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Abstract. In this manuscript, we propose a proximal gradient type algorithm together with a two step inertia method

for approximating solution of convex minimization problem in real Hilbert spaces. The proposed proximal gradient

type method is designed in such a way that it does not depend on the Lipschitz constant. Using a self-adaptive rule,

we obtain a weak convergence result under the condition that the gradient function of one of the convex functions

is uniformly continuous. Preliminary numerical results show that our proposed method has a better convergence in

comparison to some other related results in the literature.

1. Introduction

In recent years, the importance of studying the structure of convex optimization problems have

become a topic of intense research in machine learning, signal processing and intensity modulated

radiotherapy. This is particularly true of techniques for non-smooth optimization, where taking

advantage of the structure of non-smooth terms seems to be crucial to obtaining better performance.

LetH be a real Hilbert space, the convex minimization problem (CMP) is to find:

min
x∈H

g(x) + h(x) (1.1)

where h : H → (˘∞,+∞] is a proper, closed and convex function which is possibly nonsmooth and

g : H → R is a proper, closed, convex and continuously differentiable function with its gradient
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∇g being Lipschitz continuous on H . We denote the set of minimizing of CMP (1.1) by Ω. It is

well-known that

x∗ ∈ Ω⇐⇒ 0 ∈ (∇g + ∂h)(x∗),

where ∂h is the subdifferential of h. One of the most well-studied instances of CMP (1.1) is the

basic pursuit denoising (BPDN), (see [1, 7, 15, 23]) which is of the form:

min
x

(1
2
‖q−Ax‖2 + τ‖x‖

)
,

where τ is a parameter that control the trade-off between sparsity and reconstruction fidelity, x
is an N × 1 solution vector, q is an M× 1 vector of observation, A is an M×N transform matrix and

M < N. The proximal gradient method (PGM) is an appealing technique for solving CMP (1.1)

due to their fast theoretical convergence rates and strong practical performance. The PGM can be

formulated as follows:- Given the initial point w1 ∈ H , compute

wk+1 = proxτkh(wk − τk∇g(wk)), k ≥ 1, (1.2)

where proxτkh(x) :=arg min
x∈H
{h(x) + 1

2τk
‖x −w‖2} and τk > 0 is the stepsize. If g = 0, then the PGM

reduces to the classical proximal point algorithm (PPA), (see [12]). In addition, if ∇g in (1.2) is

L-Lipschitzian and {τk} is such that 0 < lim inf
k→∞

τk ≤ lim sup
k→∞

τk <
2
L , then the sequence {wk} defined

in (1.2) converges weakly to x∗, where x∗ is a solution of (1.1). In 2018, Guo and Cui (see [10])

proposed the following PGM with perturbation for solving CMP (1.1):

wk+1 = δk f (wk) + (1− αk)proxτkh(I − τk∇g)wk + %k (1.3)

where {δk} ⊂ [0, 1], 0 < a < lim
k→∞

inf τk <
2
L , f : H → H is a contraction and % : H → H is a

peturbation operator satisfying
∞∑

k=0
‖%(wk)‖ < +∞. They established a strong convergence result

in the setting of real Hilbert spaces.

In optimization theory, authors are not only after the convergence analysis of iterative methods

but the rate at which these iterative methods converge. Fast converging iterative algorithm

have gained the attention of numerous researchers in recent years, (see [4]). Many authors have

employed the one step inertial method to expedite the rate of convergence of different iterative

algorithms, (see [18]). Recently, Alvarez and Attouch [4] employed the heavy ball technique which

was examined in (see [24]) for maximal monotone operators by applying the method of proximal

points. The inertial PPA is generated as follows:yk = qk +Θk(qk − qk−1)

qk+1 = (I + τkB)−1yk, k ≥ 1
(1.4)

then (1.4) weakly converges to a zero of a maximal monotone operator B. In (1.4), Θk is called

the extrapolation factor and the inertial term is represented by Θk(qk − qk−1). It was stated in (see

[14,24]) that one-step inertial does not provide acceleration. Moreover, the sequences generated by

the one-step inertial iteration method were shown to converge more slowly that their non-inertial



Int. J. Anal. Appl. (2025), 23:160 3

counterpart. This indicates that the inertial iteration method in one step might not be able to

provide sufficient acceleration. Employing the following two-step inertial method introduced in

