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HANKEL DETERMINANT FOR A CLASS OF ANALYTIC

FUNCTIONS RELATED WITH LEMNISCATE OF BERNOULLI

ASHOK KUMAR SAHOO1 AND JAGANNATH PATEL2,∗

Abstract. The object of the present investigation is to solve Fekete-Szegö

problem and determine the sharp upper bound to the second Hankel determi-

nant for a new class R̃ of analytic functions in the unit disk.

1. Introduction and preliminaries

Let A be the class of functions f of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
A function f ∈ A is said to be starlike of order ρ and convex of order ρ, if and

only if Re{zf ′(z)/f(z)} > ρ and Re{(1 + zf ′′(z))/f ′(z)} > ρ for 0 ≤ ρ < 1 and
z ∈ U . By usual notations, we write these classes of functions by S ?(ρ) and K (ρ),
respectively. We denote S ?(0) = S ? and K (0) = K , the familiar subclasses of
starlike and convex functions in U .

Further, we say that a function f ∈ A is in the class R(ρ), if it satisfies the
inequality:

(1.2) Re{f ′(z)} > ρ (z ∈ U)

We note that R(ρ) is a subclass of close-to-convex functions order
ρ(0 ≤ ρ < 1) in U . We write R(0) = R, the familiar class functions in A whose
derivatives have a positive real part in U .

A function f is said to be subordinate to a function g, written as f ≺ g, if
there exists a Schwarz function w with w(0) = 0 and |w(z)| < 1 such that f(z) =
g(w(z)), z ∈ U . In particular, if g is univalent in U , then f(0) = g(0) and f(U) ⊂
g(U).

Let P denote the class of analytic functions φ normalized by

(1.3) φ(z) = 1 + p1z + p2z
2 + · · · (z ∈ U)

such that Re{φ(z)} > 0 in U .
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Definition. A function f ∈ A is said to be in the class R̃, if it satisfies the
condition

(1.4)
∣∣∣(f ′(z))2 − 1

∣∣∣ < 1 (z ∈ U).

It follows from (1.4) and the definition of subordination that a function f ∈ R̃
satisfies the following subordination relation

(1.5) f ′(z) ≺
√

1 + z (z ∈ U).

To bring out the geometrical significance of the class R̃, we set

h(z) =
√

1 + z, z ∈ U

and note that

ω = h(eiθ) =
√

1 + eiθ (0 ≤ θ ≤ 2π).

which yields ω2 − 1 = eiθ or |ω2 − 1| = 1. Letting ω = u+ iv, we deduce that

(u2 + v2)2 = 2(u2 − v2).

Thus, h(U) is the region bounded by the right half of the lemniscate of Bernoulli
given by

{
u+ iv ∈ C : (u2 + v2)2 = 2(u2 − v2)

}
, which implies that the derivative

of functions in R̃ have a positive real part and hence univalent in U [1].
Noonan and Thomas [12] defined the q-th Hankel determinant of the function f ,

given by (1.1) by

(1.6) Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1, n, q ∈ N).

The determinant given in (1.6) has been studied by several authors with the
subject of inquiry ranging from the rate of growth of Hq(n) (as n→∞) [13] to the
determination of precise bounds with specific values of n and q for certain subclasses
of analytic functions in the unit disc U .

For n = 1, q = 2, a1 = 1 and n = q = 2, the Hankel determinant simplifies
to H2(1) = |a3 − a22| and H2(2) = |a2a4 − a23|. We refer to H2(2) as the second
Hankel determinant. It is known [1] that if the function f , given by (1.1) is analytic
and univalent in U , then the sharp inequality H2(1) = |a3 − a22| ≤ 1 holds. For a
family F of functions in A of the form (1.1), the more general problem of finding
the sharp upper bounds for the functionals |a3−µa22| (µ ∈ R or µ ∈ C) is popularly
known as Fekete-Szegö problem for the class F . The Fekete-Szegö problem for the
known classes of univalent functions, starlike functions, convex functions and close-
to-convex functions has been completely settled ([2], [5], [6], [7]). Recently, Janteng
et al. [3, 4] have obtained the sharp upper bounds to the second Hankel determinant
H2(2) for the family R. For initial work on the class R one may refer to the paper
by MacGregor [11].

In our present investigation, by following the techniques devised by Libera and
Zlotkiewicz [8, 9], we solve the Fekete-Szegö problem and also determine the sharp

upper bound to the second Hankel determinant H2(1) for the class R̃.
To establish our main results, we shall need the followings lemmas.
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Lemma 1.1. Let the function φ, given by (1.3) be a member of the class P. Then

(1.7) |pk| ≤ 2 (k ≥ 1)

and

(1.8)
∣∣p2 − ν p21∣∣ ≤ 2 max{1, |2ν − 1|}.

The estimate (1.7) is sharp for the function ϕ(z) = (1+z)/(1−z), z ∈ U , whereas the
estimate (1.8) is sharp for the functions given by ϕ and ψ(z) = (1+z2)/(1−z2), z ∈
U .

