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Abstract. In this paper, we study the geometry of moving spacelike curves in the three-dimensional de Sitter space

S3
1. Then, the evolution equations of the pseudo-orthonormal frame and the curvatures for these curves are derived.

Moreover, some conditions for an inelastic curve flow in S3
1 are presented. Finally, interesting illustrative examples of

the obtained results are given and plotted.

1. Introduction

One of the important topics related to curves is the geometry of curves evolution. It is a quite area

of the differential geometry which deals with curves where the time plays the fundamental rule.

Geometrically, curves evolution means that deforming a curve into another curve in a continuous

manner. When we study some properties of curves in R3, we find some links between the

geometry of the studied curves and integrable equations [1]. Such this study has been considered

by Lamb [2] who introduced a formalism in which certain exceptional kinds of movement of curves

can be planned to be completely integrable, solution-supporting [1], nonlinear partial differential

equations (NLPDEs) such as the nonlinear Schrödinger (NLS) equation, the Sine-Gordon equation,

the Hirota equation, the modified kdv equations, etc., indicating that the corresponding curve

motions are also integrable. This formalism arose as an extension of Hasimoto’s earlier work

[3]. After the work of Hasimoto’s, some interesting classes of moving space curves in a three-

dimensional space with soliton equations have been investigated [4, 5]. The analysis is extended

to more general types of motion and other integrable systems [6, 7]. For more details, one can

see [8–16].
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In this work, we shall present a study of evolving spacelike curves in de Sitter 3−space S3
1 to

illustrate their behaviors during the evolution process.

The outline of this paper is as follows: In section 2, we have information about the Lorentzian

differential geometry of spacelike curves in S3
1. Section 3 describes the motion for the considered

model and provides some conditions for an inelastic curve flow in S3
1 that represent the main

results. Section 4 is devoted to some examples as an application of our main results. Finally,

section 5 contains conclusion.

2. Basic Notions of de Sitter Space S3
1

We start with a brief review for some basic concepts related to the theory of curves in Minkowski

4−space in for later use, for more details see [17].

Let E4
1 be Minkowski 4-space with the metric of signature (−,+,+,+). We say that a non-zero

vector v ∈ E4
1 is spacelike, lightlike (null) or timelike if 〈v, v〉 > 0, 〈v, v〉 = 0 or 〈v, v〉 < 0, respectively.

In the light of this, we can define the signature of a vector v as:

sign(v) =


1 v is spacelike,

0 v is lightlike,

−1 v is timelike.

Similarly, an arbitrary curve r = r(s) : I −→ E4
1 can locally be spacelike, timelike or null, if all of

its velocity vectors r′(s) are, respectively spacelike, timelike or null. So, r(s) is a unit speed curve

if 〈r′(s), r′(s)〉 = 1, where s is the arc length parameter of r and dash ′ = d
ds . Two vectors v and

w ∈ E4
1 are called orthogonal if 〈v, w〉 = 0. The norm ‖ v ‖ of v ∈ E4

1 is defined as ‖ v ‖=
√
| 〈v, v〉 |.

We define the de Sitter 3-space (deS) of constant sectional curvature in E4
1 by

deS = S3
1 = {< x, x >= 1 : x ∈ E4

1}. (2.1)

For any x1, x2, x3 ∈ E4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣
−e1 e2 e3 e4

x1
1 x2

1 x3
1 x4

1

x1
2 x2

2 x3
2 x4

2

x1
3 x2

3 x3
3 x4

3

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where {e1, e2, e3, e4} is the canonical basis of E4
1. This vector is pseudo- orthogonal to any xi(i =

1, 2, 3).

Let us consider r : I ⊂ R→ S3
1 be a spacelike unit speed curve in S3

1. So we have the tangent vector

T(s) = dr
ds with ‖ T(s) ‖= 1. In the case when 〈 dT

ds , dT
ds 〉 , 1, we can define a unit spacelike vector

P(s) by

P(s) =
T′(s) + r(s)
‖ T′(s) + r(s) ‖

,

and call it principal normal vector of r. Moreover, we define a vector Q(s) = r∧ T∧ P and call it

binormal vector of r.
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In this situation, we have a pseudo-orthonormal frame {r(s), T(s), P(s), Q(s)} of E4
1 along r. The

vector T is a spacelike vector and tangent to each of r(s) and S3
1. On the other hand, since T is a

unit spacelike vector, its derivative dT
ds will be normal to T. The remaining vector Q of the pseudo-

orthonormal frame is taken as a timelike vector. Depending on the causal character of the vectors