(see [11]) could address the issue of lack of acceleration. Research on two-step inertial methods

revealed that using two-step inertial method speeds up iterative method (see [11]). In 2019,

Jolaoso et al. [12] proposed the following proximal gradient algorithm together with an inertial

extrapolation term for solving CMP (1.1) and fixed point of δ-demimetric mapping in the settings

of real Hilbert spaces: Given w0, w1 ∈ H arbitrarily and let {wk} be generated by
yk = wk + βk(wk −wk−1),

vk = (1− bk)yk + bkproxτkh(yk − τk∇g(yk)),

wk+1 = PC(αkε1 f (wk) +Θkwk + ((1−Θk)I − αkB)Tµkvk), k ≥ 1

(1.5)

where Tµk= (1− µk)I + µkT for µk ∈ (0, 1), T : H →H is a δ−demimetric mapping for δ ∈ (−∞, 1),

f : H → H is a Meir keeler contraction and B is a strongly positive bounded linear operator

with coefficient τ > 0 such that 0 < ξ < τ
2 . The authors established a strong convergence results

under some mild conditions. It can be easily observed that Algorithm 1.4 and 1.5 rely on a fixed

constant step size, necessitating knowledge or an approximation of the Lipschitz constant of ∇g.

From a computational standpoint, the use of a fixed stepsize can be problematic, potentially

impacting the convergence rate and the overall suitability of the method. Therefore, the reliance

on a fixed step size introduces challenges that need careful consideration in practical applications.

To overcome this difficulty, Chen and Duan (see [8]) proposed the following inertial self-adaptive

proximal gradient methods for solving CMP (1.1):

Algorithm 1.1. Step 0: Given ε > 0, β > 3, initialize w0, w1 ∈ H and τ1 > 0, set k = 1.

Step 1: Given wk−1, wk and compute
yk = wk + ∆k(wk −wk−1)

sk = proxτkh(I − τk∇g)yk

wk+1 = αkh(yk) + (1− αk)sk + (1− αk)τk(∇g(yk) −∇g(sk)),

(1.6)

where ∆k satisfies 0 ≤ |∆k| ≤ ∆̄k with ∆̄k defined by

∆̄k =

min
{

k−1
k+β−1 , εk

‖wk−wk−1‖

}
, if wk , wk−1,

k−1
k+β−1 , wk = wk−1.

(1.7)

Step 2 : Update step-size

τk+1 = min{τk,
µk‖yk − sk‖

‖∇g(yk) −∇g(sk)‖
}, (1.8)

where {µk} ⊂ (0, 1).

Step 3: If ‖wk+1 −wk‖ ≤ ε, then the iterative process stops. Otherwise, set k = k + 1 and go to step 1.
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In Algorithm 1.1, ∇g is L-Lipschitz and h is a σ-contraction mapping with constant 0 ≤ σ < 1. The

authors established a strong convergence results under some suitable conditions.

In this paper, we propose a two step inertia proximal gradient method for solving CMP (1.1) where

the gradient function ∇g is uniformly continuous. Our method generates variable step sizes at

each iteration based on some previous iterates, without employing any line-search procedure. The

convergence of our proposed method is established under suitable conditions. We present some

numerical examples to illustrate the computational effectiveness of our method in comparison to

some existing ones in the literature. Our results extend and complement many related results in

the literature.

2. Preliminaries

Definition 2.1. LetH be a real Hilbert spaceH . The mapping T : H →H is said to be:

(1) L-Lipschitz continuous, where L > 0, if

‖Tx− Ty‖ ≤ L‖x− y‖,∀x, y ∈ H. (2.1)

(2) Uniformly continuous, if for every ε > 0, there exists δ = δ(ε) > 0, such that

‖Tx− Ty‖ < ε whenever ‖x− y‖ < δ,∀x, y ∈ H. (2.2)

Remark 2.1. It is well known that if D is a convex subset ofH , then T : D→H is uniformly continuous
if and only if, for every ε > 0, there exixts a constant K < +∞, such that

‖Tx− Ty‖ ≤ K‖x− y‖+ ε ∀x, y ∈ D. (2.3)

Definition 2.2. Let h : H → (−∞,+∞] be proper, convex, and lower semi-continuous function and c̄ > 0.
The proximity operator of h of order c̄ is defined by

proxc̄h := arg min
t∈H
{h(t) +

1
2c̄
‖s− t‖2}, (2.4)

for all s ∈ H .

