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Abstract. We present an explicit algorithm to determine the number of negative eigenvalues of Schrodinger operators
on rooted quantum trees equipped with delta or delta-prime vertex interactions. We employ the methods of [Behrndt
and Luger [5]], and the structure of trees to generate a sequence which has the same number of negative elements as the
original Laplace operator. We show that the number of negative eigenvalues of the Schrédinger operators with delta
interactions equals the number of negative terms in this sequence, while for delta-prime interactions, it reduces to the

number of negative interaction strengths.

1. INTRODUCTION

Schrodinger operators with potentials localized on a finite or discrete set of points are com-
monly referred to as solvable models in quantum mechanics. These models are termed "solvable"
because their resolvents can be explicitly computed in terms of interaction strengths and source
locations. Consequently, their spectral properties, including the spectrum and eigenfunctions, can
be determined in a closed form. Such models have been widely studied in the physics literature,
particularly in the contexts of atomic, nuclear, and solid-state physics. In many cases one is partic-
ularly interested in the spectral properties of its self-adjoint operator on the graph. The aim of this
paper is to derive a formula for the number of negative eigenvalues of the Schrodinger operator
over quantum tree graphs with point iterations.

Let a metric graph I' and consider an arbitrary edge of finite length e; € 7 of I'. We identify

it with an interval [0,d;] and denote the space of all square integrable function defined on [0, d;]
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by L?((0,d;)). Similarly for an infinite length edge ¢; € &, identified with interval (0, o), we can
consider space of all square integrable functions L2((0, 0)). Now, the space of all square integrable
functions on the graph can be defined as:

L2(T) := EDL2((0,d) + EP L2((0,0)).
eicl EJ'ES
For a vertex vy with degree greater than two the delta vertex conditions can be compactly written
as:

f is continuous at v

Lixjeo, Of (i) = i f (k)
where ay € R. The symbol d denotes the normal derivative which is defined as

d

lim = (x), x; is the left end point of the interval
X—X;

d
— lim P (x), x; istherightend point of the interval.
X—X;

(1.1)

2f (i) =

Similarly for vertex vy the delta-prime vertex conditions are given by

df is continuous at v

Y f(xi) = Br df (vx).

Xi€Uy

(1.2)

where the potentials f; € R. For detailed study on the most general form of self-adjoint Vertex
conditions we refer to [3,10-12].

The objective of this paper is to investigate some spectral properties of Schrodinger operator
with delta point and deltra-prime point interations over quantum trees. In the space L?(RR), they
are given by

Lyog=-==+) a(v), Lyg= -~ + Z Bi(-, 6,98, (v)
kel X kel
The following result can be used to calculate the x_(.) of the Schrodinger operator with a general

form Af + Bf’ = 0 of self-adjoint vertex conditions at vertices.

Theorem 1.1 (Behrndt and Luger [5]). Consider a connected finite graph T', and take a self-adjoint
realization of the Laplacian L in L?(T), that is,

d2
dx?

where A and B are matrices, and M is the Titchmarsh Weyl M-function. Then L satisfies

L= domain(L) = {f € W3(T') : Af + Bf = 0]

x_(L) = x_ (~AB* = BMB") . (1.3)

In [6], the authors give an algorithm for the negative eigenvalues of Laplacian with finitely

many delta and delta prime interactions on the real line. We present their results below.
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Consider the Laplace operator Ly, defined on the real line with finitely many delta interactions

all separated by a finite distance d;. The set of points where the delta potential is placed is denoted
by V.

We consider that each vertex v; is equipped with delta conditions having strength «;. That is

{ fo(0) = £ (0) }
£ O+ £ (0) = a1fo (0) |

{ fi(d) = £2(0) }
—f{ (d1) + f3(0) = azfi (d1) |
- { f2(d2) = £3.(0) }

—f3 (d2) + £5(0) = asfa (da) |

fut (dy) = £ (0) |
_f,;_l (dn—l) + fu (0) = ay fn1 (dp-1)
Define the sequence y = {yx}_, by

yi=a+di7!,
Vk = Qx + A+ dey - dk_l_z)/k_l_l, for k=1{2,3,...,n—-1},
Vn = Qn + dn—l_l - d;zlyn—l_lz

if y¢=0, then 1y :=—0c0.

The result which relates the number of negative terms in the sequence y = {yx}}_, tothe x_(Ly )
of the Laplace operator on the real line is the following [6]

K- (Lva) = k-(y) + Neo()-

Here N is the the number of negative infinite y = {y,}_, within the sequence.

we take the following delta-prime conditions on each vertex v;.

