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Abstract. In this paper, we introduce one of the spherical images of a regular curve by translating Frenet frame vectors

to the center of the unit sphere (Lorentizian sphere) of the Euclidean 3-space E3 (pseudo-Euclidean 3-space E1,2).

Especially, Frenet formulas for the normal spherical image of a regular curve can be obtained in terms of spinors. As a

result of this study, we found that Frenet equations for that one can be simplified to a single equation with two complex

components. Finally, interesting illustrative examples of the obtained results are given and plotted.

1. Introduction

Clifford Algebra is a significant subject across various disciplines. Geometry and its related

aspects of mathematics, as well as other subjects, undoubtedly warrant further discussion. In

mathematics, spin representations are specific types of projective representations associated with

orthogonal or special orthogonal groups in any dimension. Although they are typically explored

using real or complex numbers, they can also be formulated over other mathematical struc-

tures [1, 2]. The elements of a spin representation, known as spinors, were first introduced in a

geometric context by the French mathematician E. Cartan in 1913, [3]. He represented spinors,

consisting of two complex components, using vectors in three-dimensional Euclidean space. Addi-

tionally, P. Ehrenfest coined the term "spinors" in his research on quantum physics [4]. W. Pauli later

introduced spin matrices and was the first to apply spinors in mathematical physics. Subsequently,

P. A. M. Dirac established the relationship between spinors and the Lorentz groups. Subsequently,

physicists determined that spinors are essential for defining the inherent angular momentum,

or spin, of electrons and other subatomic particles within the realm of Quantum Mechanics. In

geometry and physics, spinors are elements of a complex vector space that are associated with
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Euclidean space. Similar to geometric vectors or, more broadly, tensors, spinors undergo linear

transformations when Euclidean space experiences an infinitesimal rotation, and this property is

what defines spinors. In the present time, spinors have a broad range of applications, especially

in the fields of physics and mathematics, particularly in the theory of relativity. [2, 3, 5, 6]. Several

researchers [7–9] have explored the connection between spinors and orthogonal triads of vectors

refers to how spinors can represent or encode sets of three mutually perpendicular vectors. for

certain curves using their Frenet formulas in both Euclidean and semi-Euclidean spaces. Addition-

ally, in [10], Şenyurt formulated spinor representations of the Serret-Frenet formulae for a curve

based on the Sabban frame. Furthermore, Abdel-Aziz investigated spinor representations of the

Frenet and Darboux equations within three-dimensional pseudo-Galilean space [11]. Moreover,

in [12], the authors introduced a novel approach to hyperbolic spinor b−Darboux equations. The

spherical images of a regular curve in Euclidean space are determined using Serret-Frenet frame

vector fields, making this classical topic a well-established concept in the differential geometry of

curves, see for more details [13, 14].

The aim of this work, Frenet frame of a normal spherical image of a space curve is symbolized

by the aid of spinors with two Euclidean and pseudo-Euclidean components, respectively. In

other words, spinors are studied as a means to describe or represent orthogonal triads of vectors

(Serret-Frenet formulae) of that one via a single spinor equation.

The organization of this paper is as follows: In section 2, we have introduced some geometric

properties concerning the central themes of Euclidean and pseudo-Euclidean 3-spaces. Section 3

is devoted to present some important characteristics and facts related to the research topic. Spinor

approach which equivalent to Frenet equations for a normal image of a space curve in E3 and E1,2

spaces are obtained in section 4. Finally, we concluded this work with a summary of our findings

in Section 5.

2. Fundamental Concepts

Let us review the fundamental concepts of three-dimensional Euclidean and pseudo-Euclidean

spaces (see for more details [12–16]).

In Euclidean 3-space E3, it is well known that for any unit-speed curve with at least four

continuous derivatives, three mutually orthogonal unit vector fields can be associated: the tangent

vector ζ, the normal vector n, and the binormal vector F [13]. We consider the standard metric in

Euclidean 3-space E3, which is given by

〈, 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3.

