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Abstract. In this study, we explore the newly proposed bipolar Menger probabilistic b-metric spaces and present

several novel fixed-point theorems within this framework. We also provide a range of complex examples and apply

our main results to the analysis of the damped harmonic oscillator, modeled by second-order differential equations.

Furthermore, we demonstrate the applicability of our theoretical results to significant problem: Caputo fractional

differential equations with integral boundary conditions. The proposed methods and results contribute to the broader

understanding of probabilistic metric spaces and their utility in advanced mathematical modeling and analysis.

1. Introduction

The foundational theory of metric spaces was established by Fréchet in 1906 [3]. Since then, the

field has seen various adaptations and expansions, including alterations to the metric function and

relaxations of traditional axioms, thereby broadening the concept’s applicability. This research

introduces an innovative structure that expands upon probabilistic metric spaces by allowing

metrics to encompass a product of two distinct nonempty sets. The concept of a bipolar metric,

essential to this study, was first introduced by Mutlu and Gurdal in 2016 [34], inspired by practical

scenarios where "distance" involves disparate set elements. Examples include measuring distances

between points and lines in Euclidean space, between sets and their elements, or between a group

of celestial bodies and the inverse luminosities of stars.
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Definition 1.1. [34] If Ξ and Θ are nonempty sets, then a mapping µ : Ξ ×Θ→ [0;+∞) satisfying:

(µ1) µ(ζ, ζ) = 0 for any ζ ∈ Ξ ∩Θ;
(µ2) if µ(ζ, ς) = µ(ς, ζ) = 0 for some ζ ∈ Ξ and ς ∈ Θ, then ζ = ς;
(µ3) µ(ζ, ς) = µ(ς, ζ) for all ζ, ς ∈ Ξ ∩Θ;
(µ4) µ(ζ1, ς1) ≤ µ(ζ1, ς2) + µ(ζ2, ς1) + µ(ζ2, ς2) for all ζ1, ζ2 ∈ Ξ and ς1, ς2 ∈ Θ.

is a bipolar metric and a triple (Ξ, Θ,µ) is a bipolar metric space.

The notion of a b-metric space was originally put forward by Bakhtin [1] and later expanded by

Czerwik [29]. Subsequent research has delved into its properties, defining convergence, Cauchy

sequences, and establishing numerous fixed-point results with implications for nonlinear func-

tional analysis. For a comprehensive overview, readers are directed to extensive literature on the

subject [4–12]. Conversely, probabilistic metric spaces were initially conceptualized by Menger [15]

in 1942. Fixed-point theorems within these spaces were further explored by Sehgal and Bharucha-

Reid [16]. Schweizer and Sklar [18] have also extensively studied the characteristics of these spaces,

known as Menger probabilistic metric spaces (MPM-spaces), focusing on both single-valued and

multi-valued mappings [19–28]. In 2015, Hasanvand and Khanehgir [17] introduced the Menger

probabilistic b-metric space (MPbM-space), contributing a fixed-point theorem for single-valued

operators. The development of this area was significantly influenced by Branciari’s 2000 intro-

duction of the quadrilateral inequality, which was pivotal in generalizing the Banach contraction

theorem and developing the concept of rectangular metric spaces [13]. This paper presents the

integration of probabilistic b-metric spaces with bipolar metric concepts into what we term bipolar

Menger probabilistic b-metric spaces (BIMPM-spaces). These spaces are crucial in non-Hausdorff

topological contexts, particularly within the Tarskian framework for semantics in programming

languages in computer science.

For foundational concepts concerning b-metric spaces, bipolar metric spaces, MPM-spaces,

distribution functions, t-norms, and H-type (Hadzić type) t-norms among others, references [1,13,

14, 22, 25, 29] and their citations are recommended.

We will proceed by introducing the necessary definitions.

Definition 1.2. [17] Suppose Ξ , ∅, T is a continuous t-norm, z : Ξ × Ξ → D+ (The set of all Menger
distance distribution functions is denoted by D+) is a mapping, and % ∈ (0, 1]. Then, (Ξ, z,T ) is a
MPbM-space when for every ζ, ς, z ∈ Ξ and ι,κ > 0,

(PM1) zζ,ς(ι) = 1 iff ζ = ς,
(PM2) zζ,ς(ι) = zς,ζ(ι) ,
(PM3) zζ,ς(ι+ κ) ≥ T (zζ,z(%ι), zς,z(%κ)).

A MPM-space with % = 1 is called a MPbM-space, meaning the class of MPbM-spaces encom-

passes a broader range than that of MPM-spaces. For more details on MPM-spaces, see [17].
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Example 1.1. [17] Let Ξ = R+ and define T (u, v) = min{u, v}. Define z : Ξ × Ξ → D+ for ζ, ς ∈ Xi
by,

zζ,ς(ι) =


ι

ι+|ζ−ς|2
, if ι > 0

0 elswhere.

Then, (Ξ, z,T ) constitutes a complete MPbM-space with % = 1
2 .

Next, we explore (Φ)-functions, defined as functions φ : [0,∞)→ [0,∞) satisfying:

(φ1 ) φ(r) < r for all r > 0;

(φ2 ) limn→∞φn(r) = 0 for all r > 0.

