM) was introduced by Marinca and Herisanu [24-28]. The method 

mentioned above possesses an optimal auxiliary function. It does not need an initial estimate, 

and for more complex problems, the given method was then extended by Ullah et al. [29-31]. 

Herisanu introduced the optimal Auxiliary Function Method (OAFM) to solve fractional-order 

nonlinear problems. The time-fractional Fitzhug-Nagumo (FN) equation is among the most 

significant reaction-diffusion equations used to describe neural loop communication. A 

mathematical model of population genetics using the FN equation is also described [32]. Khan 

et al. used the Homotopy Analysis method (HAM) to achieve the approximate analytical 
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solutions to the reaction-diffusion equations. Tcher et al. offer the Power Series Method (RPSM). 

[33] to solve fractional reaction-diffusion equations to calculate a numerical solution. Merdan 

[34]  used the variational iteration method (FVIM) and obtained sequential solutions of the 

reaction-diffusion equation. Because of the above discussion, this work is devoted to 

establishing the uniqueness and existence criteria of solutions of the nonlinear FN equations. 

Furthermore, we reveal the efficiency of the Optimal Auxilary Function method by getting the 

approximate solutions and 3D visual graphs of the time fractional reaction-diffusion equations. 

 This method is implemented with very less computational effort, and just in the first iteration, 

we obtain the exact solution. 

The key objective of this effort is to analyze the OAFM for fractional orders of PDEs. OAFM is 

an efficient and reliable method for dealing with PDEs of fractional orders. 

 

2. Some Basic Definitions 

Definition1.A real valued function ĝ(ŋ), ŋ >  0 is in space if Ƀ ∈ R for a real number ℷ < 𝑞  

ĝ(ŋ) =  ŋ𝑞ĝ1(ŋ), where ĝ1(ŋ) ∈  Ƀ(0, ∞) and is in space iff  ĝ𝑛(ŋ) ∈  Ƀŋ, n ∈ N  

Definition: 2. The Reiman-Liouville oprator for  fractional integral is  

𝐼𝛼ĝ(ŋ) =
1

𝛤(𝛼)
∫ (ŋ − 𝜏)𝑛−1ĝ(𝜏)𝑑𝜏                                      (1)

𝑢

0

 

𝐼ĝ(ŋ) = ĝ(ŋ)                                                           (2) 

𝐼𝛼𝑢Ҁ =
Γ(Ҁ + 𝛼)

Γ(Ҁ + 𝛼 + 1)
𝑢𝛼+𝑛                                                         (3) 

Definition: 3. In Caputo sense The fractional derivative of the function, ĝ(ŋ)  

 

𝐷𝑢
𝛼ĝ(ŋ) =

1

Γ(𝑛 − 𝛼)
∫ (ŋ − 𝜏)𝑛−𝛼−1ĝ𝑛(𝜏)𝑑𝜏

ŋ

0

                          (4) 

Definition: 4. If 𝑛 − 1 <  𝛼 ≤  𝑛, 𝑛 ∈ 𝑁 𝑎𝑛𝑑 ĝ ∈ Ƀŋ
𝑛 , ŋ ≥ −1

 
then  

𝐷𝛼
𝛼𝐼𝛼

𝛼ĝ(ŋ) = ĝ(ŋ) = ĝ(ŋ) − ∑
(ŋ − 𝛼)

𝐼!

𝑛−1

𝑖=0

, ŋ > 0                            (5) 

 

3. Proposed Optimal Auxilary Function Technique 

The fundamental of OAFM was highlighted in [35], where OAFM is utilized to solve different 

problems. To build up an OAFM use, consider the nonlinear differential Equation: 

Ł[𝑢(𝑥)] +  𝒴(𝑥) +  Ŋ[𝑢(𝑥)] =  0                                                 (6) 

Ł and Ŋ, respectively, represent the linear and nonlinear operators. 𝒴 represents the known 

function, while 𝑥 shows the independent variable, and the unknown function at this stage is 

represented by 𝑢(𝑥). The initial guess is: 
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Ƀ (𝑢(𝑥),
𝑑𝑢(𝑥)

𝑑𝑥
) = 0                                                           (7) 