1{ £0) = £ (0) }
fo (0) + £1(0) = i3 (0) |

{ ~f (1) = £3(0) }
fi(d1) + f2(0) = =Bof] (d1) |’

. { ~f; (d2) = £ (0) }
fo(d2) + f3(0) = =Bsfy (da) |’

. { ~fyy (@at) = £ (0) }
"\ ot (dae1) + £0) = =Buf!_, (dun)
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We define the sequence y; as follows

yn=d,
y2=p1,
y3=dy,
va=p2,

-1
Yon-3 = dp-1",
Yon-2 = Pn-1,

Von-1 = ,Bn~

The number of negative eigenvalues «_(Ly g) is given by [6].

K-(Lug) = K- (B1) + K- (B2) + ..+ K (B):

2. MaIN ResuLts

In this section we present our results on the negative eigenvalues of Schrodinger operator on

the quantum tree graphs. Our main results are the following

Theorem 2.1. The number of negative eigenvalues «_ of the Schrodinger operator on I with delta interac-

tions is
K- = #{yi,j < O}

Theorem 2.2. The number of negative eigenvalues x_ of the Schrodinger operator on I with delta-prime

interactions is

K- = #{,31"]' < O}

3. Proors

3.1. The General Case.

In this section we look at the result of the matrix (—AB* — BMB"*) for any vertex conditions that
satisfy Af + Bf’ = 0. We set up the notation for the tree graph and highlight some properties of
the tree structure that we take advantage of.

We collect vertices into sets called layers | = {I;}"’ j where n is the total number of layers. And |/;|
is the number of vertices in /;. They are numbered starting with the root as zero and successively

increasing the index with each connected vertex.
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Root Layer 1 Layer 2 Layer n

Each layer I; contains the vertices {vi,]-}ljlil where j € {1,...,|lj|]} is the index for vertices and

i €{0,...,n}is the index for layers. This indexing used for functions f; ; and distances d; ; such that

it matches the vertex at its right end-point.

For example, a regular tree graph that branches out to two vertices in each successive layer.

fn,l Un fn+1,1
,02,1 oo ' ;
fu2 Un2 frt12
° >
fus Un3 for13
° >
fua U a fr+14
° >

00,1

faoro1 Un2n-1 frs12n-1
| -

L P>
f n,2" Un,2m f n+1,21
® | g

We also group the connected vertices of any vertex v; ; into two sets: I (v; ;) for all connected
vertices in the next layer /; 1 and I~ (vi,j) for all connected vertices in the previous layer /;_;.
Before converting the vertex conditions to the form Af + Bf’ = 0 we arrange them according

to their layer in the order {n,n-1,...,1,0}, this causes the matrix (-AB* — BMB") to have the
following structure
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[Pn] [Qu] 0 0 0 0
[Qn]T [Pn—l] [Qn—l] 0 0 0
0 [Qn—l]T [Pn—Z] [Qn—z] 0 0
(-AB"-BMB") =| 0 0 [Qu-al” [Pus] ... 0 0|, (3.1)
0 0 0 0 ... [A] [Qi]
0 0 0 0 oo Q1] [Pol]

where [P;] contains the vertex information on the layer /;, [Q;] contains information on the connec-
tions of vertices between layers I; and [;_;. The 0 represent zero matrices. For each [P;] the internal

structure is given by

[pi,l] 0 0
py=| O e 0
0 0 ... [pipl

where [p; ;| are decided by the vertex conditions. We have arranged the vertex conditions in
a decreasing order of layers /; to take advantage of the tree structure as each vertex v; ; will only
be connected to one vertex in the previous layer 'l‘ (vi,j)| = 1. We define [Q;] := QY QF where
Q7] = [[%1] [qi2] - [qi,llil]/] where these [g; ;] are decided by the vertex conditions. Qf is a
matrix that contains information on how each vertex between the layers /; and [;_; are connected.
In Q¢ the rows represent the vertices of layer /; and the columns represent the vertices of layer
li-1. The ones at the intersection of these rows and columns mean that their respective vertices are

connected while the zeros represent no connection.

0i1 [ 1 0 ce 0
0i2
vz | 0 0 - 0
Ui |11-1 0 0 te 0
O L 0 0 cee 1
Ui-1,1 Ui-12 0 Uinl iy

We have arranged the vertex conditions in a decreasing order of layers /; to take advantage of

the tree structure as each vertex v;; will only be connected to one vertex in the previous layer
|l_(Z)i,]')| =1.
Consider the relation between the two layers shown in the following figure.
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Layer 1 Layer 2

The 5 for the connections between these two layers is given by the following matrix

mi[1 0 0]
022 1 0 0
3 |1 0 0
(Y 1 01
025 0 0 1
D26 | 0 0 1 ]
011 012 713
So the [Q>] in this case will be
[[321] 0 0]
[922] 0 0
Qs = [g25] 0 0
0 [g4] O
0 0 [q28]
| 0 0 [g26]]

In the following section we use this machinery specifically for the case of tree graphs where

each vertex is equipped with delta conditions.