The sphere of radius r > 0 centered at the origin in the space E3 is given by

S2 = {m = (m1, m2, m3) ∈ E3 : 〈m, m〉 = r2
}.
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Let α : I ⊂ R → E3,α = α(s) be an arbitrary space curve in E3. The curve α is called a unit

speed curve (or arclength parameterized) if 〈α′(s),α′(s)〉 = 1 for any s ∈ I. Throughout this work,

we will assume that α is a unit speed curve.

Let{ζ(s),n(s),F(s)} be the moving Frenet frame along α, where the vectors ζ, n and F are mutually

orthogonal and satisfy the following conditions:

〈ζ(s), ζ(s)〉 = 〈n(s), n(s)〉 = 〈F(s), F(s)〉 = 1.

The Frenet equations corresponding to α are expressed as follows [15]:


ζ(s)
n(s)
F(s)


′

=


0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0



ζ(s)
n(s)
F(s)

 . (2.1)

Now, we present the following definition which is of great relevance to the research topic.

Definition 2.1. Consider α as a unit-speed regular curve in three-dimensional Euclidean space

with associated Frenet vectors ζ, n and F. The normal vectors along the curve α(s) trace out a

curve αn = n positioned on the unit sphere centered at the origin. This curve αn is known as the

spherical image of n or more commonly, αn is called normal image of the curve α. If α = α (s) is

a natural representation of the curve α , then αn(s) = n(s) serves as a representation of αn. Simi-

larly, one can define the tangent spherical imageαζ = ζ(s) and binormal spherical imageαF = F(s).

Denote by {ζn, nn, Fn} the moving Frenet frame along the normal image αn(s) = n(s), then we

have Frenet formula: 
ζn(sn)

nn(sn)

Fn(sn)


′

=


0 κn 0

−κn 0 τn

0 −τn 0



ζn(sn)

nn(sn)

Fn(sn)

 , (2.2)

where

ζn =
−ζ+ ΩF
√

1 + Ω2
, nn =

σ
√

1 + σ2
(

Ωζ+ F
√

1 + Ω2
−

n
σ
), Fn =

1
√

1 + σ2
(

Ωζ+ F
√

1 + Ω2
+ σn), (2.3)

and

sn =

∫
κ(s)

√
1 + Ω2(s)ds, κn =

√
1 + σ2, τn = $

√
1 + σ2,

Ω =
τ
κ

, σ =
Ω′(s)

κ(s)((1 + Ω2(s))
3
2

, $ =
σ′(s)

κ(s)
√

1 + Ω2(s)(1 + σ2(s))
3
2

. (2.4)

The parameter sn is natural representation of the normal image αn = n and κn and τn are the

curvature and torsion of αn. Therefore we have:

τn

κn
= $. (2.5)
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The pseudo-Euclidean 3-space E1,2 is the real vector space equipped with the standard flat

Lorentzian metric defined by

〈, 〉L = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) represents a Cartesian coordinate system of E1,2. We denote the Clifford

algebra on E1,2 by Cl1,2(R).

If u = (u1, u2, u3) and v = (v1, v2, v3) are randomly chosen vectors in E3, the Lorentzian cross

product is defined for u and v as follows [15, 16]:

(u× v)L =

∣∣∣∣∣∣∣∣∣∣
−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣ ,
where e1, e2, e3 is a standard orthonormal basis for E1,2 which consists of three vectors perpen-

dicular to each other, two of which have norm (+1) and the other has norm (−1).