Definition 2.3. B is said to be

(i) monotone if for all (s, u),(t, v) ∈ gra(B) (the graph of mapping B),

〈u− v, s− t〉 (2.5)

(ii) maximal monotone if for every (s,u) ∈ H ×H ,
(s, u) ∈ gra(B)⇐⇒ 〈u− v, s− t〉 ≥ 0 for all (t, v) ∈ gra(B).

Definition 2.4. A convex function c : H → R is said to be subdifferentiable at a point k ∈ H if the set

∂c(x) = {u ∈ H|c(y) ≥ c(x) + 〈u, y− x〉,∀ y ∈ H} (2.6)

is nonempty , where each element in ∂c(x) is called a subgradient of c at x ,∂c(x) is called the subdifferential
of c at x, and the inequality in (2.6) is called the subdifferential inequality of c at x. We say that c is
subdifferentiable onH if c is subdifferentiable at each x ∈ H
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Lemma 2.1. [5] Let B : H → 2H be a maximal monotone mapping and A : H →H be a hemicontinuous,
monotone, and bounded operator. Then, the mapping A + B is a maximal monotone mapping.

Lemma 2.2. [3] The following identities holds for all a, b, c ∈H and λR

(i) 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2 = ‖a + b‖2 − ‖a‖2 − ‖b2

(ii) 2〈a− b, a− c〉 = ‖a− b‖2+ ‖a− c‖2 − ‖a− c‖2

(iii) ‖λa + (1− λ)b‖2= λ‖a‖2 + (1− λ)‖b‖2 − λ(1− λ)‖a− b‖2.

Lemma 2.3. [22] Suppose λk and θk are two nonegative real sequences, such that

λk+1 ≤ λk + φk,∀k ≥ 1. (2.7)

If
∞∑

k=1
φk, then lim

k→∞
λk exists.

Lemma 2.4. [13] Suppose {ϑk},{ρk} and {ιk} be sequences in [0,∞) such that,

ϑk+1 ≤ ϑk + ιk(ϑk − ϑk−1) + ρk,∀ k ≥ 1,
+∞∑
k=1

ρk < +∞, (2.8)

and there exists a real number ι with 0 ≤ ιk ≤ ι < 1 for all k ∈N. Then one has:

(i)
+∞∑
k=1

[ϑk − ϑk−1]+ < +∞, where [m]+ : max{m, 0};

(ii) lim
k→∞

ϑk=ϑ
∗ with ϑ∗ ∈ [0,+∞).

Lemma 2.5. [6] Let {sn} be a sequence inH and Ψ be a nonempty subset ofH . If, for every s∗ ∈ Ψ, {‖sn− s∗‖}
converges and every weak sequential cluster point of {sn} belongs to Ψ, then {sn} converges weakly to a point
in Ψ.

3. Main Results

Assumption 3.1.

(A1) g, h : H −→ R∪ {+∞} are proper, convex and lower semi-continuous functions.

(A2) g is differentiable and its gradient 5g is uniformly continuous.

(A3) Suppose that Γ := arg min(g + h) is nonempty and the following condition holds:
(i) 0 ≤ θk ≤ θk+1 ≤ 1,

(ii) 0 < β < min{θ1, ε−
√

2ε
ε } with ε > 2,

(iii) 0 < δ ≤ δk ≤ δk+1 <
1

1+ε ,

(iv) λk is a nonegative sequence such that
∞∑

k=1
λk < +∞.

We present the following algorithm.
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Algorithm 3.1. Self adaptive step-size with two step inertial for CMP.

Initialization:- Given τ1 > 0 and µ ∈ (0, 1). Let w0, w1,∈H be two initial points and set k = 1

Step1:- Compute


zk = wk + β(wk −wk−1),

uk = wk + θk(wk −wk−1),

yk = Proxτkh(I − τk∇g)uk.

(3.1)

where

τk+1 =

min
{

µ‖uk−uk+1‖

‖∇g(uk)−∇g(yk)‖

}
, if ∇g(uk) , ∇g(yk),

τk + λk, otherwise.
(3.2)

If yk = uk, then stop. Otherwise proceed to the next step.
Step 2:- Compute

vk = yk + τk(∇g(uk) −∇g(yk)) (3.3)

Step 3:- Compute

wk+1 = (1− δk)zk + δkvk. (3.4)

Set k← k + 1, and go to step 1.