Sometimes it takes a lot of work to get the exact solution of the highly nonlinear equations of (6) 

and (7) kinds [32]. If we are keen to get the approximate solution of ṵ(𝑥), let us assume that it 

can be shown as: 

ṵ (𝑥, 𝐾𝑖) =  𝑢0(𝑥) +  𝑢1(𝑥, 𝐾𝑖), 𝑖 =  1, 2, . . . , 𝑟,                          (8) 

The first approximation and the initial guess will be obtained, as shown later. Here we 

substitute Equation (8) with Equation (6), and we get 

Ł[𝑢0(𝑥)] +  Ł[𝑢1(𝑥, 𝑘𝑖)] +  𝒴(𝑥) +  Ŋ[𝑢0(𝑥) +  𝑢1(𝑥, 𝑘𝑖)] =  0               (9) 

Where 𝑘𝑖, 𝑖 =  1,2, . . . , 𝑟 is the parameters to control the convergence, which will be carefully 

determined in the above Equation. The initial approximation 𝑢0(𝑥) is the initial approximation 

which may be calculated from the linear Equation as given below 

Ł[𝑢(𝑥)] +  𝒴(𝑥) = 0, Ƀ (𝑢0(𝑥),
𝑑𝑢0(𝑥)

𝑑𝑥
) = 0                              (10) 

while the first approximation is obtained from Equations (9) and (10) 

Ł[𝑢1(𝑥, 𝐾𝑖)] + [𝑢0(𝑥) + 𝑢1(𝑥, 𝐾𝑖)] = 0   Ƀ (𝑢0(𝑥),
𝑑𝑢1(𝑥, 𝐾𝑖)

𝑑𝑥
) = 0       (11) 

The expanded form of the nonlinear term in Equation (11) is as follows 

Ŋ[𝑢0(𝑥) + 𝑢1(𝑥, 𝐾𝑖)] = Ŋ[𝑢0(𝑥)] + ∑
𝑢1

𝑐(𝑥, 𝐾𝑖)

𝑐!
Ŋ(𝑐)[𝑢0(𝑥)], …

𝑛

𝑐=1

            (12) 

To keep away from the obstacles in solving Equation (11) and get the fast convergence for the 

solution of ṵ(𝑥, 𝐾𝑖), another expression can be proposed instead of the last term, and this 

Equation can be rewritten as: 

Ł[𝑢1(𝑥, 𝐾𝑖)] + Â1(𝑢0(𝑥), 𝐾𝑗)𝜓(Ŋ[𝑢0(𝑥)]) + Â2(𝑢0(𝑥), 𝐾𝑐) = 0 

Ƀ (𝑢1(𝑥, 𝐾𝑖),
𝑑𝑢1(𝑥, 𝐾𝑖)

𝑑𝑥
) = 0   , 𝑖 = 1,2, … , 𝑟                                           (13) 

When Â1 and Â2 are auxiliary functions dependent on the initial approximation 𝑢0(𝑥)and  the 

parameters to control the convergence are 𝐾𝑗 and 𝐾𝑐, j = 1,2,...,m, K = m + 1, m + 2,...,r, and 

𝜓(Ŋ[𝑢0(𝑥)]) are functions that depend on expressions of the nonlinear term Ŋ[𝑢0(𝑥)]. The 

auxiliary functions Â1and Â2 and 𝜓(Ŋ[𝑢0(𝑥)]) should not be only one of its kind, but such 

auxiliary functions have the identical form as 𝑢0(𝑥) More precisely. , if 𝑢0(𝑥)  is a polynomial 

function, it is the sum of the polynomial functions Â1 and Â2. If 𝑢0(𝑥) is an exponential function, 

then Â1 and Â2 should be the sum of exponential functions. The trigonometric function 𝑢0(𝑥) is 

the sum of the trigonometric functions Â1 and  Â2, and so on. If  Ŋ[𝑢0(𝑥)] = 0, then the exact 

solution of the given Equation is 𝑢0(𝑥).  