In E1,2, the vectors are defined by the Lorentzian inner product. For a vector v ∈ E1,2, the vector

v is said to be a spacelike vector, lightlike (or null) vector or a timelike vector if 〈v, v〉L > 0 or v = 0,

〈v, v〉L = 0 or 〈v, v〉L < 0, respectively. Additionally, curves are categorized based on the nature of

their tangent vectors. A curve is classified as spacelike, timelike, or lightlike (null) if its tangent

vector remains spacelike, timelike, or lightlike, respectively, at all points. For v ∈ E1,2, the norm of

the vector v is defined by

‖ v ‖L=
√
| 〈v, v〉 |,

and v is called a unit vector if ‖ v ‖L= 1, [16, 17].

The Lorentzian sphere of radius 1 in E1,2 is given by

S2
1 = {O = (o1, o2, o3) ∈ E1,2 : 〈O, O〉L = 1}.

Given a curve β = β(s) with pseudo arclength parameter s in E1,2. The Frenet frame of β is defined

by the set {ξ, P, Q}, where

ξ(s) = β′(s), P(s) =
β′′(s)
‖ β′′(s) ‖L

, Q(s) = ξ(s) ×L P(s),

correspond to the tangent, normal, and binormal vector fields, in that order. Consequently, the

Frenet equations for the curve β are expressed as follows:
ξ(s)
P(s)
Q(s)


′

=


0 κ(s) 0

−εξεPκ(s) 0 τ(s)
0 −εPεQτ(s) 0



ξ(s)
P(s)
Q(s)

 , (2.6)

where εξ = 〈ξ, ξ〉L, εP = 〈P, P〉L and εQ = 〈Q, Q〉L ), κ and τ denote the curvatures of the curve

β, respectively [18].

As part of curve analysis, the pseudo-spherical image of a closed space curve β(s) with its Frenet

quantities {ξ(s), P(s), Q(s),κ(s), τ(s)} consists of curves on the unit pseudo-sphere that are closely

associated with the curvatures of the primary curve in E1,2. The tangent image βξ = ξ(s) of the
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curve β is defined as the trajectory on the unit pseudo-sphere outlined by the tangent vector ξ(s)
of the curve. It can then be expressed as follows:

βξ(sξ) = ξ(s) =
β′(s)
‖ β′(s) ‖L

, sξ =
∫
κ(s)ds.

Similarly, the normal image βP = P(s) of the curve β is defined as the path on the unit pseudo-

sphere outlined by the normal vector P(s) of the curve. Hence, it can be represented as follows:

βP(sP) = P(s) = ξ(s) ×L Q(s), sP =

∫ √
(κ(s))2 + (τ(s))2ds.

Similarly, binormal image βQ = Q(s) of the curve β is defined as a curve on the unit pseudo

sphere outlined by the binormal Q(s) of the curve. The curve βQ = Q(s) is represented by

βQ(sQ) = Q(s) =
β′(s) ×L β′′(s)
‖ β′(s) ×L β′′(s) ‖L

, sQ =

∫
τ(s)ds.

In what follows, we take into account the Frenet frame of the normal image βP = P(s) of a

nonnull curve in E1,2 is {ξP(sP), PP(sP), QP(sP)}. Consequently, the derivative equations for this

frame are expressed as follows:
ξP(sP)

PP(sP)

QP(sP)


′

=


0 ε1κP(sP) 0

−ε0 κP(sP) 0 −ε0ε1τP(sP)

0 −ε0ε1τP(sP) 0



ξP(sP)

PP(sP)

QP(sP)

 , (2.7)

where the vector fields ξP , PP and QP are

ξP = −
ε0(ξ+ ε1Ω Q)√
| 1− ε1Ω2 |

, PP =
ε0ε1ε2σ√
| 1 + ε0ε2σ2 |

(
Ω ξ+ ε1Q√

1− ε1Ω2
+

P
σ
),

QP =
σ√

| 1 + ε0ε2σ2 |
(

Ω ξ+ ε1Q√
1− ε1Ω2

+ ε1ε2σP),

with the notion

ε2 = 1 if ε1Ω2
− 1 > 0, ε2 = − 1 if ε1Ω2

− 1 < 0,

with noting that the arclength sP, the curvature κP and torsion τP for the curve βP = P are given

as follows:

sP =

∫ √
(κ2(s) + τ2(s))ds, κP =

√
| 1 + ε0ε2σ2 |, σ =

Ω′(s)