Lemma 3.1. Suppose τk is a sequence generated by Algorithm (3.1) such that Assumption (3.1) holds.

Then τk is well defined and lim
k→∞

τk= τ ∈ {min{ µK , τ1}, τ1 +ψ}, for some k > 0 where ψ=
∞∑

k=1
λk.

Proof. From the condition on ∇g in Assumption 3.1, we have that for any given ε > 0, there exists

M < +∞ such that

‖∇g(uk) −∇g(yk)‖ ≤M‖uk − yk‖+ ε. (3.5)

Therefore for the case where ∇g(uk) , ∇g(yk) and k > 1, we obtain

µ‖uk − yk ‖

‖∇g(uk) −∇g(yk)‖
>

µ ‖ uk − yk‖

M‖uk − yk‖+ ε
=

µ‖uk − yk ‖

(M + ε1)‖uk − yk‖
=
µ

K
(3.6)

where ε1 =ε‖uk − yk‖ for some ε1 ∈ (0, 1) and K = M + ε1 with k > 0. Thus, using the definition

of τk+1, the sequence τk has a lower bound min{µk , τ1} and upper bound τ1 + ψ. By Lemma 2.3,

lim
k→∞

τk exists and lim
k→∞

τk = τ. Clearly, we obtain

τ ∈ {min{
µ

K
, τ1}, τ1 +ψ}. (3.7)

�
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Lemma 3.2. Suppose that Assumption (3.1) hold and let {wk} be a sequence generated by Algorithm (3.1).
Then for all x∗ ∈ Γ, we have

‖vk − x∗‖2 ≤ ‖uk − x∗‖2 −
(
1−

µ2τ2
k

τ2
k+1

)
‖uk − yk‖

2, (3.8)

and

‖vk − yk‖ ≤
µτk

τk+1
‖uk − yk‖. (3.9)

Proof. Let x∗ ∈ Γ , then this implies that x∗ = Proxτh(I − τ∇g)x∗, where τ > 0. Also from the

definition of τk, it is obvious that for ∇g(uk) = ∇g(yk),

‖∇g(uk) −∇g(yk)‖ ≤
µ

τk+1
‖uk − yk‖,∀ k ∈N. (3.10)

Now, if ∇g(uk) , ∇g(yk), then

τk+1 = min{
µ‖uk − yk‖

‖∇g(uk) −∇g(yk)‖
, τk + λk} ≤

µ‖uk − yk‖

‖∇g(uk) −∇g(yk)‖
, (3.11)

which implies that ‖∇g(uk) − ∇g(yk)‖ ≤
µ
τk+1
‖uk − yk‖. Hence, we conclude that (3.9) holds when

∇g(uk) = ∇g(yk) and ∇g(uk) , ∇g(yk).

Now, let x∗ ∈ Γ, then from Lemma 2.2 and (3.9), we have

‖vk − x∗‖2 = ‖yk + τk(∇g(uk)) −∇g(yk) − x∗‖2

= ‖yk − x∗ + τk(∇g(uk) −∇g(yk))‖
2

= ‖(yk − uk) + (uk − x∗)‖2 + τ2
k‖∇g(uk) −∇g(yk)‖

2 + 2τk〈yk − x∗,∇g(uk) −∇g(yk)〉

= ‖yk − uk‖+ ‖uk − x∗‖+ τ2
k‖∇g(uk) −∇g(yk)‖

2 + 2〈yk − uk, uk − x∗〉

+ 2τk〈yk − x∗,∇g(uk) −∇g(yk)〉

= ‖uk − x∗‖ − ‖yk − uk‖
2 + τ2

k‖∇g(uk) −∇g(yk)‖
2 + 2〈yk − uk, yk − x∗〉

+ 2τk〈yk − x∗,∇g(uk) −∇g(yk)〉

= ‖uk − x∗‖ − ‖yk − uk‖
2 + τ2

k‖∇g(uk) −∇g(yk)‖
2

+ 2〈yk − x∗, yk − uk,+τk(∇g(uk) −∇g(yk))〉. (3.12)

Now, we need to show that

2〈yk − x∗, yk − uk,+τk(∇g(uk) −∇g(yk))〉 ≤ 0 (3.13)

By using the definition of yk, we deduce that

(I − τk∇g)uk ∈ (I + τk∂h)yk.