These functions are called (Φ)-functions, and their collection is denoted by Φ.

The structure of this document includes four sections. Section 2 introduces a novel FP theorem

applicable to single-valued mappings within the BIMPbM-space. Section 3 demonstrates the

application of our findings by establishing the existence of solutions for initial value problems

related to the damped harmonic oscillator, framed within second-order differential equations.

Section 4 offers a summary of the conclusions

2. New FP Theorem in BipolarMPbM-Spaces

This section presents essential definitions in bipolar MPbM-spaces.

Definition 2.1. Let Ξ, Θ , ∅, T is a continuous t-norm, % ∈ (0, 1] and z : Ξ × Θ → D+, then
(Ξ, Θ, z,T , %) is defined as a bipolar Menger probabilistic b-metric (BIMPbM) space. For all ζ ∈ Ξ, ς ∈ Θ

the following properties hold:

(z1) zζ,ζ(ι) = 1 for any ζ ∈ Ξ ∩Θ;
(z2) if zζ,ς(ι) = zς,ζ(ι) = 1 for some ζ ∈ Ξ and ς ∈ Θ, then ζ = ς;
(z3) zζ,ς(ι) = zς,ζ(ι) for all ζ, ς ∈ Ξ ∩Θ;
(z4) zζ1,ς1(ι1 + ι2 + ι3) ≥ T (T (zζ1,ς2(%ι1), zζ2,ς1(%ι2)), zζ2,ς2(%ι3)) for all ζ1, ζ2 ∈ Ξ and ς1, ς2 ∈ Θ.

Example 2.1. Let Ξ = {0, 1
2 , 1, 2, 3, 4, 5} and Θ = {0, 1

3 , 1
4 , 1

5 , 6} be equipped with zζ,ς(ι) = ι
ι+|ζ−ς|2

,
T (a, b) = min{a, b} and % = 1

2 . Then, (Ξ, Θ, z,T , %) is a complete (BIMPbM) space.

Definition 2.2. Let (Ξ, Θ, z,T , %) is a (BIMPbM)-space. Then the functions zΞ : Ξ × Ξ → D+ and
zΘ : Θ × Θ → D+ which are defined as zΞ

ζ1,ζ2
(ι) = minς∈Θ{zζ1,ς(ι), zζ2,ς(ι)} for all ζ1, ζ2 ∈ Ξ and

zΘ
ς1,ς2

(ι) = minζ∈Ξ{zς1,ζ(ι), zς2,ζ(ι)} for all ς1, ς2 ∈ Θ, are called inner probabilistic metrics generated by
(Ξ, Θ, z)

Definition 2.3. Let (Ξ, Θ, z,T , %) is a (BIMPbM)-space. If the inner probabilistic metric zΞ is a proba-
bilistic metric on Ξ, then we say that Θ characterizes Ξ, and if zΘ is a probabilistic metric, we say that Ξ

characterizes Θ . If Ξ and Θ characterize each other, then the space (Ξ, Θ, z,T , %) is called bicharacterized.

In the following sections, we will discuss bipolar convergence, bipolar Cauchy sequences, and

bipolar completeness in the BIMPbM-space.
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Let (Ξ, Θ, z,T , %) be a BIMPbM-space. A left sequence (ζn) converges to a right point ς if and

only if for every = > 0 there exists an n0 ∈ N such that zζn,ς(ι) > 1 −= for all n ≥ n0. Similarly a

right sequence (ςn) converges to a left point ζ if and only if, for every = > 0 there exists an n0 ∈N

such that, whenever n ≥ n0, zζ,ςn(ι) > 1−=.

Lemma 2.1. Let (Ξ, Θ, z,T , %) be a BIMPbM-space. If (Ξ, Θ, z,T , %) is bicharacterized then every
convergent sequence has a unique limit.

Proof. Let {ζn} be a left sequence such that both ζn → ς1 ∈ Θ and ζn → ς2 ∈ Θ . Then for each ζ ∈ Ξ

we have

zζ,ς2(ι1 + ι2 + ι3) ≥ T (T (zζ,ς1(ι1), zζn,ς1(ι2)), zζn,ς2(ι3))

and

zζ,ς1(ι1 + ι2 + ι3) ≥ T (T (zζ,ς2(ι1), zζn,ς2(ι2)), zζn,ς1(ι3))

Since

limn→∞zζn,ς1(ι2) = limn→∞zζn,ς1(ι3) = 1

and

limn→∞zζn,ς2(ι3) = limn→∞zζn,ς2(ι2) = 1

so, zζ,ς1(ι1) = zζ,ς2(ι1) for all ζ ∈ Ξ. Hence zΘ
ς1,ς2

(ι1) = minζ∈Ξ{zζ,ς1(ι1, zζ,ς2(ι1} = 1 and since Ξ

characterizes Θ , zΘ is a probabilistic metric so that ς1 = ς2. �

Now we define the continuity of maps.

Definition 2.4. Let (Ξ, Θ, z,T , %) be a BIMPbM-space.

• 1. A sequence (ζn, ςn) on the set Ξ ×Θ is called a bisequence on (Ξ, Θ, z,T , %).
• 2. if both sequences (ζn) and (ςn) converge, then the bisequence (ζn, ςn) is considered convergent.