κ(s) | 1−Ω2(s) |
3
2

, Ω =
τ
κ

,

τP =
[κ3(1− ε1Ω2)[Ω κ′′ − ε1 τ′′ + ε0(1− ε1)κ3Ω(1− ε1Ω2)] + 3ε0κ2Ω′(−ε1κκ′ + ττ′)]

(1− ε1Ω2)3(1 + ε0ε2σ2)
,

$ =
σ′(s)

κ(s)
√
| 1− ε1Ω2(s) | | (1 + ε0ε2σ2(s)) |

3
2

.
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3. Spinors Geometry

In this section, we present the fundamental concepts and certain properties of spinors that were

introduced in [17].

In Euclidean 3-space, the property of homomorphism represents a close connection between

two groups; the first is the rotation group centered at the origin, represented by SO(3) and the

second is the group SU(2) consists of unitary 2 × 2 complex matrices with a determinant of one.

Consequently, there exists a two-to-one homomorphism from SU(2) onto SO(3). While elements

of SU(2) act on two-component complex vectors, known as spinors, elements of SO(3) operate on

real vectors in three dimensions, representing points in Euclidean 3-space [18].

We take into account numbers in the form of $1 + J$2 where $1 and $2 real numbers and J is a

commutative element that fulfills the relation J2 = ∓1 in E3 and E1,2, respectively.

Assume that the three dimensional space E3 or E1,2 pertains to a system of mutually perpen-

dicular coordinates; let Γ = (Γ1, Γ2, Γ3) be an isotropic vector, i.e., has zero length (Γ, 0). We can

correspond this vector to the spinor:

φ =

 φ1

φ2

 . (3.1)

So, we have

Γ = (Γ1, Γ2, Γ3) = (φ2
1 −φ

2
2, J(φ2

1 + φ2
2),−2φ1φ2).

Via three vectors a, b, c ∈ E3 or E1,2, one can express this as

a + Jb = φt% φ, c = −φ̂t% φ, J2 = ∓1, (3.2)

where the superscript t gives transposition and φ̂ is the mate of φ [3], φ is the complex conjugation

of φ [19].

Let % = (%1, %2, %3) be the vector composed of symmetric matrices, with its entries defined as

%1 =

 1 0

0 −1

 , %2 =

 J 0

0 J

 , %3 =

 0 −1

−1 0

 . (3.3)

Then the following equation holds

φ̂ = −

 0 1

−1 0

φ = −

 0 1

−1 0

  φ1

φ2

 =  −φ2

φ1

 (3.4)

and the vectors a, b, c are explicitly defined as

a + Jb = (φ2
1 −φ

2
2, J(φ2

1 + φ2
2),−2φ1φ2),

c = (φ1φ̄2 + φ̄1φ2, J (φ1φ̄2 − φ̄1φ2), | φ1 |
2
− | φ2 |

2).

Because the vector a + Jb ∈ C3 is isotropic, explicit computation shows that a, b and c are mutually

orthogonal, and their magnitudes satisfy ‖a‖ = ‖b‖ = ‖c‖ = φ̄tφ. Furthermore, the relation

〈a× b, c〉 = det(a, b, c) > 0 holds. Conversely, if the vectors a, b, c ∈ E3 or E1,2 are mutually
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orthogonal with equal magnitudes and satisfy (〈a× b, c〉) > 0, then there exists a spinor, defined

up to sign, such that equation (3.1) is satisfied.

Based on the preceding information, for any two arbitrary spinors φ and ψ, the following

equalities hold [3]:

φt% ψ = −φ̂t% ψ̂,

(λφ+ µψ̂) = λ̄ φ̂+ µ̄ ψ̂.