We note that the estimate (1.7) is contained in [1] and the estimate (1.8) is
obtained in [10].

Lemma 1.2 ([9],see also [8]). If the function φ, given by (1.3) belongs to the class
P, then

(1.9) p2 =
1

2

{
p21 + (4− p21)x

}
and

(1.10) p3 =
1

4

{
p31 + 2(4− p21)p1x− (4− p21)p1x

2 + 2(4− p21)(1− |x|2)z
}

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

2. Main results

Now, we determine an upper bound for the Fekete-Szegö problem of the class

R̃.

Theorem 2.1. If the function f , given by (1.1) belongs to the class R̃, then for
any µ ∈ C

(2.1) |a3 − µa22| ≤
1

6
max

{
1,
|2 + 3µ|

8

}
.

The estimate in (2.1) is sharp.

Proof. From (1.5), it follows that

(2.2) f ′(z) =
√

1 + w(z) (z ∈ U),

where w is analytic and satisfies the condition w(0) = 0 and |w(z)| < 1 in U .
Setting

(2.3) χ(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + · · · (z ∈ U),

we see that χ ∈P. From (2.3), we get

(2.4) w(z) =
χ(z)− 1

χ(z) + 1
(z ∈ U)

so that by (2.2) and (2.4), we get

(2.5) f ′(z) =

(
2χ(z)

1 + χ(z)

) 1
2

(z ∈ U).
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Now, by substituting the series expansion of χ from (2.3) in (2.5), it is easily seen
that (

2χ(z)

1 + χ(z)

) 1
2

= 1 +
1

4
p1z +

(
1

4
p2 −

5

32
p21

)
z2 +

(
1

4
p3 −

5

16
p1p2 +

13

128
p31

)
z3 + · · · .(2.6)

Differentiating the series expansion of f given by (1.1) with respect to z and com-
paring the coefficients of z, z2 and z3 in (2.6), we deduce that

a2 =
1

8
p1(2.7)

a3 =
1

12

(
p2 −

5

8
p21

)
(2.8)

a4 =
1

16

(
p3 −

5

4
p1p2 +

13

32
p31

)
.(2.9)

Thus, by using (2.7) and (2.8), we get

(2.10)
∣∣a3 − µa22∣∣ =

1

12

∣∣∣∣p2 − 1

16
(10 + 3µ)p21

∣∣∣∣
The expression in (2.10) with the aid of (1.8) yields the required estimate (2.1).

The estimate in (2.1) is sharp for the function f0 ∈ A defined by

(2.11) f ′0(z) =

{√
1 + z2, |2 + 3µ| ≤ 8√
1 + z, |2 + 3µ| > 8.

This completes the proof of Theorem 2.1. �

Letting µ = 0(or µ = 1 respectively) in Theorem 2.1, we get

Corollary 2.1. If the function f , given by (1.1) belongs to the class R̃, then

|a3| ≤
1

6
and |a3 − a22| ≤

1

6
.(2.12)

The estimates in (2.12) are sharp for the function f0 ∈ A defined by

(2.13) f ′0(z) =
√

1 + z2 (z ∈ U).

If µ ∈ R, then Theorem 2.1 reduces to

Corollary 2.2. Let µ ∈ R. If the function f , given by (1.1) belongs to the class

R̃, then

(2.14)
∣∣a3 − µa22∣∣ ≤


−2 + 3µ

48
, µ ≤ −10

3
1

6
, −10

3
≤ µ ≤ 2

2 + 3µ

48
, µ > 2.

The estimates in (2.14) are sharp.
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Proof. First, we assume that µ < −10/3. Then, (2+3µ)/8 < −1 so that |2+3µ|/8 >
1. Hence by using (2.1), we get

(2.15) |a3 − µa22| ≤
|2 + 3µ|

48
= −2 + 3µ

48
.

Next, if −10/3 ≤ µ ≤ 2, then |2 + 3µ| ≤ 1 so that

(2.16) |a3 − µa22| ≤
1

6

again by the use of (2.1). Finally, if µ > 2, then (2 + 3µ)/8 > 1. Thus, by (2.1)

(2.17) |a3 − µa22| ≤
2 + 3µ

48
.

The estimates are sharp for the function f1 defined in U by f ′1(z) =
√

1 + z,
for µ < −10/3 or µ > 2, and for the function f0 given by (2.13) in the case
−10/3 ≤ µ ≤ 2. �

In the following theorem, we find the sharp upper bound to the second Hankel

determinant for the class R̃.

Theorem 2.2. Let the function f , given by (1.1) be a member of the family R̃.
Then

(2.18)
∣∣a2a4 − a23∣∣ ≤ 1

36
.

The estimate in (2.18) is sharp.

