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Abstract. The purpose of this paper is to consider coefficient estimates for g-starlike function with respect to symmetric
points associated with sine function SS; (1 + sin(z)) consisting of analytic functions f normalized by f(0) = f'(0) -
2[zDqf (2)]
f(z) = f(=2)

(z), for all z € Uj to derive certain coefficient estimates by, b etc and Fekete-Szeg6 inequality for f € SS;(1 + sin(z)).

1 = 0 in the open unit disk U; = {z : z € C and [z| < 1} satisfying the condition < 1+sin(z) =

Further to investigate the possible upper bound of third order Hankel determinant and also the Zalcman functional for

f €881 +sin(z)).

1. INTRODUCTION

In geometric function theory, analytical classes are crucial for comprehending and characterizing
the geometric features of functions, especially in complex analysis. The mathematical discipline of
geometric function theory examines functions from a geometric perspective. Intervening analytical
functions from a geometric perspective are the primary subject of the privileged mathematical
field known as geometric function theory. Within the field of mathematical analysis, the study of
analytical functions is very desirable. Coefficient estimates in Geometric Function Theory (GFT)
are bounds on the coefficients of power series representations of analytic functions, especially
within certain subclasses of univalent (one-to-one) functions. The geometric characteristics of
these functions are shown by these estimates. Applications for coefficient estimates can be found

in fluid dynamics, potential theory, and other branches of physics and mathematics. Recent days
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geometric function theory is advancing in image processsing techniques and has opened new
avenues for interdisciplinary research in mathematical imaging.
Let 8 denote the class of functions in the open unit disc U; = {z : z € C and [z| < 1}. The class

8B has the following Taylor’s series expansion
f(z) =24+ b2 + b3z + -+ . (1.1)

Let # denote the class of functions defined by
hz) =1+diz+dyz? +dsz® + -+ (1.2)

which are univalent and analytic in U, is denoted by S and maps U, onto the right half plane.
Let g, h € Uy;. We say that ¢ < h, if there exists a function w analytic in Uy, with ©(0) = 0 and
lw(z)| < 1 such that g(z) = h(w(z)). If the function & is univalent in U, then g < h if and only if
8(0) =h(0) and g(Uy) € h(Uy).

The j* Hankel determinant for j > 1 and n € N was defined by Pommerenke [24,26] as follows:

bk bk+1 bk+2 T bk+]‘_1

b1 by beps o biyy
Hix(f) =|ber2 bDevs bera oo brvja
bk+j—l bk+j bk+]‘+1 cee bk+2j—2

where by = 1. In [23] Inayath determined the rate of growth of H;; as k— oo for the function f(z)
given in (1.1) in S with bounded boundary. If j = 2 and k = 1 then Hy1(f) = |b3 - b§| and if j=2
and k=2 then Hy5(f) = |babs — b2|. Aditionally

by by
by bs

= |bsbs — 13-

Ha5(f) =

The third order Hankel determinant Hz 1 (f) is given by,

by by bs
H3(1) = |by bs by| = bs(bobs —b3) — ba(bs — babs) + bs(bs — b3). (1.3)
by by bs

We note that H 1 (f) is the well known Fekete-szego functional. In recent years many authors
have studied the second order hankel determinant Hp»(f) and the third hankel determinant
Hj 1 (f) for various classes of functions and they can be unified by considering a univalent function
with a positive real part symmetric about the real axis with respect to starlike functions.

Very recently, Arif et al. [1], investigated upper bounds for third hankel determinant for the class
of functions Sj () associated with trignometric sine function. Stimulated by aforementioned
work, we determine the upper bounds of the third Hankel for the class S; (i) of symmetric points

associated with sine function by g-derivative operator.
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Definition 1.1. [5] The g-differential operator introduced by Jackson is defined as

f(z) - f(qz)
(1-9)z

In addition, the g-derivative at zero is D;f(0) = D;_1f(0) for |[g| > 1. The g-derivative at zero is

D;f(z) = , z€ U, (1.4)

defined as f’(0) if it exits. Equivalently (1.4) can be written as

Dyf(z) =14 ) [n]gb,z", z#0
n=1

where,

1_qn

= +1

=g 1 (1.5)
n, g=1.