Should (ζn) and (ςn) converge to the same point u in Ξ∩Θ, the bisequence is deemed biconvergent.
• 3. a bisequence (ζn, ςn) in (Ξ, Θ, z,T , %) qualifies as a Cauchy bisequence if, for any = > 0, there

exists an integer n0 ∈N such that for all integers n, m ≥ n0, zζn,ςn(ι) ≥ 1−=.

Definition 2.5. states that a BIMPbM-space is complete if every Cauchy bisequence within it converges.

We now introduce a new common FP theorem for single-valued mapping in a complete BIMPbM-

space as per

Theorem 2.1. Let (Ξ, Θ, z,T , %) be a complete BIMPbM-space with % ∈ (0, 1], satisfying T (a, a) ≥ a for
a in [0, 1]. Assume further that a continuous operator $ : Ξ ∪Θ → Ξ ∪Θ exists, with $(Ξ) ⊂ Ξ and
$(Θ) ⊂ Θ, such that:

z$ζ,$ς((%)
kϕ(ι)) ≥ λmin{zζ,ς(%

k−1ϕ(
ι
c
),

zζ,$ς(%
k−1ϕ(

ι
c
), z$ζ,ς(%

k−1ϕ(
ι
c
)}

where λ ≥ 1 and c in (0, 1). Then, this operator has a fixed point.
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Proof. With the initial points ζ0 ∈ Ξ and ς0 ∈ Θ we start by constructing an iterative bisequence

{(ζn, ςn)} such that:

ζ1 = $ζ0, ζ2 = $2ζ0, ζ3 = $3ζ0, ..., ζn = $nζ0, ...

and

ς1 = $ς0, ς2 = $2ς0, ς3 = $3ς0, ..., ςn = $nς0, ...

Since ϕ is continuous at 0, we can find a r > 0 so that r > ϕ(r). So, it yields

zζn,ςn(%
kϕ(r)) = z$ζn−1,$ςn−1(%

kϕ(r))

≥ λmin{z$ζn−1,ςn−1(%
k−1ϕ(

r
c
),

zζn−1,ςn−1(%
k−1ϕ(

r
c
), zζn−1,$ςn−1(%

k−1ϕ(
r
c
)}

≥ λmin{zζn,ςn−1(%
k−1ϕ(

r
c
),

zζn−1,ςn−1(%
k−1ϕ(

r
c
), zζn−1,ςn(%

k−1ϕ(
r
c
)}

≥ min{zζn,ςn−1(%
k−1ϕ(

r
c
),

zζn−1,ςn−1(%
k−1ϕ(

r
c
), zζn−1,ςn(%

k−1ϕ(
r
c
)}

At this stage, we need to show that

zζn,ςn(%
kϕ(r)) ≥ zζn−1,ςn−1(%

k−1ϕ(
r
c
). (2.1)

Now there are two situations that we will examine.

Case 1:

Let us assume that zζn,ςn−1(%
k−1ϕ( r

c ) is a minimum.

So zζn,ςn(%
kϕ(r)) ≥ zζn,ςn−1(%

k−1ϕ( r
c ), then

zζn,ςn(%
kϕ(r)) ≥ zζn,ςn−1(%

k−1ϕ(
r
c
)

≥ zζn,ςn−2(%
k−2ϕ(

r
c2 ))

≥ ... ≥ zζn,ς0(%
k−nϕ(

r
cn ))

for every n ∈ N. By letting n→ ∞ we obtain zζn,ςn(%
kϕ(r)) ≥ 1. Therefore, we get ζn = ςn, which

contradicts the condition ζn , ςn.

Case 2:

Let us assume that zζn−1,ςn(%
k−1ϕ( r

c ) is a minimum.

So zζn,ςn(%
kϕ(r)) ≥ zζn−1,ςn(%

k−1ϕ( r
c ), then

zζn,ςn(%
kϕ(r)) ≥ zζn−1,ςn(%

k−1ϕ(
r
c
)

≥ zζn−2,ςn(%
k−2ϕ(

r
c2 ))

≥ ... ≥ zζ0,ςn(%
k−nϕ(

r
cn ))
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for every n ∈ N. By letting n→ ∞ we obtain zζn,ςn(%
kϕ(r)) ≥ 1. Therefore, we get ζn = ςn, which

contradicts the condition ζn , ςn.

So, we obtain that zζn−1,ςn−1(%
k−1ϕ( r

c ) is a minimum, and (2.1) is true.

From (2.1) we have:

zζn,ςn(%
kι) ≥ zζn,ςn(%

kϕ(r))

≥ zζn−1,ςn−1(%
k−1ϕ(

r
c
)

≥ · · · ≥ zζ0,ς0(%
k−nϕ(

r
cn ),

that is, zζn,ςn(%
kι) ≥ zζ0,ς0(%

k−nϕ( r
cn ) for any n ∈N. Also

zζn,ςn+1(%
kϕ(r)) = z$ζn−1,$ςn(%

kϕ(r))

≥ λmin{z$ζn−1,ςn(%
k−1ϕ(

r
c
),

zζn−1,ςn(%
k−1ϕ(

r
c
), zζn−1,$ςn(%

k−1ϕ(
r
c
)}

≥ min{z$ζn−1,ςn(%
k−1ϕ(

r
c
),

zζn−1,ςn(%
k−1ϕ(

r
c
), zζn−1,$ςn(%

k−1ϕ(
r
c
)}

≥ min{zζn,ςn(%
k−1ϕ(

r
c
),

zζn−1,ςn(%
k−1ϕ(

r
c
), zζn−1,ςn+1(%

k−1ϕ(
r
c
)}.