Convergence of the Method:  The initial parameters 𝐾𝑗 and 𝐾𝑐 to control the convergence can 

be determined accurately and efficiently by diverse methods, including the least squares 
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method, Galerkin method, collocation method, and as well as Ritz method, but the maximum, 

minimum residual error is better than squared: 

𝜁(𝐾1, 𝐾2, … , 𝐾𝑟) = ∫ Ṟ2

(Ḏ)

(𝑥, 𝐾𝑗, 𝐾𝑐)𝑑Ԏ, j =  1,2, … , m,   

        K =  m +  1, m +  2, . . . , r                                                            (14) 

Where 

Ṟ(𝑥, 𝐾𝑗, 𝐾𝑐) = Ł[ṵ(𝑥, 𝐾𝑖) + 𝒴(𝑥) + Ŋ[ṵ(𝑥, 𝐾𝑖)],  

 j =  1,2, . . . , m, K =  m +  1, m +  2, . . . , r , 𝑖 = 1,2, . . . , 𝑟            (15) 

in which the approximate solution ṵ(𝑥,  𝐾𝑖) is given by Equation (8). The parameters which are 

unknown i-e 𝐾1, 𝐾2,..., 𝐾𝑟, can be recognized from the conditions as follows 

𝜕𝜁

𝜕𝐾1
=

𝜕𝜁

𝜕𝐾2
= ⋯ =

𝜕𝜁

𝜕𝐾𝑟
= 0                                                              

If we impose the condition mentioned below, we get the same results 

Ṟ(𝑥1, 𝐾𝑗) = Ṟ(𝑥2, 𝐾𝑗) = ⋯ = Ṟ(𝑥𝑖, 𝐾𝑗) = 0     𝑥𝑖 ∈ Ḏ ,   𝑖 = 1,2, . . . , 𝑟      

Using the above technique, after the optimal values for the parameters 𝐾𝑗, 𝑖 = 1,2, . . . , 𝑟, which 

control the convergence, are determined, our approximate solution is accomplished, so our 

method includes the auxiliary functions Â1 and Â2  that efficiently present an approach to fix 

and check the convergence of the last solution. The careful selection of functions Â1 and Â2 is 

worth mentioning according to the first-order approximation. OAFM been shown easily valid 

to solve nonlinear problems without large small, or parameters, including multi-degree-of-

freedom systems. 

 

4. Numerical examples 

To see the fast convergence and accuracy of the abovementioned technique, we will check it on 

some problems in this phase.  

Example 4.1 Let us apply our method to the fractional problem of the Fitzhugh Nagumo 

equation. 

𝐷𝑡
𝛼𝑢 − 𝑢𝑥𝑥 − 𝑢(𝑢 − 𝑞)(1 − 𝑢) = 0, 0 < 𝛼 ≤ 1, 𝑡 > 0, 𝑥 ∈ 𝑅,                   (17) 

with corresponding initial condition as 

𝑢0(𝑥, 𝑡) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

√2𝑥

4
)                                                                  (18) 

 

The solution in closed form for the fractional Fitzhugh Nagumo equation with the given initial 

condition for 𝛼 = 1 is given as 

𝑢(𝑥, 𝑡) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

√2𝑥 + (1 − 2𝑞)𝑡

4
)                               (19) 
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Applying the Optimal Axilary Function method on Eq. (1) with a given initial condition and 

simplifying, we obtained  

𝑢1 =
1

256𝑎𝛤(𝑎)
𝑡𝑎 (4𝑐3 (1 + 𝑡𝑎𝑛ℎ (

𝑥

2√2
))

6

+ 𝑐4 (1 + 𝑡𝑎𝑛ℎ (
𝑥

2√2
))

8

− 2𝑠𝑒𝑐ℎ (
𝑥

2√2
)

6

(𝑐𝑜𝑠ℎ (
𝑥

√2
)

+ 𝑠𝑖𝑛ℎ (
𝑥

√2
) (2𝑐1 + (2𝑐1 + 𝑐2)𝑐𝑜𝑠ℎ (

𝑥

√2
) + 𝑐2𝑠𝑖𝑛ℎ (

𝑥

√2
)) (1 − 2𝑞

+ 𝑡𝑎𝑛ℎ (
𝑥

2√2
))))                                                                                                                     (20) 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1                                                    (21) 