Furthermore, ̂̂
φ = −φ,

where λ and µ are complex numbers, the connection between spinors and orthogonal bases, as

described by equation (3.2), follows a two-to-one correspondence. Owing to the fact that the

spinors φ and −φ align with the same sequence of orthogonal basis {a, b, c}, where ‖a‖ = ‖b‖ = ‖c‖
and 〈a, b, c〉 > 0. Additionally, different spinors can be defined using the ordered triads {a, b, c},
{b, c, a} and {c, b, a}. Furthermore, the equation ψt% φ = φt% ψ holds for any pair of spinors φ and ψ

since the matrices %, as defined in equation (3.3), are symmetric. Moreover, the set {φ, φ̂} forms a

basis for the space of two-component spinors.

4. Main Results

This section investigates the fundamental aim of this work which is the spinor representations

of Frenet equations of a normal image for a regular space curve in each of E3 and E1,2.

4.1. Spinor representation for normal image in E3. Here, we introduce the Euclidean spinor

representation of Frenet frame for a normal image of a given regular curve α.

Let αn = n : I ⊂ R → E3 be a normal image of α with arclength parameter sn in the Euclidean

space E3. Let {ζn, nn, Fn} be its Frenet vector fields.

According to the properties presented above about spinors, we know that the each triad of E3

corresponds to the one Euclidean spinor ψ. Thus, we can write

nn + JFn = ψt% ψ and ζn = −ψ̂t% ψ, J2 = −1, (4.1)

with ψ̄t ψ = 1. Hence, the spinor ψ represents the triad {nn, Fn, ζn} and the Frenet formulae of the

curve αn should relate to a particular expression for dψ
dsn

.

As stated above, since the pair {ψ, ψ̂ } forms a basis for the Euclidean spinors (ψ , 0), there exist

two functions p and q such that
d ψ
dsn

= p ψ+ q ψ̂, (4.2)

where p and q may be Euclidean two functions.

By computing the derivative of the first equation in (4.1) according to sn and taking into account

Eq. (2.2), we can straightforwardly obtain that

d nn

dsn
+ J

d Fn

dsn
= (

d ψ
dsn

)t% ψ+ψt % (
d ψ
dsn

),
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which leads to

−κn ζn + τn Fn + J(−τn nn) = (
d ψ
dsn

)t% ψ+ψt%(
d ψ
dsn

). (4.3)

Thus, considering the Eqs. (4.1), (4.2) and (4.3), we get

−Jτn(nn + J Fn) − κn ζn = ( p ψ+ q ψ̂ )t% ψ+ψt % (p ψ+ q ψ̂ )

= 2p (nn + J Fn) − 2q ζn.

From the last equation, we can obtain

p = −
J τn

2
, q =

κn

2
, (4.4)

with

κn =
√

1 + σ2, τn = $
√

1 + σ2, σ =
Ω′(s)

κ(s)((1 + Ω2(s))
3
2

,

Ω =
τ(s)
κ(s)

, $ =
σ′(s)

κ(s)
√

1 + Ω2(s)(1 + σ2(s))
3
2

.

The same result can be obtained from the second part in the Eq. (4.1).

With assistance from the Eqs. (4.2) and (4.4), the following result can be given.

Theorem 4.1. Let αn = n be a normal image of a given space curve α and let {ζn, nn, Fn} be its

Frenet frame in E3. If the Euclidean spinor ψ describes the oriented triad {nn, Fn, ζn} of αn, thus the

Frenet formulae can be represented as a single spinor equation:

d ψ
dsn

= −(
J τn

2
)ψ+ (

κn

2
)ψ̂, (4.5)

where, κn and τn represent the curvatures of αn, respectively. Equation (4.5) is referred to as the

spinor Frenet equation in the context of three-dimensional Euclidean space.