Now we need to show that

zζn,ςn+1(%
kϕ(r)) ≥ zζn−1,ςn(%

k−1ϕ(
r
c
). (2.2)

Now there are two situations that we will examine.

Case1:

Let us assume that zζn,ςn(%
k−1ϕ( r

c ) is a minimum.

So zζn,ςn+1(%
kϕ(r)) ≥ zζn,ςn(%

k−1ϕ( r
c ), then

zζn,ςn+1(%
kϕ(r)) ≥ zζn,ςn(%

k−1ϕ(
r
c
)

≥ zζn,ςn−1(%
k−2ϕ(

r
c2 ))

≥ ... ≥ zζn,ς1(%
k−nϕ(

r
cn ))

for every n ∈ N. By letting n → ∞ we obtain zζn,ςn+1(%
kϕ(r)) ≥ 1. Therefore, we get ζn = ςn+1,

which contradicts the condition ζn , ςn+1.

Case2:

Let us assume that zζn−1,ςn+1(%
k−1ϕ( r

c ) is a minimum.
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So zζn,ςn+1(%
kϕ(r)) ≥ zζn−1,ςn+1(%

k−1ϕ( r
c ), then

zζn,ςn+1(%
kϕ(r)) ≥ zζn−1,ςn+1(%

k−1ϕ(
r
c
)

≥ zζn−2,ςn+1(%
k−2ϕ(

r
c2 ))

≥ ... ≥ zζ0,ςn+1(%
k−nϕ(

r
cn ))

for every n ∈ N. By letting n → ∞ we obtain zζn,ςn+1(%
kϕ(r)) ≥ 1. Therefore, we get ζn = ςn+1,

which contradicts the condition ζn , ςn+1.

So, we obtain that zζn−1,ςn(%
k−1ϕ( r

c ) is a minimum, and (2.2) is true.

From (2.2) we have:

zζn,ςn+1(%
kι) ≥ zζn,ςn+1(%

kϕ(r))

≥ zζn−1,ςn(%
k−1ϕ(

r
c
)

≥ · · · ≥ zζ0,ς1(%
k−nϕ(

r
cn ),

that is, zζn,ςn+1(%
kι) ≥ zζ0,ς1(%

k−nϕ( r
cn ) for any n ∈N.

We consider m, n ∈N, with m > n. Then, by (z4) and the strictly non-decreasing feature of ϕ, it

yields

zζm,ςn((m− n)ι) ≥ min{zζm,ςn+1((m− n− 2)ι),

zζn,ςn+1(ι), zζn,ςn(ι)}

≥ min{zζm,ςn+1((m− n− 2)ι),

zζ0,ς1(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn )}

≥ min{zζ0,ς1(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn ),

· · · , zζ0,ς1(%
1−nϕ(

r
cm−2 ), zζ0,ς0(%

1−nϕ(
r

cm−2 ),

zζ0,ς1(%
1−nϕ(

r
cm−1

), zζ0,ς0(%
1−nϕ(

r
cm−1

)}

= min{zζ0,ς1(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn )}.

Since %1−nϕ( r
cn ) → ∞ as n → ∞, there exists a n0 ∈ N so that zζ0,ς1(%

1−nϕ( r
cn ) > 1 − υ and

zζ0,ς0(%
1−nϕ( r

cn ) > 1 − υ for a fixed υ ∈ (0, 1), whenever n ≥ n0. Thus, zζm,ςn((m − n)ι) > 1 − υ

for every m > n ≥ n0. Since ι > 0 and 0 < υ < 1 are arbitrary, we conclude that {(ζn, ςn)} is a

Cauchy bisequence in the complete BIMPbM-space (Ξ, Θ, z,T , %). So, there exists a u ∈ Ξ ∩ Θ

and $(ςn) = ςn+1 → u ∈ Ξ ∩Θ guarantees that ($(ςn)) has unique limit. Since $ is continuous

($(ςn))→ $(u), so $(u) = u. Hence u is a fixed point of $. This complete the proof. �

Corollary 2.1. Let (Ξ, Θ, z,T , %) is a complete BIMPbM-space with % ∈ (0, 1], which satisfiesT (a, a) ≥ a
with a ∈ [0, 1]. Additionally, let us assume that $ : Ξ∪Θ→ Ξ∪Θ is a continuous operator that satisfies:
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z$ζ,$ς(ϕ(ι)) ≥ λmin{zζ,ς(ι),

z$ζ,ς(ι), zζ,$ς(ι)}

where λ ≥ 1. Then, $ has a FP.