(] =
Sakaguchi [30] introduced a class of starlike functions with respect to symmetric points. Obviously
the class of univalent functions and starlike with respect to symmetric points include the classes of
convex functions and odd functions star like with respect to the origin (see [30]). Inspired by earlier
works in [1,14,31-33], we now define a new class of g—starlike functions with respect to symmetric
points associated with sine function SS; (1 + sin(z)) as in definition 1.2 to derive certain coefficient
estimates b, b3, by, bs and Fekete-Szego inequality for f € SS*;(1 + sin(z)). Further we investigate
the possible upper bound of third order Hankel determinant and the Zalcman functional for

f eSS, (1+sin(z)) .
Definition 1.2. If a function f € SS;(1 + sin(z)) then

2[zDyf(2)]
f(z) = f(=2)

The lemmas listed below are needed to prove the desired results.

<1+sin(z) = P(z), forall z € U,. (1.6)

Lemma 1.1. Ifh € P then

du <2, VneN, (1.7)

dirj—pdidjl <2, for 0<u<1 (1.8)
and for any complex number &, we have
Idz — &7 < 2max{1, 2& 1]} (1.9)
where the inequalities (1.7), (1.8) are taken from [25] and (1.9) is obtained in [11].
Lemma 1.2. [1]Ifh € P has power series (1.2), then

|ad? — Bd1da + yds| < 2lal + 21 — 2a] + 2| — B + Y.
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Lemma 1.3. [28] Let m, n, | and r satisfy the inequalities 0 <m < 1,0 <r < 1and
8r(1—-r) [(mn —20)? + (m(r+m) - n)2] +m(1-m)(n-2rm)? < 4m*(1 —m*)r(1-7r).
If h € P has power series (1.2), then

Id} + rd + 2mdyds — gnd%dz —dy <2.

2. COEFFICIENT ESTIMATES AND FEKETE-SZEGO INEQUALITY

In this section we evaluate the coefficient estimates for the class SS;(1 + sin(z)). Further we

evaluate Fekete-Szego functional for this class.

Theorem 2.1. If f € SS(1 + sin(z)), then

Proof. Since f(z) € SS;(1 + sin(z)), then from the principle of subordination we have,
2[zD, f(2)]
f(z) = f(=2)

Since f(z) is of the form (1.1), we have

2[zDsf (2)]
f(z) = f(=2)

=Y(v(z)) =1+sin(v(z)). (2.1)

=1+ (1+q)aoz +q(1 +q)asz® + [(1+q +¢* +¢°)as — (1 + g)azas]2®

+ (1 +q+q*+¢°)as —q(1 + q)a3)z* + - -

1+0(z)
1-9v(z)
U, onto the right half of the w-plane.

The function h(z)=

= 1+dyz+dpz? + d3z® + - - - is analytic in U, with d(0)=1 and maps

Computing v(z) in terms of h(z) we get,

hz)=1  diz+dyz® +d3z® +- -

o(z) = h(z)+1 2+diz+dpz2+dszB+---°

Substituting for v(z) in sine series we get,

3 5 7
1+sin(v(z)) =1+ 0(z) - (U(;)) + (0(521)) _ (0(72')) .
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This gives
. B 1 b B, (d dd 54,
1+4sin(v(z)) = 1—1—55112—1—{3—2 24 S-St R
-1 5 1 1 1
-+ (3—26141L + Ed%dz - EdldS - Zd% —+ §d4)z4 + e
et o 2D . | =
ubstituting for FO-f2) and 1 + sin(v(z)) in (2.1) and comparing the coefficients we get,
i1
by = , 2.2
) 22)
1 (d 4
by — L_al 2.3
SRS ( 274 23)
b — ds didr(2(q+q%) - 1)
4 — f—