T, P and Q, we have

〈T, T〉 = 〈P, P〉 = 1, 〈Q, Q〉 = −1, 〈T′, T′〉 > 1,

and all the other products vanish. By the standard arguments, under the above assumption that

〈
dT
ds , dT

ds 〉 > 1, we have the following Frenet formulas that describe the geometry of the differentiable

curve r(s) in S3
1 as

r′(s) = T(s),
T′(s) = −r(s) + κg(s)P(s),

P′(s) = κg(s)δ(r(s))T(s) + τg(s)Q(s),
Q′(s) = τg(s)P(s),


(2.3)

where δ(r(s)) = −sign (P(s)). As P(s) is spacelike, we have δ(r(s)) = −1.

The functions κg(s) and τg(s) are defined to be the geodesic curvature and the geodesic torsion

scalars of the curve r(s), respectively, where

κg(s) =‖ T′(s) + r(s) ‖, (2.4)

τg(s) = −
δ(r(s))
κ2

g(s)
det(r(s), r′(s), r′′(s), r′′′(s)),κg(s) =‖ T′(s) + r(s) ‖> 0. (2.5)

Note that the condition 〈dT
ds , dT

ds 〉 > 1 is equivalent to the condition κg(s) , 0. In the rest of the paper,

we suppose everywhere that κg =‖ T′(s) + r(s) ‖> 0 and τg , 0. In a matrix form, Eqs. (2.3) can

be written as

Ωs = E ·Ω, (2.6)

where

Ω =


r
T
P
Q

 and E =


0 1 0 0

−1 0 κg(s) 0

0 −κg(s) 0 τg(s)
0 0 τg(s) 0

 . (2.7)

3. Geometry of inelastic flow of spacelike curves

In this section, we study the motion of spacelike curves in the three-dimensional de Sitter space

to establish the kinematics of these curves in terms of their intrinsic geometric formulas.

We assume that r = r(u) : I ⊂ R → S3
1 is a differentiable spacelike curve parameterized by an

arbitrary parameter u ∈ I moving in the de Sitter 3−space S3
1. Let r be given at any second in time

t by the position vector r = r(u, t), with initial curve ro = r(u, 0). The time parameter t is the

parameter for the deformation r(u, t) of the curve.
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The metric on r(u, t) is expressed as

g(u, t) = 〈ru, ru〉; ru =
∂r
∂u

. (3.1)

Further, the arc length of the moving curve r of metric g(u, t) is given by

s(u, t) =
∫ L

0

√
〈ru, ru〉 du =

∫ L

0

√
g du,

∂
∂s

=
1
√

g
∂
∂u

, su =
√

g, (3.2)

where
√

g =
√
〈ru, ru〉. Thus the element of arc length is ds =

√
g(u, t) du. With this metric, when

the curve is given as r = r(s(u, t)), then Eq. (2.6) can be written as

Ωu =
√

g E ·Ω, (3.3)

where Ω and E are given as in Eq. (2.7).

The requirement that the curve not be subject to any elongation or compression can be expressed

by the condition:

st(u, t) =
∫ u

0

∂
∂t

√
g(%, t) d% = 0, % ∈ [0, u], u ∈ [0, umax]. (3.4)

The change (motion) of the curve with respect to the parameter t is specified by the velocity fields:

rt = λT(u, t) + µP(u, t) + νQ(u, t), (3.5)

where λ,µ, ν are the tangent, normal and bi-normal of rt velocities.

To study the motion of the considered curve r which described by the three functions µ, ν and λ,

we seek to get the partial differential equations (PDEs), which describe the evolution of the frame

and the curvatures of the evolving curve. Each choice of these functions gives a different class of

curves in S3
1.

Remark 3.1. The derivatives with respect to u and t commute; whereas the derivatives with respect to s and
t in general do not commute.

For this study it is important to give the following definition.