Definition 2.6. Let (Ξ1, Θ1, z1,T , %) and (Ξ2, Θ2, z2,T , %) be two BIMPbM-space and $ : Ξ1 ∪Θ1 →

Ξ2 ∪Θ2 be a function. If $(Ξ1) ⊂ Ξ2 and $(Θ1) ⊂ Θ2, then $ is called a covariant map, or a map from
(Ξ1, Θ1, z1,T , %) to (Ξ2, Θ2, z2,T , %). If $ : (Ξ1, Θ1, z1,T , %) → (Θ2, Ξ2, z2,T , %) is a map, then $ is
called a contravariant map from (Ξ1, Θ1, z1,T , %) to (Θ2, Ξ2, z2,T , %) and this is denoted as

$ : (Ξ1, Θ1, z1,T , %)
 (Θ2, Ξ2, z2,T , %)

Theorem 2.2. Let (Ξ, Θ, z,T , %) is a complete BIMPbM-space with % ∈ (0, 1], which satisfies T (a, a) ≥ a
with a ∈ [0, 1]. Additionally, let us assume that $ : Ξ∪Θ→ Ξ∪Θ is a contravariant continuous operator
that satisfies:

z$ζ,$ς((%)
kϕ(ι)) ≥ λzς,ζ(%

k−1ϕ(
ι
c
)).

where λ ≥ 1. Then, $ has a FP.

Proof. Let ζ0 ∈ Ξ, $ζ0 = ς0 ∈ Θ and $ς0 = ζ1. For each n ∈ N define $ζn = ςn and $ςn = ζn+1.

Then (ζn, ςn) is a bisequence on (Ξ, Θ, z,T , %).

Since ϕ is continuous at 0, we can find a r > 0 so that r > ϕ(r). So, it yields

zζn,ςn(%
kϕ(r)) = z$ςn−1,$ζn(%

kϕ(r))

≥ λzζn,ςn−1(%
k−1ϕ(

r
c
)

≥ zζn,ςn−1(%
k−1ϕ(

r
c
)

= z$ςn−1,$ζn−1(%
k−1ϕ(

r
c
)

≥ λzζn−1,ςn−1(%
k−2ϕ(

r
c2 )

≥ zζn−1,ςn−1(%
k−2ϕ(

r
c2 )

= z$ςn−2,$ζn−1(%
k−2ϕ(

r
c2 ))

≥

...

≥ zζ0,ς0(%
k−nϕ(

r
cn ).
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Also

zζn+1,ςn(%
kϕ(r)) = z$ςn,$ζn(%

kϕ(r))

≥ λzζn,ςn(%
k−1ϕ(

r
c
)

≥ zζn,ςn(%
k−1ϕ(

r
c
)

= z$ςn−1,$ζn(%
k−1ϕ(

r
c
)

≥ λzζn,ςn−1(%
k−2ϕ(

r
c2 )

≥ zζn,ςn−1(%
k−2ϕ(

r
c2 )

= z$ςn−1,$ζn−1(%
k−2ϕ(

r
c2 ))

≥

...

≥ zζ0,ς0(%
k−nϕ(

r
cn ).

We consider m, n ∈N, with m > n. Then, by (z4) and the strictly non-decreasing feature of ϕ, it

yields

zζm,ςn((m− n)ι) ≥ min{zζm,ςn+1((m− n− 2)ι),

zζn+1,ςn(ι), zζn+1,ςn+1(ι)}

≥ min{zζm,ςn+1((m− n− 2)ι),

zζ0,ς0(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn )}

≥ min{zζ0,ς0(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn ),

· · · , zζ0,ς0(%
1−nϕ(

r
cm−2 ), zζ0,ς0(%

1−nϕ(
r

cm−2 ),

zζ0,ς0(%
1−nϕ(

r
cm−1

), zζ0,ς0(%
1−nϕ(

r
cm−1

)}

= min{zζ0,ς0(%
1−nϕ(

r
cn ), zζ0,ς0(%

1−nϕ(
r
cn )}.

Since %1−nϕ( r
cn ) → ∞ as n → ∞, there exists a n0 ∈ N so that zζ0,ς0(%

1−nϕ( r
cn ) > 1 − υ for a fixed

υ ∈ (0, 1), whenever n ≥ n0. Thus, zζm,ςn((m − n)ι) > 1 − υ for every m > n ≥ n0. Since ι > 0

and 0 < υ < 1 are arbitrary, we conclude that {(ζn, ςn)} is a Cauchy bisequence in the complete

BIMPbM-space (Ξ, Θ, z,T , %). So, there exists a u ∈ Ξ∩Θ and $(ςn) = ζn → u ∈ Ξ∩Θ guarantees

that ($(ςn)) has unique limit. Since $ is continuous ($(ςn)) → $(u), so $(u) = u. Hence u is a

fixed point of $. This complete the proof.

�
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Example 2.2. Let Ξ = [0, 1] and Θ = [1, 2] be equipped with zζ,ς(ι) = ι
ι+|ζ−ς|2

for each ζ ∈ Ξ, ς ∈ Θ,
T (a, b) = min{a, b} and % = 1

2 . Then, (Ξ, Θ, z,T , %) is a complete BIMPbM-space. Define φ(t) = t
4 for

each t ∈ [0,∞), λ = 1, c = 1
2 and $ : Ξ ∪Θ⇒ Ξ ∪Θ by

$(ı) =


ı
4 , ı ∈ (0, 1)

1, ı ∈ [1, 2].