4.2. Spinor representation for normal image in E1,2. Let βP = P : I ⊂ R→ E1,2 be a normal image

of a nonnull curve β with pseudo arclength parameter sP in pseudo-Euclidean 3-space E1,2. Let

{ξP, PP, QP} be its Serret-Frenet fields of vectors.

Based on the properties presented about spinors, one can find a spinor φ such that

PP + J QP = φt% φ and ξP = − φ̂t% φ, J2 = 1, (4.6)

with φ̄tφ = 1. Hence, the spinor φ represents the triad {PP, QP, ξP} and the Frenet equations of the

curve βP should be associated with a certain expression for d φ
dsP

.

As we mentioned above, there exist two functions f and g satisfying the condition that

d φ
dsP

= f φ+ g φ̂, (4.7)

where f and g are two possibly pseudo-Euclidean functions.

Taking the derivative of the first equation in Eqs. (4.6) with respect to sP, then by considering

Eq. (2.7), one can obtain
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d PP

dsP
+ J

d QP

dsP
= (

d φ
dsP

)t % φ+ φt % (
d φ
dsP

),

which leads to

−ε0 κP ξP − ε0ε1τP(sP) QP + J (−ε0ε1τP(sP) PP) = (
d φ
dsP

)t% φ+ φt % (
d φ
dsP

). (4.8)

Thus, considering the Eqs. (4.6), (4.7) and (4.8), we get

−ε0ε1J τP (PP + J QP) − ε0 κP ξP = ( f φ+ g φ̂ )t% φ+ φt % ( f φ+ g φ̂ )

= f (φt% φ+ φt% φ) + g(φ̂t% φ+ φt % φ̂)

= 2 f (PP + J QP) − 2g ξP.

Thus, the equation

−ε0ε1JτP(PP + J QP) − ε0κPξP = 2 f (PP + J QP) − 2g ξP,

holds.

Finally, we can see easily that

f = −
ε0ε1J τP

2
, g =

ε0 κP

2
, (4.9)

where

κP =
√
| 1 + ε0ε2σ2 |, σ =

Ω′(s)

κ(s) | 1−Ω2(s) |
3
2

, Ω =
τ
κ

,

τP =
[κ3(1− ε1Ω2)[Ω κ′′ − ε1 τ′′ + ε0(1− ε1)κ3Ω(1− ε1Ω2)] + 3ε0κ2Ω′(−ε1κκ′ + ττ′)]

(1− ε1Ω2)3(1 + ε0ε2σ2)
,

$ =
σ′(s)

κ(s)
√
| 1− ε1Ω2(s) | | (1 + ε0ε2σ2(s)) |

3
2

.

With the help of equations Eqs. (4.7) and (4.9), we have proved the theorem stated below.

Theorem 4.2. Let βP = P be a nonnull normal image of a given space curve β and assume that

{ξP, PP, QP}be its Frenet frame in E1,2. If the pseudo-Euclidean spinorφ is equivalent to the oriented

triad {PP, QP, ξP} of βP, then the Frenet derivative equations have single pseudo-Euclidean spinor

equation:

dφ
dsP

= −(
ε0ε1J τP

2
) φ+ (

ε0 κP

2
) φ̂ . (4.10)

where τP and κP are the curvatures of the curve βP, respectively.

From this point of view, the equation (4.10) is referred to as the spinor Frenet equation in

pseudo-Euclidean 3-space.
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5. Computational Examples

Based on the results we obtained during this work, we now provide the following examples to

demonstrate the key results.