214+q+4¢*+¢°) 4(1+q9+9*+7%)(q+4°)
B51+q+q+4°)-6)

n ) 2.4
BA+q+a+¢)q+q) 24
. EbGlgr@) -8 1@+
5 pu—
l(q+@)q+@+@+q%) 4q+a>)@+a>+9°+4q%)
dyd3 dy
- + . 2.5
2@+ ++4qY)  20q+9*+4 +qY) 29
Now putting (1.7) in (2.2), we obtain
1
bl < —. .
|ba| 43 (2.6)
Now using (1.9) with (2.3), we get
1 d? 1
b3l = =|dp — —| ————
|b3] 52— 3 T2
1 1
< max {1, 2 (—) - 1‘} S
2 (q+4q%)
1
< max{1,0}
(q+4q%)
Therefore
1
3| < ——— . 2.7
(9 +4%) 27)
Using triangle inequality and lemma 1.2 in (2.4), gives
D4l (2.8)

<—.
1+g+q*+¢°
By rearranging the equation (2.5), we get

bl 1 Bt -1 1 ; d1d2(5(q+qz)—4))
TTRErEr R+ 20+ a?) ) 20+ PP ) 8(7 +¢?) '
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Using (1.7) and (1.8), we get

3
< .
T (@t +P+gY)

|bs| (2.9)

O

Theorem 2.2. Iff(z) is of the form (1.1) and belongs to SS; (1 + sin(z)), then for any complex number p

(g +q°) }
(1+9)2 |

1
|bs — bzls—max{1,|
TR

Proof. Using (2.2) and (2.3) we get

) dy d; 4\
s = 8] = 5= - =
2(g+4q*) 4(q+4%) 2(1+q)

This gives

1
N ]

1 ulg+q?)
2" %(5+2<1+q>2)

Application of (1.9), leads us to

1 ula+4) }
by — ub3| < max{l, —|7.
bomril < (+qp
O
Corollary 2.1. Iff(z) € SS;(1 + sin(z)) and p = 1 then,
1
by b3l < — . 2.10

3. HANKEL DETERMINANTS

Now we obtain other important results on the basis of which we will evaluate the third Hankel

detrminant for this class.

Theorem 3.1. If f € SS (1 + sin(z)), then

bobs — byl £ —— .
|b2b3 — Dy TTqt Pt
Proof. From equation (2.2), (2.3) and (2.4), we have
@) 1 1 5(1+q+4%) -6
babs — ba| — |- 12( N : 3(( q+q°) ))
8(a+g>)\1+q9  (A+g9+4+¢°) 6
didp ( 1 (7+9*-1) )_ d3
dq+a)\1+q  (A+q+¢+¢)) 20+q+4+¢°)
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& 1 1 5(1+g+4%) -6
|b2b3—b4|=’8 1 ( (( 1tq) ))

_|_
@+g)\1+q  (Q+q+5+4) 6
iy ( 1 (@+4-1) ) d3
dq+@)\1+q  Q+q+7+4)) 20+q9+4*+4)|

By triangle inequality and Lemma 1.2, we get

1
bobs —by| < ————— 3.1
b2b3 — bal Y0t 2+ 3.1)
O
. : 8 + 17 + 144 + 104° + 5¢*
Th 3.2. If f € SS*(1 , then |byby — V2| < )
corem 2l g1+ sin(z), then Iboby = by 14+q9)A+g+¢*+¢%) (g +¢%)?
Proof. Using (2.2), (2.3), (2.4) we get
dids 2 + 59 + 34? )
byby — 2| = + d%d
by =15 11+ )1 +q++¢)  81+q)(l+g+@+a))(g+g)2 7
dy d;
- 6+ 18g + 137% + 29° + g*) - ——=——|.
96(1+q)(1+q+q2+q3)(q+q2)2( 9+ 137" +24° + 7') 4(q +q°)?
Using (1.7), (1.8) and (1.9) we get
8 + 17g + 149% + 104° + 54*
|boby — b3] < ik q2+ j—f— q22. (3.2)
1+q)(1+q+49*+4°)(q9+49?)
O