Definition 3.1. The curve r(u, t) is said to be inelastic curve if its length is preserved, i.e., it doesn’t evolve
in time. Then, we have

st = 0, i.e., gt = 0. (3.6)

3.1. The time evolution of metric and length. For a given spacelike curve in S3
1 we calculate the

evolution equations for its metric and the length of the curve. Our results can be stated as follows:

Proposition 3.1. Let r = r(u, t) be a unit speed spacelike curve with κg , 0, moving in S3
1. Then the

evolution equation for the metric g of r is given by

gt = 2g(λs − µκg(s)). (3.7)
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Proof. Since u and t are independent coordinates, for the derivatives in u amd t to commute, the

congruence of curves r(u, t) must form a regular surface of type C2, so that the Schwarz theorem

can be applied. So, by differentiating Eq. (3.1), we have

gt =
∂
∂t
〈ru, ru〉 = 2〈ru,

∂
∂t

ru〉 = 2g〈rs,
∂
∂s

rt〉

= 2g〈rs, (λT + µP + νQ)s〉.

Frenet equations together with the last expression for the gt allow us to obtain

gt = 2g〈T, [(λs − µκg)T + Θ]〉,

where

Θ = −λr + (µs + λκg + ντg)P + (νs + µτg)Q.

Therefore, we get

gt = 2g(λs − µκg).

Hence, the result is clear. �

Proposition 3.2. Suppose that r : I ⊂ R→ S3
1 is a unit speed spacelike curve with 〈 dT

ds , dT
ds 〉 > 1, then the

time evolution of the arc length of r is given by

Lt =

∫ L

0
(λs − µκg) ds, s ∈ [0, L]. (3.8)

Proof. Since,

L(t) =
∫ umax

0

√
g(u, t) du =

∫ L

0
ds,

so, by differentiating concerning time the last integral definition and using Eq. (3.7) and Eq. (3.9),

we obtain

Lt =

∫ umax

0

∂
∂t
(
√

g(u, t) du =

∫ umax

0

gt(u, t)

2
√

g(u, t)
du =

∫ L

0
(λs − µκg) ds, (3.9)

where ds =
√

g(u, t) du, then the proof is completed. �

In the light of Proposition 3.2, we can present the following result which is the main result of

this work.

Theorem 3.1. Let ∂r
∂t be a smooth flow of r(u, t) in S3

1. Then, the flow of the curve is inelastic if and only if

λs = µκg. (3.10)

Proof. Firstly, let the curve be an inelastic, then from Eq. (3.2), the time variation of the arc length

is

st =

∫ umax

0

gt

2
√

g
du. (3.11)

Substituting from Eq. (3.7) into Eq. (3.11), we find

Lt =

∫ L

0
(λs − µκg)ds.
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According to Definition (3.1), we get

λs = µκg.

Secondly, the argument can be reversed by direct computation to show sufficiency, completing the

proof. �

3.2. The time evolution for curve frame and curvatures.

Theorem 3.2. Let r(u, t) be an elastic spacelike curve in the de Sitter space S3
1. Then

(i) The time evolution equations of the pseudo-orthonormal frame of the curve can be expressed in a matrix
form

Ωt = F ·Ω, (3.12)

where F is the evolution matrix and Ω is the frame matrix, they are given by

F =


0 λ µ ν

−λ 0 α β

−µ −α 0 Γ

ν β Γ 0

 , Ω =


r
T
P
Q

 ,

Taking into account:

α = µs + λκg + ντg, β = νs + µτg,

Γ =
1
κg

(βs + ατg + ν).

(ii) The time evolution equations of r(u, t) satisfy the following matrix equation κg

τg


t

=

 −gt
2g β

β
−gt
2g


 κg

τg

+  αs + µ

Γs

 . (3.13)

Proof. Since the unit tangent vector T = 1
√

g
dr(u)

du , then

rut = (
√

g T)t =
√

g (
gt

2g
T + Tt), (3.14)

where we used ∂u =
√

g ∂s. On the other side, we have

rtu =
√

g rts =
√

g[−λr + (λs − µκg)T + αP + βQ], (3.15)

where α and β are as in the above.

The following compatibility condition of Eqs. (3.14) and (3.15),

∂
∂t

ru =
∂
∂u

rt, (3.16)

gives rise to the following equations:

Tt = −λr + αP + βQ,

gt = 2g(λs − µκg). (3.17)



Int. J. Anal. Appl. (2025), 23:130 7

The second equation of (3.17) is the same as we have obtained in Eq. (3.7).