Example 5.1. Let α = α(u), be Viviani’s curve in E3 with the parameterization (see Fig. 1a):

α =
(
1 + cos (u) , sin (u) , 2 sin

(u
2

))
,

then, we obtain the Frenet apparatus of this curve as follows:

ζ =

−
√

2 sin (u)√
3 + cos (u)

,

√
2 cos (u)√

3 + cos (u)
,

√
2 cos

(
u
2

)
√

3 + cos (u)

 ,

n =


−

4(cos4( u
2 )+cos(u))

√
3+cos(u)

√
13+3 cos(u)

,
(6+cos(u)) sin(u)

√
3+cos(u)

√
13+3 cos(u)

,

−
2 sin( u

2 )
√

3+cos(u)
√

13+3 cos(u)


,

F =

3 sin
(

u
2

)
+ sin

(
3u
2

)
√

26 + 6 cos (u)
,−

2
√

2 cos3
(

u
2

)
√

13 + 3 cos (u)
,

2
√

2√
13 + 3 cos (u)

 ,

κ =

√
13 + 3 cos (u)

(3 + cos (u))
3
2

, τ =
6 cos

(
u
2

)
13 + 3 cos (u)

.

The arclength function of Viviani’s curve is given by

s(u) = 2
√

2E
(

u
2

,

√
2

2

)
,

where E (u, k) is an incomplete elliptic integral of the second kind [20].
From the above, we can write the equation of the spherical image of the normal of α in the following form

(see Fig. 1b):

αn = n(u) =
1
µ1

(
−4

(
cos4

(u
2

)
+ cos (u)

)
, (6 + cos (u)) sin (u) ,−2 sin

(u
2

))
,

where

µ1 =
√
(3 + cos (u)) (13 + 3 cos (u)).

After some calculations, we derive the curvature and torsion of αn, respectively as

κn =
1
µ2
{20702144458 + 9 cos (u) (6294477918 + cos (u) (8106357591

+ cos (u) (6525783681 + cos (u) (3686172912

+ cos (u) (1553651704 + cos (u) (504539210

+3 cos (u) (42442258 + 3 cos (u) (2738678

+3 cos (u) (131030 + 3 cos (u) (4379 + 273 cos (u) + 4 cos (2u)))))))))))};
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µ2 =

2
√

2(3 + cos (u))3(13 + 3 cos (u))3

 1 + 2
(3+cos(u))2 +

3
2(3+cos(u))

+ 40
(13+3 cos(u))2 −

14
13+3 cos(u)


3/2

τn =
1
µ3


3(3 + cos (u))3/2(13 + 3 cos (u))3/2



2496243604 cos
(

u
2

)
+ 1552233406 cos

(
3u
2

)
+495707778 cos

(
5u
2

)
+70452762 cos

(
7u
2

)
+ 396342 cos

(
9u
2

)
−1153098 cos

(
11u

2

)
−140022 cos

(
13u

2

)
− 6291 cos

(
15u

2

)
−81 cos

(
17u

2

)




;

µ3 = {128(20702144458 + 9 cos (u) (6294477918 + cos (u) (8106357591 + cos (u) (6525783681

+ cos (u) (3686172912 + cos (u) (1553651704 + cos (u) (504539210 + 3 cos (u) (42442258

+3 cos (u) (2738678 + 3 cos (u) (131030 + 3 cos (u) (4379 + 273 cos (u) + 4 cos (2u))))))))))))}.

Since the Euclidean spinor represents the oriented triad {ζn, nn, Fn} of αn, then from Eq. (4.5), the Frenet
derivative equations can be expressed as a single spinor equation:

dψ
dun

dun

dsn
= −

( J τn

2

)
ψ+

(
κn

2

)
ψ̂, such that

dψ̂
dun

dun

dsn
= −

(
τn

2

)
ψ+

( J κn

2

)
ψ̂.

By solving these two differential equations, we obtain

ψ (u(s)) = c1eσ1u(s)V1,1 + c2eσ2u(s)V1,2,

and

ψ̂ (u(s)) = c3eσ1u(s)V2,1 + c4eσ2u(s)V2,2,

where c1, ..., c4 ∈ R, and V1,1, V1,2, V2,1, V2,2 are the components of the eigenvectors corresponding to σ1

and σ2, such that:

σ1,2 =
κn − τn

4
±

1
2

√(
κn + τn

2

)2
+ J κnτn.