Theorem 3.3. Let f(z) is of the form (1.1) and if f € SS;(1 + sin(z)), then
Y428 + 647+ 99 +4 1 3
|H3,1(f)|§ ’ 2q 3¢7 ! 25+ 2 a2 T 2 1 g3 4 gt 2)
A+g+P?+@) A+ +?)°  A+g+a@+5)? @+ ++q)(q+7)

Proof. Third Hankel determinant from equation (1.3) can be written as,
Hs1 (f) = b3(bzb4 - b%) - b4(b4 - b2b3) + b5(b3 - b%), where a;=1. This provides that

|[Hs,1(f)| < 103 |(Babs — B2)| + bal | (s — babs)| + Ibs| |(bs — b2)].

By implementing (2.7), (2.8), (2.9), (2.10), (3.1) and (3.2) we get our desired result.
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4. ZALCMAN FUNCTIONAL

In the field of geometric function theory, one of the classical conjectures proposed by Lawrence
Zalcman in 1960 is that the coefficients of class S satisfy the inequality,

b2 — by | < (n—1)%
The above form holds equality only for the famous Koebe function k(z) = % _ andits rotation.

(1-2)?
When n = 2, the equality holds for the famous Fekete-Szego inequality. In literature, many

reseachers ( [3], [4], [16]) have studied about Zalcman functional.

Theorem 4.1. If f € SS,(1 + sin(z)), then

1
b2 —bs| < .
b R
Proof. In order to find Zalcman functional, we use the equations (2.3) and (2.5), then we get
2o = | d #BY  BhGh+d)-4) B-(+e)
TG+ (2 4) 16+ PP+ ) g+ PP+t )
N dids ~ dy
20+ +¢+q") 20+ +9+qY)
s dy . dhds
16(g+4%)* 200+ +¢+4q*) 20+ +3 +q%)
d;
+ 2_,_3 3_,_2 4
4(q+42)2(q+q2+q3+q4)(q 7 27)
d2d,
1 2 3 4
- 5¢% + 144° + 94%)| .
16(q+q2)2(q+q2+q3+q4>(q 7ror)
Thus,
1 q+q2+q3+q4) . 1
B2 —bs| < & —d +2(—)dd
5=t 2(q+qz+q3+q4)( Bg+q)? )7 T\
2 did;
———(* +3¢° + 2¢*) - ————= (59 + 14¢° + 94*)| .
+2(q+q2)2(q 37 +21) 18(q+q2)2(q +14g" 407
Using lemma 1.3, we get |b2 - b5| < L .
3 q+q2+q3+q4

5. CONCLUDING REMARKS

In the present paper, we have mainly obtained upper bounds of the second-order Hankel

determinant of a new class of starlike functions connected with the sine function SS; (1 + sin(z)).
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Also, we have discussed the related research of the coefficient problem, Fekete-Szegt inequality
and Zalcman functional for f € SS;(l + sin(z)). For motivating further research in this subject-
matter, we have chosen to draw the attention of the interested readers towards a considerably
large number of related recent publications (see, for example, [14,31-33]). In conclusion, with an
opinion mostly to encourage and inspire further researches on subordinating with Van der Pol
numbers (VPN) [21] and Gregory Coefficients [22] one can extend or generalize our results for
f € S5;(1 + sin(z)) which is left as an exercise to interested readers.By increasing edge contrast,
picture sharpening a basic image processing technique improves an image’s clarity and detail.
Conventional sharpening techniques can cause noise and distortions, especially in areas with low
contrast. Recent advances in geometric function theory have improved image processing methods
and created new opportunities for multidisciplinary mathematical imaging research. A masking

framework one can use these bounds and the original coefficients as adaptive sharpening factors.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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