Putting Eq. (18) and Eq. (20) in Eq. (21), we obtained  

𝑢(𝑥, 𝑡) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

𝑥

2√2
) +

1

256𝑎𝛤(𝑎)
𝑡𝑎 (4𝑐3 (1 + 𝑡𝑎𝑛ℎ (

𝑥

2√2
))

6

+ 𝑐4 (1 + 𝑡𝑎𝑛ℎ (
𝑥

2√2
))

8

−

2𝑠𝑒𝑐ℎ (
𝑥

2√2
)

6
(𝑐𝑜𝑠ℎ (

𝑥

√2
) + 𝑠𝑖𝑛ℎ (

𝑥

√2
) (2𝑐1 + (2𝑐1 + 𝑐2)𝑐𝑜𝑠ℎ (

𝑥

√2
) + 𝑐2𝑠𝑖𝑛ℎ (

𝑥

√2
)) (1 − 2𝑞 +

𝑡𝑎𝑛ℎ (
𝑥

2√2
))))   

(22) 

To find the values of constants, i.e., (𝑐1, 𝑐2 , 𝑐3𝑎𝑛𝑑 𝑐4), we will find the residual of the above 

Equation, which is given below 

𝑅 =
1

𝛤(1 − 𝑎)
∫ (𝑡 − 𝑟)−𝑎(𝜕𝑡𝑢(𝑥, 𝑡))𝑑𝑟 − 𝜕𝑥𝑥𝑢0(𝑥, 𝑡)

𝑡

0

− 𝑢0(𝑥, 𝑡)(𝑢0(𝑥, 𝑡) − 𝑞)(1 − 𝑢0(𝑥, 𝑡))                                                                                 (23) 

Solving Eq.23 and using 𝑎 = 0.999999999999999 , 𝑞 = −1  we obtained constants i.e 

(𝑐1, 𝑐2, 𝑐3𝑎𝑛𝑑 𝑐4) as follows 

𝑐1 = −12.15351656708473, 𝑐2 = 70.99180916777159, 

 𝑐3 = 79.28570017757944 𝑎𝑛𝑑 𝑐4 = −87.07379392425483 

For given values of 𝑐1, 𝑐2, 𝑐3 𝑎𝑛𝑑 𝑐4 Eq.22 becomes 

𝑢(𝑥, 𝑡) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

𝑥

2√2
) + 0.003900625𝑡𝑎 (317.1428007103178 (1 + 𝑡𝑎𝑛ℎ (

𝑥

2√2
))

6

−

87.07379392425483 (1 + 𝑡𝑎𝑛ℎ (
𝑥

2√2
))

8

− 2𝑠𝑒𝑐ℎ (
𝑥

2√2
)

6
(𝑐𝑜𝑠ℎ (

𝑥

√2
) +
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𝑠𝑖𝑛ℎ (
𝑥

√2
) (−24.30703313416946 + 460684776033602134𝑐𝑜𝑠ℎ (

𝑥

√2
) +

70.99180916777159𝑠𝑖𝑛ℎ (
𝑥

√2
)) (1 − 2𝑞 + 𝑡𝑎𝑛ℎ (

𝑥

2√2
))))                                                                (24) 

 

Table 1: The absolute errors for the differences between the exact solution of FN (Eq. 19) and 

OAFM solution (Eq.24) for various values of x when q = -1, α = 0.5, For Example, 4.1 

 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.33106653448734974 0.3302417683970369 0.0008247660903128451 

−0.8 0.3631982356076443 0.36223645069831173 0.0009617849093325748 

−0.6 0.3965889222831253 0.39550043372307475 0.00108848856005056 

−0.4 0.4309565766065897 0.42976066144224573 0.0011959151643439747 

−0.2 0.46598487023482477 0.4647072002069661 0.0012776700278586683 

0 0.5013353409277708 0.50000375 0.0013315909277707982 

0.2 0.5366604359845695 0.5353002624176806 0.0013601735668888892 

0.4 0.571615860787259 0.5702466905353214 0.0013691702519376125 

0.6 0.6058711282300585 0.6045067386496589 0.0013643895803996386 

0.8 0.6391179708849439 0.6377704799091787 0.0013474909757652531 

1 0.6710769995136809 0.6697648670334542 0.0013121324802267686 

 

Table 2: The absolute errors for differences between the exact solution of FN (Eq.19)  and 