3.2. The Delta Interaction Case. =~ We are considering the Laplace operator Ly , with delta in-
teractions (1.1) on its vertices. We start with the resultant matrix (—~AB* — BMB*) from (1.3). Its
follows the form in (3.1). The vertex information p; ; with delta vertex interactions consists of the

potentials and all the attached distances

pij = i+ dl',]'_l + Z dl'_H,r_l,
re(i)

where J(i) := {r such that v; 1, € I (v ;)}. The g; ; are given below

qi,j = —di,]'.
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We first demonstrate our result by applying Lemma 4 in [18] on (-AB* — BMB") for a simple
example of tree graph with three layers as shown in the figure below

f31
fo1 >
02,1
f32
>
02,2
o1 ‘f 33
>
02,3
f34

fo4

\ 4

024

The indexing of vertices matches with their preceding distance and function. The resultant
form (3.1) requires that the vertex interactions by arranged in the order {n,n-1,...,2,1,0}. The
arrangement of the vertices within the layer does not affect the resulting sequence just rearranges
their positions.

o fon(d21) = f31(0)
PN~y () + £, (0) = agafon (d21)
. f2(d22) = f32(0)
Layer? —f32(d22) + f3,(0) = 2222 (d22) /
o2 f23(d23) = f33(0)
"\ —fr5(d23) 4 £35(0) = azafoz (das)
o foa(d2a) = f34(0)
P\ ~fa (das) + £40) = azafoa (ds)

fii(di1) = f2,1(0)

011 ¢ f2,1 (0) = f2,2 (0)

—fi1(da) + f5,(0) + f5,(0) = a1 fi1 (di,1)
fi2(di2) = f23(0)

012 ¢ f2,3 (0) = f2,4 (0)

—fio(d12) + £55(0) + £, (0) = a12f12 (d12)

Layer1 :

0) = 0
Root : {8 v : , fir (, ) = f2(0) .
f1,1 (0) +f1,2 (0) = aO,lfl,l (0)
Now we compute the resultant matrix —AB* — BMB" from (1.3) for these vertex conditions after

converting them to the form Af + bf’ = 0 where M is the M-function for this case. The zero rows
and columns have already been removed.
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[ ay1+doyt 0 0 0 —dy1 ! 0 0
0 app+dyp™ 0 0 ~dyp7! 0 0
0 0 aps+dazt 0 0 —dp37! 0
0 0 0 agstdys™’ 0 —dpy”" 0
~dp 7 —dpp”! 0 0 api+dig " +doy  Hdypt 0 —dy ;7!
0 0 —dp5 ! —dyy”! 0 apt+dip ™ +dos !t +daat —dip!
0 0 0 0 —dy1 7" —dy 7" agr+dia T +dip!

Now we apply Lemma 4 in [18], to decompose this matrix to obtain the following sequence of

equations

-1

Vo1 =ap1+dy1,

_ d -1

V22 =az2+dz2 -,

_ d -1

Y23 = Qo3 +dz3 -,

_ d -1

Y24 = Q24 +d2s -,
_ -1 1 A 14 2 14 2
yin=a+diy Fdoy oy —yodan T = yy5dan
_ -1 . A 14 2 14 =2
Vig=ai2+dip +dos o =553 — g udaa

-1 -1 - 2 - -2
Yo1 =ao1+dia +dip —ydn T =y adio
For a regular tree graph where each vertex has 2 branches in the next layer, the x_ of Ly,

depends on the number of negative y; ; which are given by

-1
Vnj = Qnj+dyi ",

2j 2j
1 1 1 2
Vij=aij+dij + Z div1y — Z Virlr divie
r=2j-1 r=2j-1

2 2
1 1y -2
Y01 = Qo1 + Z di,” - Z Y1, diy
r=1 r=1

For a regular tree graph with ¢ number of branches emanating from each vertex, we have the

following result

-1
Ynj = @njtdni

cj cj
-1 -1 -1 -2
Vij = ij+dij o+ Z dit1, = Z Vitlr ditir
r=cj—(c-1) r=cj—(c-1)

701=a01+zd1r ZVlr di,

r=1
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The following is a general result for any metric tree
-1
ynrj - 0(71,]' + dTl,j ’

-1
Vij = @i +dij T+ Z dip1,”! Z Yie div1, 2
reJ(i,f) re](i,f)

Yo1 = Qo1+ Z di, " Z vy,

re](0,1) ref(0,1)
where (i, j) := {r such that v;; 1, € I (v; ;)} which returns the vertex index of the vertices attached

to v; j in the next layer. There also occur negative infinities

if ;=0 then Vicnjm = O

where J(i, j) := {t such that v;_1 ; € I”(v; ;)} which returns the vertex index of the vertices attached

to v; ; in the next layer.. The k_(Ly ) is equivalent to the number of negative y; ;.