Later on, by differentiating the second equation of (2.3) concerning time t, furthermore, change

the s−derivatives into u−derivatives through ∂u =
√

g ∂s, we acquire

g−
1
2 Tut = [−

gt

2g
r− λT + ((−µ+ (κg)t +

gt

2g
κg))P− νQ + κgPt]. (3.18)

Using the commutativity between derivatives, then substituting Tt from Eq. (3.17), and utilizing

again Frenet frame, we find

g−
1
2 Ttu = [−λsr + (−λ− ακg)T + (αs + βτg)P + (βs + ατg)Q]. (3.19)

By recognizing of Eqs. (3.18) and (3.19) and using Eq. (3.7), we get

Pt = −µr− αT + ΓQ, (3.20)

and

(κg)t = αs + βτg + µ−
gt

2g
κg. (3.21)

Likewise, we are going to obtain the time evolution equations for the bi-normal vector Q and the

geodesic torsion τg of r as follows:

Since Q(s) = r(s)∧T(s)∧ P(s), then we have

Qt = rt ∧T∧ P + r∧Tt ∧ P + r∧T∧ Pt. (3.22)

By using Eqs. (3.5), (3.17) and (3.20) and substituting in Eq. (3.22)

Qt = νr + βT + ΓP. (3.23)

The compatibility condition: Qtu = Qut, where

Qtu =
√

g[(νs − β)r + (ν+ βs − Γκg)T + (βκg + Γs)P + ΓτgQ], (3.24)

and

Qut =
√

g[−µτgr− ατgT + ((τg)t +
gt

2g
τg)P + ΓτgQ], (3.25)

leads to

(τg)t = βκg + Γs −
gt

2g
τg, (3.26)

Eqs. (3.17), (3.20), (3.21), (3.23) and (3.26) give the required result and complete the proof. �

The following lemma is clear from Theorem 3.2.

Lemma 3.1. Let r(u, t) be an inelastic spacelike curve in S3
1, then the evolution equations for the κg(s) and

τg(s) of r are given by  κg

τg


t

=

 0 β

β 0

  κg

τg

+  αs + µ

Γs

 . (3.27)

Proof. Because the curve is inelastic, gt = 0 i.e., λs − µκg = 0. Then, Eq. (3.13) together Definition

3.1 complete the proof. �



8 Int. J. Anal. Appl. (2025), 23:130

3.3. Zero curvature condition. In this subsection, we discuss an interesting property for spacelike

curves r(s, t) in S3
1, so called the linear problem integrability of Eqs. (2.6) and (3.12), and we are

considered that in the following theorem.

Theorem 3.3. Let r(s, t) be an inelastic spacelike curve in S3
1 and Ω be Frenet matrix that satisfies Eqs.

(3.3) and (3.12). Then, we have the integrability condition:

Et − Fs + [E, F] = 0, (3.28)

where

[E, F] = E · F− F · E,

is the Lie bracket of E and F.

Proof. Let {r, T, P, Q} be the pseudo-orthonormal frame of the given inelastic curve r such that the

frame satisfies Eqs. (3.3) and (3.12). Since r is inelastic, so (gt = 0) and the ordering of derivatives

commute, i.e.,
∂
∂t

Ωu =
∂
∂u

Ωt. (3.29)

By differentiating Eq. (3.3) with respect to t and (3.12) with respect to u and using gt = 0, we get

respectively,

Ωut =
√

g(Et + E · F) ·Ω, (3.30)

Ωtu =
√

g(Fs + F · E) ·Ω. (3.31)

By means of the obtained equations, the theorem holds. �

Lemma 3.2. According to Theorem 3.3, if the integrability condition of Eq. (3.28) is satisfied, then there
exists a system as a partial differential equation (PDE) can be derived as follows:

As we mentioned above, the matrices E and F are

E =


0 1 0 0

−1 0 κg(s) 0

0 −κg(s) 0 τg(s)
0 0 τg(s) 0

 and F =


0 λ µ ν

−λ 0 α β

−µ −α 0 Γ

ν β Γ 0

 . (3.32)

The t derivative of E and the s derivative of F are respectively, given by

Et =


0 0 0 0

0 0 (κg)t 0

0 (−κg)t 0 (τg)t

0 0 (τg)t 0

 and Fs =


0 λs µs νs

−λs 0 αs βs

−µs −αs 0 Γs

νs βs Γs 0

 . (3.33)

Thus the Lie bracket [E, F] is obtained

[E, F] =
[
ai j

]
, i, j = 1, 2, 3, 4, (3.34)
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where

aii = 0 for all i,

a12 = µκg, a13 = z1 − λκg + ντg(s), a14 = z2 − µτg,

a21 = −µκg, a23 = −µ− z2τg, a24 = −ν+ Γκg − z1τg,

a31 = λκg − ντg − z1, a32 = −z2τg + µ, a34 = −z2κg,

a41 = −µτg − z2, a42 = −z1τg + ν+ Γκg, a43 = z2κg.