For each ζ ∈ Ξ and ς ∈ Θ we have

z$ζ,$ς(%
kφ(ι)) =

ι
2k

ι
2k + |

ζ
4 − 1|2

=
ι

ι+ 2k|
ζ
4 − 1|2

=
ι

ι+ 2k

16 |ζ−
1
4 |

2

=
ι

ι+ 2k−4|ζ− 1
4 |

2

≥
ι

ι+ 2k−2|ζ− 1
4 |

2

≥
ι

ι+ 2k−2|ζ− ς|2

= zζ,ς(%
k−1φ(

ι
c
))

≥ {zζ,ς(%
k−1φ(

ι
c
)), z$ζ,ς(%

k−1φ(
ι
c
)),

zζ,$ς(%
k−1φ(

ι
c
))}.

Thus, all the criteria of Theorem 2.1 are satisfied and $ has a FP ı = 1.

3. Two Illustrative Applications

3.1. Damped Harmonic Oscillators. In classical mechanics, the harmonic oscillator is defined as

a system which, when displaced from its equilibrium position, experiences a restoring force F
directly proportional to the displacement x, represented as

~F = −k~x

where k is a positive constant. If damping is present, characterized by a frictional force proportional

to velocity, the system is described as a damped oscillator. In such systems, friction or damping

reduces the motion’s speed proportionally to the frictional force applied. Unlike the simple

undriven harmonic oscillator where only the restoring force acts on the mass, the damped harmonic

oscillator also experiences a frictional force opposing the motion. Hence, the balance offorces for

damped harmonic oscillators is:

F = Fext − kω− c
dω
dt

= m
d2ω

dt2
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When there is no external force (i.e., Fext = 0),

d2ω

dt2 + 2vω̄
dω
dt

+ ω̄2ω = 0 (3.1)

where ω̄ =
√

k
m is the undamped angular frequency of the oscillator and v = c

2
√

km
is the

damping ratio. A damped harmonic oscillator is critically damped for v = 1, i.e., the system

comes back to the steady state as quickly as time permits without oscillation (however, overshoot

can happen as in the case of doors).

Green’s function associated to equation 3.1 in case of critically damped motion under conditions

ω(0) = 0, ώ(0) = a is given by

G(`, ) =

− e
ρ( −`), 0 ≤  ≤ ` ≤ 1

−`eρ( −`), 0 ≤ ` ≤  ≤ 1.
(3.2)

where ρ > 0 is a constant, calculated in terms of v and ω̄.

Let Ξ = C([0, 1], R+) be the set of all continuous functions on [0, 1] and Θ = C([0, 1], R+) be the

set of all continuous functions on [0, 1]. Consider µ : Ξ ×Θ→ [0,∞) to be defined by

µ(ζ, ς) = max`∈[0,1]|ζ(`) − ς(`)|
2e−2`ι, ζ ∈ Ξ, ς ∈ Θ, L > 0.

One can see that µ is a complete bipolar b-metrics with s = 2. Next, we define the mapping

z : Ξ ×Θ→ D+ as

zζ,ς(ι) = χ(ι− µ(ζ, ς))

for ι > 0, where

χ(ι) =

0 if ι ≤ 0

1 if ι > 0.

We know that (Ξ, Θ, z, min) is a complete BIMPbM-space with coefficient % = 1
2 .

In the next theorem, we consider the equation of critically damped harmonic oscillators in which

the damping of an oscillator causes it to return as quickly as possible to its equilibrium position

without oscillating back and forth about this position

Theorem 3.1. Let (Ξ, Θ, z, min) be a complete BIMPbM-space whit % = 1
2 and $ : Ξ ∪Θ → Ξ ∪Θ be a

self mapping such that:

$ω(`) =

∫ `

0
G(`, )Ω( ,ω( ))d  (3.3)

where Ω : [0, 1] ×R→ R is an increasing function which satisfies

|Ω(`,$ω(`)) −Ω(`,$ϑ(`))| ≤
1
2

max{|ω(`)) − ϑ(`)|, |$ω(`)) − ϑ(`)|, |ω(`)) −$ϑ(`)|}

Then the differential equation 3.1 has a unique solution
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Proof. Finding solution of equation 3.1 is equivalent to solving the integral equation

ω(`) =

∫ `

0
G(`, )Ω( ,ω( ))d .

Therefore, z is a solution of equation 3.1 iff z is a fixed point of $. Now, for all ω ∈ Ξ and ϑ ∈ Θ we

have

µ($ω,$ϑ) = max`∈[0,1](|$ω(`) −$ϑ(`)|
2e−2L`)

= max`∈[0,1](|

∫ `

0
G(`, )Ω( ,ω( ))d −

∫ `

0
G(`, )Ω( ,ϑ( ))d |2e−2L`)

≤ max`∈[0,1]((

∫ `

0
G(`, )|Ω( ,ω( )) −Ω( ,ϑ( ))|)2e−2L`d )

≤ max`∈[0,1]((

∫ `

0
G(`, )|

1
2

max{|ω(`) − ϑ(`)|,

|$ω(`) − ϑ(`)|, |ω(`) −$ϑ(`)|}|)2e−2L`d )