K-(Lva) = k-(7)

where y = y; ; such thati € N U {0} and j € IN. Counting the number of negative entries in the

sequence will give you the k_(Ly ).

3.3. The Delta Prime Interaction Case.

We now consider the Laplace operator Lyg with delta prime interactions (1.2). The same
considerations form the general case apply. The sequence of the vertex conditions starts at the
largest layer and goes backwards.

The resultant matrix (—AB* — BMB"*) (1.3) in the delta prime case has the structure shown in (3.1)
along with the internal structure of P; and Q;. The general vertex information occupying is

! +d) d;] d; ] ~Bijd; |
d; i d- 1+d1+1r d;jl —Bid;;
[pij] = : : - : : ,
d;] d;] o di ] +d1+11r ~Bijd;}
—ﬁi,jd;} —ﬁi,jd;jl —/31,, l.,]. Bij— ﬁf}dz ]1

with {r1,72,...,7m} € J(i,j) where m is the number vertices in I (v; j)- And the connectivity
information in Q; is a matrix with the same number if rows as p; ; and the same number of columns

asp. It is given in the form

i-1,](i)"
—d7!
i,j
—d-1
i,j
[q:,j] = :
—d71
i,]
Bijd;

o o o o o
o o o o o
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where the all columns are zero other than one and this column aligns with the diagonal entry of

Piji

that contains dl‘]1

For the nth layer the diagonal entries of P, are

[Pn,]'] = {

and their connection information Q,,

We now apply Lemma 4 in [18] on the matrix (—~AB* — BMB*). Considering first the decompo-

sition of the entries of [P,,]

[qn,j] =

-1 -1
dn,j _ﬁ”rjdn,j }
-1 2 g-1
_ﬁ”rjdn,j ﬁ”/f - n,jdn,j
[0 —d 0]
Jj _
0 ﬁn,jd;lj 0

-1 —1 _ -1
dn,]. —ﬁn,jdn’]. d, ]1 0 0
-1 2 g-1 -
-_ﬁ”/jdn,j ﬁi’l,j - n,jdn,j- e ﬁn’jdl’l,j
- - - r -1 -1 -1
- dn,lj ‘Bn,]‘dn,lj dn—l,t + dn,]‘ _ﬁn_lftdn—l,t
0 0 : :
0 0 “_ﬁn_lftdr_zll,t Pt = ﬁi—l,tdr_zll,t-
where t € J(i, j). The result of this decomposition is y}lq 1= —d;ll and the matrix
[Bij] .. [ 0 0 0 ]
0 d;ﬂl,t _ﬁ”—lidil,t
0 : :
0 _ﬁ"—lffdil,t Pt — ﬁi—l,tdil,t

Applying the Lemma 4 in [18] on this matrix yields 7/%’1 = Bn,1 and the d;ll in the diagonal entry
Pn-1,j is removed. When all the elements of the layer n have been converted to sequences then the

tirst element p; ; in the next layer will have the following form



12

Int. . Anal. Appl. (2025), 23:162

-1 -1
o d
d:! d:!

i,j i,j

_R..A-1 _p .31
ﬁlf]di,] ﬁl/]di,]’
—d;! —d!

i,j ij

0 0

-1
—Bijd;

-1
—ﬁl,]di,]-

ﬁi,]’ _p2 d—l

il

-l
Bijd;

0

-1

_A4-1
d;]

—_A4-1
d;]

.. 4-1
Bijd;;

-1
i T di,]’

__,Bi—l,tdl‘__lllt

_;Bi—l,tdz‘__lllt

. _n2 -1
Pi-1 ﬁi—l,tdi—l,t-

Now we will apply Lemma 4 in [18] to this matrix. As the first element is decomposed the rest

of the vertex information is simplified to zeros. Giving us 7/111 = _di_ll and the matrix
It 0] 0 0
0 Bijl 0 0
I 7 -1 -1
0 0 45 —Pi-1pd
[0 0] -_ﬁi—lrfdi_—ll,t e Pimng - ﬁ?—l,tdi_—ll,t-

We remove all the rows and columns with zeros which gives us the following matrix

0

-1
di—l,t

_,Bi—l,tdl‘__lllt

_;Bi—l,tdz‘__lllt

. _p2 -1
i1 ﬁi—l,tdi—l,t

|

Decomposing this matrix once will return 7/12]. = Bi,j- Thus for every vertex there are two values
in our sequence dl.‘].l and B; ; out of which only the f; ; can be negative. Thus the x_(Ly ) is obtained
by counting the negative  potentials in the delta prime interactions (1.2)

k-(Lvg) = x-(B),

where g = {; j such thati € N U0 and j € IN}. The above equation holds for all tree graphs.
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