OAFM solution (Eq.24) for various values of x when q = -1, α = 0.75, For Example, 4.1 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.33028335355135935 0.3302417683970369 0.000041585154322454354 

−0.8 0.36228532611929926 0.36223645069831173 0.0000488754209875264 

−0.6 0.3955560653283021 0.39550043372307475 0.00005563160522736865 

−0.4 0.4298220333281746 0.42976066144224573 0.00006137188592886256 

−0.2 0.4647729529318231 0.4647072002069661 0.00006575272485698225 

0 0.5000724089153483 0.50000375 0.00006865891534835189 

0.2 0.5353704889039862 0.5353002624176806 0.00007022648630561346 

0.4 0.5703174571926479 0.5702466905353214 0.00007076665732652643 

0.6 0.60457733100941 0.6045067386496589 0.00007059235975115374 

0.8 0.6378402702706287 0.6377704799091787 0.00006979036145005058 

1 0.6698328796657907 0.6697648670334542 0.00006801263233657817 
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Table 3: The absolute errors for differences between the exact solution of FN (Eq.19)  and 

OAFM solution (Eq.24) for various values of x when q = -1, α = 1, For Example, 4.1. 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.3302407713745951 0.3302417683970369 9.97022 × 10−7 

−0.8 0.36223569049690846 0.36223645069831173 7.60201 × 10−7 

−0.6 0.3954999080657829 0.39550043372307475 5.25657 × 10−7 

−0.4 0.4297603472985382 0.42976066144224573 3.14143 × 10−7 

−0.2 0.464707060014301 0.4647072002069661 1.40192 × 10−7 

0 0.5000037422870856 0.50000375 7.71291 × 10−9 

0.2 0.5353003534447612 0.5353002624176806 9.10270 × 10−8 

0.4 0.5702468619459605 0.5702466905353214 1.71410 × 10−7 

0.6 0.6045069862149762 0.6045067386496589 2.47565 × 10−7 

0.8 0.6377708006616147 0.6377704799091787 3.20752 × 10−7 

1 0.6697652358700288 0.6697648670334542 3.88365 × 10−7 

 

  

(a) (b) 

  

(c) (d) 

Fig.1: (a) Exact solution when 𝑞 = −1 For Example.4.1; (b) OAFM solution when 𝑞 = −1  and 

𝛼 = 0.5 For Example.4.1; (c) OAFM solution when 𝑞 = −1  and 𝛼 = 0.75 For Example.4.1; (d) 

OAFM solution when 𝑞 = −1  and 𝛼 = 1 For Example.4.1: 
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Fig. 2: visual graphs of 𝑢(𝑥, 𝑡) w.r.t x for various values of 𝛼 For Example. 4.1 

 

Example 4.2 Let us consider another fractional problem of Fitzhugh Nagumo equation having 

the different initial condition 

𝐷𝑡
𝛼𝑢 − 𝑢𝑥𝑥 − 𝑢(𝑢 − 𝑞)(1 − 𝑢) = 0, 0 < 𝛼 ≤ 1, 𝑡 > 0, 𝑥 ∈ 𝑅,                (25) 

with the corresponding initial condition as 

𝑢0(𝑥, 𝑡) =
1

1 + 𝑒
−𝑥

√2

                                                                      (26) 

The solution in closed form for the fractional Fitzhugh Nagumo equation with the given initial 

condition for 𝛼 = 1 is given as 

𝑢(𝑥, 𝑡) =
1

1 + 𝑒
(

−1

2
)(𝑥+(

1+2𝑞

√2
)𝑡)

                                          (27) 

Applying the Optimal Axilary Function method on Eq. (25) with the given initial condition and 

simplifying, we obtained 

𝑢1 =

(𝑐4+𝑐3(1+𝑒

−𝑥

√2)

2

−𝑒

−𝑥

√2 (1+𝑒

−𝑥

√2 )(𝑐2+𝑐1(1+𝑒

−𝑥

√2 )

2

)(1−(1+𝑒

−𝑥

√2 )𝑞))𝑡𝑎

𝑎(1+𝑒

−𝑥

√2 )

8

𝛤(𝑎)

                  (28) 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1                                              (29) 