Proof. From (2.7), (2.8) and (2.9), we have∣∣a2a4 − a23∣∣ =

∣∣∣∣ 1

128

(
p1p3 −

5

4
p21p2 +

13

32
p41

)
− 1

144

(
p22 −

5

4
p21p2 +

25

64
p41

)∣∣∣∣
=

1

16

∣∣∣∣18p1p3 − 5

288
p21p2 −

1

9
p22 +

17

2304
p41

∣∣∣∣ .(2.19)

Since the function χ, given by (2.3) and the function χ(eiθz) (θ ∈ R) are in the
class P simultaneously, we assume without loss of generality that p1 > 0. For
convenience of notation, we write p1 = p (0 ≤ p ≤ 2). Now, by using Lemma 2.2 in
(2.19), we get∣∣a2a4 − a23∣∣

=
1

16

∣∣∣∣( 1

32
p4 +

1

16
(4− p2)p2x− 1

32
(4− p2)p2x2 +

1

16
(4− p2)p(1− |x|2)z

)
−
(

5

576
p4 +

5

576
(4− p2)p2x

)
−
(

1

36
p4 +

1

18
(4− p2)p2x+

1

36
(4− p2)2x2

)
+

17

2304
p4
∣∣∣∣

=
1

16

∣∣∣∣ 5

2304
p4 − 1

576
(4− p2)p2x− 1

288
{8(4− p2) + 9p2}(4− p2)x2

+
1

16
(4− p2)p(1− |x|2)z

∣∣∣∣
(2.20)
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for some x (|x| ≤ 1) and for some z (|z| ≤ 1). Applying the triangle inequality in
(2.20) and replacing |x| by y in the resulting equation, we get∣∣a2a4 − a23∣∣ ≤ 1

16

{
5

2304
p4 +

1

576
(4− p2)p2y

+
1

288
(4− p2)(2− p)(16− p)y2 +

1

16
(4− p2)p

}
= G(p, y) (0 ≤ p ≤ 2, 0 ≤ y ≤ 1) (say).(2.21)

We next maximize the function G(p, y) on the closed rectangle [0, 2]× [0, 1]. Differ-
entiating the function G, given in (2.21) with respect to y, we deduce that

(2.22)
∂G
∂y

=
1

9216
(4− p2)p2 +

1

2304
(4− p2)(2− p)(16− p)y > 0

for 0 < p < 2 and 0 < y < 1. Thus, in view of (2.22), the function G(p, y) cannot
have a maximum in the interior on the closed rectangle [0, 2]× [0, 1]. Therefore, for
fixed p ∈ [0, 2]

(2.23) max
0≤y≤1

G(p, y) = G(p, 1) = F (p) (say),

where

F (p) =
1

16

{
5

2304
p4 +

1

576
(4− p2)p2

+
1

288
(4− p2)(2− p)(16− p) +

1

16
(4− p2)p

}
(0 ≤ p ≤ 2).(2.24)

On differentiating the function F , given by (2.24) followed by a simple calculation
yields

F ′(p) = − 1

9216
(7p2 + 104)p < 0 which implies that the function F is a decreasing

function of p so that max0≤p≤2 F (p) occurs at p = 0. Thus, the upper bound in
(2.21) corresponds to p = 0 and y = 1 from which we get the required estimate
(2.18).

Equality holds in (2.18) for the function f0 ∈ A , given by (2.13) and the proof
of Theorem 2.2 is thus completed. �

Next, we determine the upper bound for the fourth coefficient of functions be-

longing to the class R̃.

Theorem 2.3. If the function f , given by (1.1) belongs to the class R̃, then

(2.25) |a4| ≤
1

8
and the estimate is sharp.

Proof. Using Lemma 1.1 in (2.9) and following the lines of proof of Theorem 1.2,
we deduce that

|a4| ≤
1

32

{
p3

16
+

(4− p2)p

2
y +

(4− p2)p

2
y2 + (4− p2)(1− y2)

}
=

1

32

{
p3

16
+

(4− p2)p

2
t+

(4− p2)(p− 2)

2
t2 + (4− p2)

}
= G(p, t) (say),(2.26)
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where p ∈ [0, 2] and y ∈ [0, 1]. We next maximize the function G(p, y) on the closed
rectangle [0, 2]× [0, 1]. Suppose that the maximum of G occurs at the interior point
of [0, 2]× [0, 1]. Differentiating the function G with respect to y, we get

∂G

∂y
=

1

128
(4− p2){p+ 4(p− 2)y}.

For y ∈ (0, 1) and fixed p ∈ (0, 2), it is easily seen that
∂G

∂y
> 0, which shows that

G is a decreasing function of y contradicting our assumption. Therefore,

(2.27) max{G(p, y)}0≤y≤1 = G(p, 0) =
1

32

{
p3

16
+ (4− p2)

}
= F (p) (say).

From (2.27), we have

F ′(p) =
1

32

{
3

16
p2 − 2p)

}
and

F ′′(p) =
1

32

{
3

8
p− 2)

}
< 0

for p = 0. This implies that F attains its maximum at p = 0. Hence, we get the
required result.

The estimate in (2.25) is sharp for the function f ∈ A , defined by

f ′(z) =
√

1 + z3 (z ∈ U).

�
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