Thus, we can write

τk =
uk − yk

τk
−∇g(uk), where τk ∈ ∂h(yk).
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By applying Lemma 2.1, we that ∇g + ∂h is maximal monotone. This implies that

〈yk − x∗,∇g(yK) + tk〉 > 0, (3.14)

and thus

〈yk − x∗, yk − uk + τk(∇g(uk) −∇g(yk))〉 ≤ 0. (3.15)

Hence, on substituting (3.10) and (3.15) into (3.12), we obtain

‖vk − x∗‖2 ≤ ‖uk − x∗‖2 − (1−
µ2τ2

k

τ2
k+1

)‖uk − yk‖
2. (3.16)

Using Algorithm 3.1 and (3.10), we get

‖vk − yk‖ = ‖yk + τk(∇g(uk)) −∇g(yk) − yk‖

≤ τk‖∇g(uk) −∇g(yk)‖

≤ τk
µ

τk + 1
‖uk − yk‖. (3.17)

Hence, the proof completes. �

Lemma 3.3. Suppose that Assumption 3.1 holds and let {wk} be a sequence generated by Algorithm 3.1
exists. Then lim

k→∞
‖wk − x∗‖, where x∗ ∈ Γ.

Proof. Using Algorithm (3.1) and Lemma (3.2) we have.

‖wk+1 − x∗‖2 ≤ ‖(1− δk)zk + δkvk − x∗‖2

= (1− δk)‖zk − x∗‖2 + δk‖vk − x∗‖2 − δk(1− δk)‖zk − vk‖
2

≤ (1− δk)‖zk − x∗‖2 + δk‖uk − x∗‖2 − δk(1− δk)‖zk − vk‖
2. (3.18)

From Algorithm 3.1 and Lemma 2.2 (iii), we have

‖zk − x∗‖2 =‖wk + β(wk + wk+1) − x∗‖2

= ‖(1 + β)(wk − x∗) − β(wk−1 − x∗)‖2

= (1 + β)‖wk − x∗‖2 − β‖wk−1 − x∗‖2 + β(1 + β)‖wk −wk−1‖
2. (3.19)

Similarly,

‖uk − x∗‖2 = ‖wk + θk(wk −wk+1) − x∗‖2

= (1 + θk)‖wk − x∗‖2 − θk‖wk−1 − x∗‖2 + θk(1 + θk)‖wk −wk+1‖. (3.20)

Observe that

wk+1 = (1− δk)zk + δkvk, k ≥ 1, (3.21)

and this implies

‖vk − zk‖
2 =

1
δ2

k

‖wk+1 − zk‖
2
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=
1
δ2

k

‖wk+1 −wk − β(wk −wk+1)‖
2

=
1
δ2

k

{‖wk+1 −wk‖
2 + β2

‖wk −wk−1‖
2
− 2β〈wk+1 −wk, wk −wk−1〉}

≥
1
δ2

k

{||wk+1 −wk‖
2 + β2

‖wk −wk−1‖
2
− 2β‖wk+1 −wk‖‖wk −wk−1}

≥
1
δ2

k

{‖wk+1 −wk‖
2 + β2

‖wk −wk−1‖
2
− β‖wk+1 −wk‖

2
− β‖wk −wk−1‖

2
}

=
‖wk+1 −wk‖

2

δ2
k

−
β2

δ2
k

‖wk −wk−1‖
2
−
β

δ2
k

‖wk −wk−1‖
2

=
1− β
δk
‖wk+1 −wk‖

2 +
β2
− β

δk
‖wk −wk−1‖. (3.22)

On substituting (3.19),(3.20) and (3.22) into (3.18), we get

‖wk+1 − x∗‖2 ≤ (1− δk)‖zk − x∗‖2 + δk‖uk − x∗‖2 − δk(1− δk)‖zk − vk‖
2

≤ (1− δk)(1 + β)‖wk − x∗‖2 − β(1− δk)‖wk−1 − x∗‖2

+ (1− δk)β(1 + β)‖wk −wk−1‖
2

+ δkθk(1 + θk)‖wk −wk−1‖
2
− (1− δk)

−
1− β
δk
‖wk+1 −wk‖

2
−
β2
− β

δk
(1− δk)‖wk −wk−1‖

2

=
(
1 + δkθk + β(1− δk)

)
‖wk − x∗‖2 −

(
δkθk + β(1− δk)

)
‖wk−1 − x∗‖2

+ γk‖wk −wk−1‖
2
− µk‖wk+1 −wk‖

2, (3.23)

where

γk :={(1− δk)β(1 + β) + δkθk(1 + θk) −
1− δk

δk
(β2
− β)},

and

µk =
1− δk

δk
(1− β).