(a) (b)

Figure 1. (A) The Viviani’s curve α in E3, (B) The normal spherical image αn lies on S2.



12 Int. J. Anal. Appl. (2025), 23:151

Example 5.2. Consider the unit speed spacelike curve β = β(s) in E1,2 with timelike normal vector in the
parametric form (see Fig. 2a)

β(s) =
1
√

2
(cosh(s), 1, sinh(s)).

This curve has the following Frenet vectors

ξ =
1
√

2
(sinh(s), 1, cosh(s)),

P = (− cosh(s), 0,− sinh(s)),

Q =
1
√

2
(− sinh(s), 1,− cosh(s)).

The curvature and torsion of β are respectively, given by

κ =
1
√

2
, τ = −

1
√

2
.

From the aforementioned data, the normal spherical image of β is obtained (see Fig. 2b):

βP (sP) = P(s) =(− cosh(s), 0,− sinh(s)).

For this curve, the Frenet apparatus is calculated as

ξP = (− sinh(s), 0,− cosh(s)) ,

PP = (cosh(s), 0, sinh(s)),

QP = (0, 1, 0),

κP = 1, τP = 0.

As the pseudo-Euclidean spinor depicts the oriented triad {ξP, PP, QP} of βP, then from Eq. (4.10), the
Frenet derivative equations are equivalent to the single spinor equation:

dφ
dsP

= −
(
ε0ε1J τP

2

)
φ+

(
ε0 κP

2

)
φ̂ =

(
ε0

2

)
φ̂;

such that
dφ̂
dsP

= −
(
ε0ε1τP

2

)
φ+

(
ε0 J κP

2

)
φ̂ =

( J ε0

2

)
φ̂,

solving these two equations gives

φ (s) =
c1

J
e
ε0 J
2 s + c2,

and

φ̂ (s) = c1e
ε0 J
2 s,

where c1, c2 ∈ R.
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(a) (b)

Figure 2. (A) The spacelike curve β in E1,2, (B) The normal spherical image βP lies on S2
1.

6. Conclusion

In geometry and physics, spinors are defined as elements of a complex vector space linked to

Euclidean space. On the other hand, spinors can be defined as elements of the vector space that

carries a linear representation of the Clifford algebra which is an associative algebra. In this work,

we have studied spinors which represent the vital subject in mathematics, where relates curves

theory in the differential geometry with algebra. We have shown that how can be Frenet equations

of normal spherical image expressed in terms of Euclidean and pseudo-Euclidean spinors. More

clearly, we have proven that in both Euclidean and pseudo-Euclidean 3-spaces, the Frenet equation

system is correspond to a single spinor equation, resulting from the connection between spinors

and orthogonal triads of the given vectors, as well as the use of complex quantities. Finally, we

provided two computational examples to support our main results.

In future works, we plan to study spinors in Galilean and pseudo-Galilean spaces for different

queries and further improve the results in this paper, combined with the techniques and results

in [21–27].

Conflict of Interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and

Physics, Kluwer, 1992.

[2] H.B. Lawson, M.L. Michelsohn, Spin Geometry, Princeton University Press, New Jersey, 1989.

[3] E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.

[4] S. Tomonaga, The Story of Spin, University of Chicago Press, Chicago, 1998.

[5] T. Friedrich, Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, 2000.

[6] P. O’Donnell, Introduction to 2-Spinors in General Relativity, World Scientific, 2003.



14 Int. J. Anal. Appl. (2025), 23:151

[7] G.F.T. del Castillo, G.S. Barrales, Spinor Formulation of the Differential Geometry of Curves, Rev. Colomb. Math.

38 (2004), 27–34.

[8] I. Kisi, M. Tosun, Spinor Darboux Equations of Curves in Euclidean 3-space, Math. Moravica 19 (2015), 87–93.

https://doi.org/10.5937/matmor1501087k.
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