Putting Eq. (26) and Eq. (28) in Eq. (29), we obtained 

𝑢(𝑥, 𝑡) =
1

1+𝑒

−𝑥

√2

+

(𝑐4+𝑐3(1+𝑒

−𝑥

√2 )

2

−𝑒

−𝑥

√2(1+𝑒

−𝑥

√2 )(𝑐2+𝑐1(1+𝑒

−𝑥

√2 )

2

)(1−(1+𝑒

−𝑥

√2 )𝑞))𝑡𝑎

𝑎(1+𝑒

−𝑥

√2 )

8

𝛤(𝑎)

          (30) 
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To find the values of constants, i.e., (𝑐1, 𝑐2,  𝑎𝑛𝑑 𝑐4), we will find the residual of the above 

Equation, which is given below 

𝑅 =
1

𝛤(1 − 𝑎)
∫ (𝑡 − 𝑟)−𝑎(𝜕𝑡𝑢(𝑥, 𝑡))𝑑𝑟 − 𝜕𝑥𝑥𝑢0(𝑥, 𝑡)

𝑡

0

− 𝑢0(𝑥, 𝑡)(𝑢0(𝑥, 𝑡) − 𝑞)(1 − 𝑢0(𝑥, 𝑡))                                                                              (31) 

Solving Eq.31 and using 𝑎 = 0.999999999999999 , 𝑞 = −1  we obtained constants i.e 

(𝑐1, 𝑐2, 𝑐3𝑎𝑛𝑑 𝑐4) as follows 

𝑐1 = 12.829545830268264, 𝑐2 = 79.89878841618389, 

 𝑐3 = 92.7267634616979 𝑎𝑛𝑑 𝑐4 = −103.55941364237299 

For given values of 𝑐1, 𝑐2, 𝑐3 𝑎𝑛𝑑 𝑐4 Eq.30 becomes 

(𝑈𝑋, 𝑡) =
1

1 + 𝑒
−𝑥

√2

 

+

(−103.55941+92.72676(1+𝑒

−𝑥

√2 )

2

−𝑒

−𝑥

√2 (1+𝑒

−𝑥

√2)(79.89878+12.82954(1+𝑒

−𝑥

√2 )

2

)(1−(1+𝑒

−𝑥

√2 )𝑞))𝑡𝑎

𝑎(1+𝑒

−𝑥

√2 )

8

𝛤(𝑎)

                      (32)    

 

Table 4: The absolute errors for differences between the exact solution of FN (Eq.27) and the 

OAFM solution (Eq.32) for various values of x when 𝑞 =  −1, 𝛼 =  0.5, For Example, 4.2: 

 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.331063916240168 0.3775398379349126 0.0464759216947445 

−0.8 0.363195027123445 0.4013114904378315 0.0381164633143865 

−0.6 0.396585264418875 0.4255566188979189 0.0289713544790438 

−0.4 0.430952780827058 0.4501651275844411 0.0192123467573827 

−0.2 0.465981418743750 0.4750199308436924 0.0090385120999416 

0 0.501332806699019 0.4999991161165236 0.0013336905824961 

0.2 0.536659285753536 0.5249783058014168 0.0116809799521198 

0.4 0.571616123026092 0.5498331222090886 0.0217830008170041 

0.6 0.605871943750069 0.5744416525207819 0.0314302912292873 

0.8 0.639117087538790 0.5986868106621428 0.0404302768766475 

1 0.671070309245151 0.6224585003379023 0.0486118089072489 
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Table 5: The absolute errors for differences between the exact solution of FN (Eq.27) and the 

OAFM solution (Eq.32) for various values of x when q = -1, α = 0.75, For Example, 4.2: 

 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.330283211576800 0.3775398379349126 0.0472566263581116 

−0.8 0.362285152139114 0.4013114904378315 0.0390263382987166 

−0.6 0.395555866980466 0.4255566188979189 0.0300007519174524 

−0.4 0.429821827501877 0.4501651275844411 0.0203433000825639 

−0.2 0.464772765774581 0.4750199308436924 0.0102471650691112 

0 0.500072271496692 0.4999991161165236 0.0000731553801691 

0.2 0.535370426532662 0.5249783058014168 0.0103921207312455 

0.4 0.570317471412559 0.5498331222090886 0.0204843492034705 

0.6 0.604577375231015 0.5744416525207819 0.0301357227102334 

0.8 0.637840222371148 0.5986868106621428 0.0391534117090054 

1 0.669832516885711 0.6224585003379023 0.0473740165478091 

 