Define

Θk := ‖wk − x∗‖2 − [δkθk + β(1− δk)]‖wk−1 − x∗‖2 + γk‖wk −wk−1‖
2
∀k ≥ 1.

consider with (3.23), one obtain.

Θk+1 −Θk = ‖wk+1 − x∗‖2 − [δk+1θk+1 + β(1− δk+1)]‖wk − x∗‖2

+ γk+1‖wk+1 −wk‖
2
− ‖wk − x∗‖2 + [δkθk + β(1− δk)]‖wk−1 − x∗‖2

− γk‖wk −wk−1‖
2

= ‖wk+1 − x∗‖2 + [δkθk + β(1− δk)]‖wk−1 − x∗‖2 − γk‖wk −wk−1‖
2

− [1 + δk+1θk+1 + β(1− δk+1)]‖wk − x∗‖2 + γk+1‖wk+1 −wk‖
2
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≤

(
[1 + δkθk + β(1− δk)] − [1 + δk+1θk+1 + β(1− δk+1)]

)
‖wk − x∗‖2

+ γk+1‖wk+1 −wk‖
2
− µk‖wk+1 −wk‖

2. (3.24)

Since 0 ≤ β ≤ θ1 ≤ θk, ∀ ≥ 1, and θk ≤ θk+1, δk= δk+1, we obtain θk − β ≥ 0 and θk+1 − β ≥ 0 such

that θk − β ≤ θk+1 − β and δk(θk − β) ≤ δk+1(θk+1 − β) for any k ≥ 1. So

δk(θk − β) − δk+1(θk+1 − β) ≤ 0. (3.25)

Combine (3.25) with (3.24) for any k ≥ 1 we obtain that,

Θk+1 −Θk ≤ [δk(θk − β) − δk+1(θk+1 − β)]‖wk − x∗‖2

+ γk+1‖wk+1 −wk‖
2
− µk‖wk+1 −wk‖

2

≤ −(µk − γk+1)‖wk+1 −wk‖
2. (3.26)

Based on the condition (ii) and (iii) of Assumption (3.1), one gets

µk − γk+1 =
1− δk

δk
(1− β) − (1− δk+1β(1 + β) − δk+1θk+1(1 + θk+1))

+
1− δk+1

δk+1
(β2
− β)

≥ ε(1− β) − 2(1− δk+1) − 2δk+1 + ε(β2
− β)

= ε− εβ− 2 + εβ2
− εβ

= εβ2
− 2εβ− 2. (3.27)

We have that εβ2
− 2εβ− 2 > 0 since β < ε−

√
2ε

ε . Substituting (3.27) into (3.26), we have

Θk+1 −Θk ≤ −η‖wk+1 −wk‖
2, (3.28)

where η := εβ2
− 2εβ− 2 > 0. Therefore, {Θk} is non-increasing.

By definition of γk, there is

Θk = ‖wk − x∗‖2 − [δkθk + β(1− δk)]‖wk−1 − x∗‖2

+ γn‖wk −wk−1‖
2

≥ ‖wk − x∗‖2 − [δkθk + β(1− δk)]‖wk−1 − x∗‖2. (3.29)

Which can imply that

‖wk − x∗‖2 ≤ Θk + [δkθk + β(1− δk)]‖wk−1 − x∗‖2

≤ [Θk + β(1− δk)]‖wk−1 − x∗‖2

≤ Θk +

[
1

1 + ε
+ β(1− δk)

]
‖wk−1 − x∗‖2

= Θ1 + ς‖wk−1 − x∗‖2

.
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.

.