≤
1
4

max{µ(ω,ϑ),µ($ω,ϑ),µ(ω,$ϑ)}max`∈[0,1](

∫ `

0
G(`, )d )2

on the other hand max`∈[0,1]

∫ `
0 G(`, )d  < 1 so we have

µ($ω,$ϑ) ≤
1
4

max{µ(ω,ϑ),µ($ω,ϑ),µ(ω,$ϑ)}

Putting c = 1
2 , for any r > 0 and k ∈N we derive

z$ω,$ϑ(
r
2k
) = χ(

r
2k
− µ($ω,$ϑ))

≥ χ(
r
2k
−

c
2

max{µ(ω,ϑ),µ($ω,ϑ),µ(ω,$ϑ)})

= χ(
r

2k−1c
−max{µ(ω,ϑ),µ($ω,ϑ),µ(ω,$ϑ)})

= min{zω,ϑ(
r

2k−1c
), z$ω,ϑ(

r
2k−1c

).zω,$ϑ(
r

2k−1c
)}

Therefore, by Theorem 2.1, $ whit φ(r) = r has a fixed point, which is a solution to the equation

3.1. �

3.2. Fractional differential equations. Suppose the Caputo fractional differential equation defined

as follows, where Dc
% denotes the Caputo fractional derivative of order %:

Dc
%(ζ(ι)) = h(ι, ζ(ι)), (0 < ι < 1, 0 < % ≤ 2), (3.4)

where h : [0, 1] ×R→ R is continuous and

ζ(0) = 0, ζ(1) =
∫ ℘

0
ζ(κ)dκ (0 < ℘ < 1).

The Caputo derivative of order % for a continuous function $ : R+
→ R is defined as follows:

Dc
%$(ι) =

1
Γ(n− %)

dn

dιn

∫ ι

0

$(κ)

(ι− κ)%−n+1
dκ (n = [%] + 1),
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where this expression is valid pointwise on (0,+∞). Here’s a captivating theorem related to the

topic:

Theorem 3.2. Let (Ξ, Θ, z, min) be a complete BIMPbM-space whit % = 1
2 and G : Ξ ∪Θ → Ξ ∪Θ be a

self mapping defined by G(ζ) =
$ζ(ι)

4 . Suppose the following conditions are met:

(i) For each ζ, ς ∈ Ξ and ι ∈ I(I = [0, 1]), there exists L > 0 such that

||h(ι,$ζ(ι)) − h(ι,$ς(ι))|| ≤
Γ(%+ 1)

5
e−Ls 1

4
max[|ζ(κ) − ς(κ)|, |$ζ(κ) − ς(κ)|, |ζ(κ) −$ς(κ)|];

(ii) Exist $ : R+
→ R such that

$ζ(ι) =
1

Γ(%)

∫ ι

0
(ι− κ)%−1h(κ, ζ(κ))dκ

−
2ι

(2−℘2)Γ(%)

∫ 1

0
(1− κ)%−1h(κ, ζ(κ))dκ

+
2ι

(2−℘2)Γ(%)

∫ ℘

0
(

∫ κ

0
(κ− k)%−1h(k, ζ(k))dk)dκ.

Thus, (3.4) has a solution in Ξ.

Proof. If the following is satisfied:

ζ(ι) =
1

Γ(%)

∫ ι

0
(ι− κ)%−1h(κ, ζ(κ))dκ

−
2ι

(2−℘2)Γ(%)

∫ 1

0
(1− κ)%−1h(κ, ζ(κ))dκ

+
2ι

(2−℘2)Γ(%)

∫ ℘

0
(

∫ κ

0
(κ− k)%−1h(k, ζ(k))dk)dκ,

Then, ζ(κ) is a solution of (3.4). Define µ(ζ, ς) = maxι∈I(|ζ(ι) − ς(ι)|2e−Lt) for ζ, ς ∈ Ξ, where L
meets condition (i). Now, for all ζ ∈ Ξ and ς ∈ Θ we have

µ($ζ,$ς) ≤ max
ι∈I

1
Γ(%)

∫ ι

0
|ι− κ|%−1

||h(κ, ζ(κ)) − h(κ, ς(κ))||dκ

+
2ι

(2−℘2)Γ(%)

∫ 1

0
|1− κ|%−1

||h(κ, ζ(κ)) − h(κ, ς(κ))||dκ

+
2ι

(2−℘2)Γ(%)

∫ ℘

0
||

∫ κ

0
(κ− k)%−1(h(k, ζ(k)) − h(k, ς(k)))dk||dκ

≤ max
ι∈I

1
Γ(%)

∫ ι

0
|ι− κ|%−1 Γ(%+ 1)

5
e−Ls 1

4
max[|ζ(κ) − ς(κ)|, |$ζ(κ) − ς(κ)|, |ζ(κ) −$ς(κ)|]dκ

+
2ι

(2−℘2)Γ(%)

∫ 1

0
|1− κ|%−1 Γ(%+ 1)

5
e−Ls 1

4
max[|ζ(κ) − ς(κ)|, |$ζ(κ) − ς(κ)|,

|ζ(κ) −$ς(κ)|]dκ

+
2ι

(2−℘2)Γ(%)

∫ ℘

0
(

∫ κ

0
|κ− k|%−1 Γ(%+ 1)