Table 6: The absolute errors for differences between the exact solution of FN (Eq.27) and the 

OAFM solution (Eq.32) for various values of x when q = -1, α = 1, For Example, 4.2: 

𝑥 𝑂𝐴𝐹𝑀 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑥𝑎𝑐𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

−1 0.330240764036968 0.3775398379349126 0.0472990738979437 

−0.8 0.362235681505145 0.4013114904378315 0.0390758089326858 

−0.6 0.395499897814634 0.4255566188979189 0.0300567210832846 

−0.4 0.429760336660882 0.4501651275844411 0.0204047909235584 

−0.2 0.464707050341512 0.4750199308436924 0.0103128805021799 

0 0.500003735184920 0.4999991161165236 0.0000046190683969 

0.2 0.535300350221243 0.5249783058014168 0.0103220444198269 

0.4 0.570246862680883 0.5498331222090886 0.0204137404717951 

0.6 0.604506988500467 0.5744416525207819 0.0300653359796856 

0.8 0.637770798186041 0.5986868106621428 0.0390839875238981 

1 0.669765217120580 0.6224585003379023 0.0473067167826783 
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(a) (b) 

  

(c) (d) 

 Fig.3: (a) Exact solution when 𝑞 = −1 For Example.4.2; (b) OAFM solution when 𝑞 = −1  and 

𝛼 = 0.5 For Example.4.2; (c) OAFM solution when 𝑞 = −1  and 𝛼 = 0.75 For Example.4.2; (d) 

OAFM solution when 𝑞 = −1  and 𝛼 = 1 For Example.4.2: 

 

 

Fig. 4: visual graphs of 𝑢(𝑥, 𝑡) w.r.t x for various values of 𝛼 For Example.4.2 
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5. Results Analysis 

The OAFM has applied to the time fractional Fitzhug-Nagumo equation. We get highly accurate 

solutions using the proposed method, i.e., OAFM, on initial value problems. The calculations 

related to the examples discussed above were done by MATHEMATICA 13. The solutions 

obtained by our abovementioned technique are then correlated with the exact form of solution 

showing that the OAFM is close to exact solutions. Absolute errors of the technique for various 

values of "𝛼" are then revealed in tables 1-3, and the Plots of 𝑢(𝑥, 𝑡) for various values of "𝛼" are 

presented in Fig. 1 and Fig.2 for Example 4.1 and that for Example 4.2 absolute errors of the 

technique for various values of "𝛼" are revealed in Tables 4-6 and Fig 3 and Fig.4. represents the 

plots of 𝑢(𝑥, 𝑡) for diverse values of "𝛼" for Example 4.2. One thing is obvious when the values 

of "𝛼" close to 1, then the absolute error decrease, and for 𝛼 = 1 when utilized in the OAFM, we 

obtain a very close outcome to the exact form solution. 

 

6. Conclusion 

This study makes use of the novel numerical approach OAFM. We solved the FNEs' equations 

that govern in the first-order series and did it with excellent precision. We evaluated the OAFM 

results with those found in the literature and the numerical results to determine the correctness 

and validity of the proposed method. The comparison leads to the conclusion that the 

suggested approach is quite accurate, and the strong correlation between our findings and the 

numerical outcomes supports the applicability of our approach. High nonlinear initial and 

boundary value problems can use OAFM, which is quite simple, even for the nonlinear initial 

and boundary value problems. As OAFM has auxiliary functions in which the optimal 

constants and the control convergence parameters exist to play a crucial part in obtaining 

convergent solutions that are gathered rigorously, OAFM is the optimal auxiliary constants via 

which we can control the convergence. Compared with other methods, OAFM requires less 

computational work, and even a computer with relatively small specifications can effortlessly 

execute the task. We may use this efficient and quick convergent method in our future work for 

more complicated models derived from real-world problems because it currently has no 

restrictions. 
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