Substituting from Eqs. (3.32), (3.33) and (3.34) in Eq. (3.28), then the required system is achieved.

4. Applications

We consider the motion of an inelastic spacelike curve in S3
1 (see Figure 1), to give some examples

of time evolution equations for this one. Different choices for the tangent, normal and bi-normal

components of the curve velocities will be considered to give various sorts of nonlinear equations

in terms of the geodesic curvatures of the curve.

Figure 1. A spacelike curve in S3
1 (de Sitter space described by the hyperboloid of

one sheet).

Example 4.1. Consider an inelastic spacelike curve r(s, t) in S3
1. If we choose the tangential component

of the curve velocity with A = λ = const., 0, zero normal component µ = 0, and bi-normal component
ν = κg(s, t) +A, then the dynamical equations for the geodesic curvature and the geodesic torsion are given
by

(κg)t = (A + 2τg)(κg)s + (κg + A)(τg)s,

(τg)t = −κg(κg)s +
∂
∂s

[
1
κg

(1 + τ2
g)(κg + A) + Aτg +

(κg)ss

κg
].
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The solution of these PDEs is

κg(s, t) = −A,

τg(s, t) = c3 + c4 sech(
c1s
A

+ c1t + c2),

where c1, c2, c3 and c4 are constants. The time evolution of the geodesic curvatures for s ∈ [0, 7], t ∈
[0, 3], A = 0.4, c1 = 1.2, c2 = 1.1, c3 = 1.3 and c4 = 1.6., are shown in Figures (2a, 2b).

(a) (b)

Figure 2. (a) The time evolution of κg(s, t), (b) The time evolution of τg(s, t).

Example 4.2. Let r(s, t) be an inelastic spacelike curve in S3
1. Another possible choice for the tangential,

normal and bi-normal velocities is given as follows:

λ = A, µ = 0, ν =
κg(s,t)

A , the differential equations for κg and τg are obtained as follows:

(κg)t = κg(τg)s + 2τg(κg)s,

(τg)t = −κg(κg)s +
∂
∂s

[(1 + τ2
g) +

(κg)ss

κg
],

and the resulting solution equations for (κg)t and (τg)t are

κg(s, t) = 2c1tanh(c1s + c2t + c3),

τg(s, t) =
A(−c1A + c2)

2c1
,

where c1, c2, c3 are constants. The time evolution of the geodesic curvatures for s ∈ [0, 5], t ∈ [0, 4],

A = 0.8, c1 = 1.3, c2 = 1.5 and c3 = 1.7, are shown in Figures (3a, 3b).
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(a) (b)

Figure 3. (a) The time evolution of κg(s, t), (b) The time evolution of τg(s, t).

Example 4.3. For a given an inelastic spacelike curve r(s, t) in de Sitter S3
1, choose λ = s and µ = ν = 0,

we obtain the equations:
(κg)t = s(κg)s,

(τg)t =
∂
∂s

(sτg).

They have the solutions:

κg(s, t) = c1(t + ln s),

and

τg(s, t) =
c1(t + ln s)

s
,

respectively, where c1 is a constant. The time evolution of the geodesic curvatures for s ∈ [1, 4], t ∈
[0, 2.5] and c1 = 1.9, are shown in Figures (4a, 4b).

(a) (b)

Figure 4. (a) The time evolution of κg(s, t), (b) The time evolution of τg(s, t).
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5. Conclusion

The study of curves in Lorentz geometry represents one of the important subjects, where the

curves have interesting uses in many fields such as computer vision, robotics and physical science.

This paper aims at studying a special type of curves, namely spacelike curves in de Sitter 3-space.

Then, a set of partial differential equations that characterize the time evolution equations of the

meant curves has been derived. Necessary and sufficient conditions, such as the curve flow is

inelastic and the integrability conditions for the evolutions, have been obtained. Finally, some

examples of motions of inelastic spacelike curves have been given and plotted.

In future works, we plan to study the geometry of moving spacelike and timelike curves in

different spaces for some queries and further improve the results in this paper, combined with the

techniques and results in [18–24].

Conflict of Interests: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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