5
e−Ls 1

4
max[|ζ(κ) − ς(κ)|, |$ζ(κ) − ς(κ)|,
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|ζ(κ) −$ς(κ)|]dk)dκ

≤
Γ(%+ 1)

5
1
4

max[µ(ζ, ς),µ($ζ, ς),µ(ζ,$ς)](max
ι∈I

1
Γ(%)

∫ ι

0
|ι− κ|%−1dκ

+
2ι

(2−℘2)Γ(%)

∫ 1

0
|1− κ|%−1dκ

+
2ι

(2−℘2)Γ(%)

∫ ℘

0
(

∫ κ

0
|κ− k|%−1dk)dκ)

≤
1
4

max[µ(ζ, ς),µ($ζ, ς),µ(ζ,$ς)],

for any ζ ∈ Ξ, ς ∈ Θ. Putting c = 1
2 , for any r > 0 and k ∈N we derive

z$ζ,$ς(
r
2k
) = χ(

r
2k
− µ($ζ,$ς))

≥ χ(
r
2k
−

c
2

max{µ(ζ, ς),µ($ζ, ς),µ(ζ,$ς)})

= χ(
r

2k−1c
−max{µ(ζ, ς),µ($ζ, ς),µ(ζ,$ς)})

= min{zζ,ς(
r

2k−1c
), z$ζ,ς(

r
2k−1c

).zζ,$ς(
r

2k−1c
)}

Theorem 2.1 ensures a FP of G, which solves the Caputo equation (3.4). �

Example 3.1. Let us consider the following fractional differential equation :

Dc
%w(ι) + w(ι) =

2
Γ(3− %)

ι2−% + ι3, (3.5)

with initial condition: w(0) = 0, w
′

(0) = 0.
Equation 3.5 has the exact solution with % = 1.9:

w(ι) = ι2

By Equation 3.4, we can express Equation 3.5 in the homotopy form;

Dc
%w(ι) + uw(ι) −

2
Γ(3− %)

ι2−% − ι3 = 0, (3.6)

the solution of Equation 3.5 is:

w(ι) = w0(ι) + uw1(ι) + u2w2(ι) + ... (3.7)

Substituting Equation 3.7 in 3.6 and collecting terms with the power of u, we get

u0 : Dc
%w0(ι) = 0

u1 : Dc
%w1(ι) = −w0(ι) + h(ι)

u2 : Dc
%w2(ι) = −w1(ι)

u3 : Dc
%w3(ι) = −w2(ι).
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Applying U% and the inverse operation of Dc
%, on both sides of Equation 3.1 and fractional integral operation

U% of order % > 0, we have

w0(ι) =
1∑

i=0

wi(0)
ιi

i!
= w(0)

ι0

0!
+ w

′

(0)
ι1

1!

w1(ι) = −U%[w0(ι) + U%h(ι)] = ι2 +
Γ(4)

Γ(4 + %)
ι3+%

w2(ι) = −U%[w1(ι)] =
2

Γ(3 + %)
ι2+% −

6
Γ(3 + 2%)

ι3+2%

w3(ι) = −U%[w2(ι)] =
2

Γ(3 + 2%)
ι2+2%

−
6

Γ(3 + 3%)
ι3+3%

Hence the solution of Equation 3.5 is

w(ι) = w0(ι) + w1(ι) + w2(ι) + ... (3.8)

w(ι) = ι2 +
Γ(4)

Γ(4 + %)
ι3+% −

2
Γ(3 + %)

ι2+% −
6

Γ(3 + 2%)
ι3+2% + ... (3.9)

when % = 1.9

w(ι) = ι2 +
6

Γ(5.9)
ι4.9
−

2
Γ(4.9)

ι3.9
−

6
Γ(7.8)

ι6.8 + ...

= ι2 − small terms

≈ ι2

For % = 1.9 and ∼= 51, the results (both numerical and exact) using the matrix approach are presented in
Table 1 and the maximum error observed was ∼= 51 is 0.039016195358901

ι w(ι) wζ(ι) |w(ι) −wζ(ι)|

0.10000 0.01000 0.00862 0.00138
0.20000 0.04000 0.03769 0.00231
0.30000 0.09000 0.08654 0.00346
0.40000 0.16000 0.15474 0.00526
0.50000 0.25000 0.24193 0.00807
0.60000 0.36000 0.34786 0.01214
0.70000 0.49000 0.47244 0.01756
0.80000 0.64000 0.61581 0.02419
0.90000 0.81000 0.77841 0.03159
1.00000 1.00000 0.96098 0.03902

Table 1. The numerical and exact solution using the matrix approach method where

∼= 51
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4. Conclusion

As the BIMPbM-spaces is relatively new addition to the existing literature, therefore, in this

note, we endeavor to further enrich this notion by introducing the idea of BIMPbM-space wherein

we combined concept of the MPbM-space with concept of the BIM-space. Then, by using these

concepts, new fixed point were proven. Section 2 introduces new FP theorems for single-valued

operators in BIMPbM-spaces, along with application for solving damped harmonic oscillator, as

second-order differential equations and we were able to investigate the existence of a solution for

the Caputo fractional differential equations and also give numerical example for equation.
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