≤ Θ1(1 + ς+ .... + ςk−2 + ςk−1) + ςk
‖w0 − x∗‖2

≤
Θ1

1− ς
+ ςk
‖w0 − x∗‖2. (3.30)

Where ς := 1
1+ε + β(1 − δk) ∈ (0, 1) since β < ε−

√
2ε

ε < ε
(1−ε)(1−δ) , δ < 1 from the choice of β. So,

{‖wk − x∗‖} is bounded. In fact,

−ς‖wk−1 − x∗‖2 ≤ ‖wk − x∗‖2 − ς‖wk−1 − x∗‖2 ≤ Θk ≤ ... ≤ Θ1.

and,

Θk+1 = ‖wk+1 − x∗‖2 − [δk+1θk+1 + β(1− δk+1)]‖wk − x∗‖2

+ γk+1‖wk+1 −wk‖
2

≥ −[δk+1θk+1 + β(1− δk+1)]‖wk − x∗‖2

≥ −ς‖wk − x∗‖2

≥ −ςk+1
‖w0 − x∗‖2 −

Θ1

1− ς
. (3.31)

By (3.28) and (3.31), one has

η
k∑

k=1

‖wk+1 −wk‖
2
≤ Θ1 −Θk+1

≤ ςk+1
‖w0 − x∗‖2 +

Θ1

1− ς
. (3.32)

It means that
∞∑

k=1

‖wk+1 − xk‖
2
≤

Θ1

η(1− ς)
< ∞. (3.33)

Therefore, lim
k→∞
‖wk+1 −wk‖ = 0. Similarly, according the expression of zk and (ii) of Assumption

3.1, we get

lim
k→∞
‖zk −wk‖

2 = lim
k→∞
‖wk −wk−1‖

2 = lim
k→∞
‖uk −wk‖ = 0 (3.34)

From (3.23), we have

‖wk+1 − x∗‖2 ≤ [1 + δkθk + β(1− δk)]‖wk − x∗‖2

− [δkθk + β(1− δk)]‖wk−1 − x∗‖2

+ γk‖wk −wk−1‖
2
− µk‖wk+1 −wk‖

2

≤ [1 + δkθk + β(1− δk)]‖wk − x∗‖2

− [δkθk + β(1− δk)]‖wk−1 − x∗‖2 + γk‖wk −wk−1‖
2

≤ ‖wk − x∗‖2 + [δkθk + β(1− δk)](‖wk − x∗‖2 − ‖wk−1 − x∗‖2)
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+

(
(1− δ)β(1 + β) +

2
1 + ε

+
1− δ
δ

(β2
− β)

)
‖wk −wk−1‖

2. (3.35)

Where γk ≤ (1− δ)β(1+ β) + 2
1+ε +

1−δ
δ (β2

− β),∀k ≥ 1. And also δk + β(1− δk) <
1

1+ε + β(1− δ) < 1

since β < ε−
√

2ε
ε < ε

(1−ε)(1−δ) f or all δ ∈ (0, 1) and ε ∈ (2,∞).

Invoking Lemma (2.4) in (3.35) it is clear to conclude that

lim
k→∞
‖wk − x∗‖ = l < ∞. (3.36)

Hence, the proof completes. �

Lemma 3.4. Let {wk} be a sequence generated by Algorithm 3.1, then we have that,
lim
k→∞
‖yk − uk‖ = 0,

lim
k→∞
‖vk − yk‖ = 0,

(3.37)

Proof. Using (3.34) and (3.36), we have from (3.21),

‖vk − zk‖ =
1
δk
‖wk+1 − zk‖

≤
1
δk
‖wk+1 −wk‖+

β

δk
‖wk −wk+1‖ → 0, k→∞.

(3.38)

Also

‖vk −wk‖ ≤ ‖vk − zk‖+ ‖zk −wk‖ → 0 as k→∞.

‖uk − vk‖ ≤ ‖vk −wk‖+ ‖uk −wk‖ → 0 as k→∞.

Since {wk} is bounded, we have that both {uk} and {vk} are bounded. Hence, from (3.16), we have

for some M > 0 that,(
1−

µ2τ2
k

τ2
k+1

)
‖uk − yk‖

2
≤ ‖uk − x∗‖2 − ‖vk − x∗‖2

=
(
‖uk − x∗‖+ ‖vk − x∗‖

)(
‖uk − x∗‖ − ‖vk − x∗‖

)
≤M‖uk − vk‖ → 0, k→∞.

Thus,

lim
k→∞
‖uk − yk‖ = 0. (3.39)

It is obvious from (3.9) and (3.39), we have that

lim
k→∞
‖vk − yk‖ = 0. (3.40)

�

Theorem 3.1. Let {wk} be generated by Algorithm 3.1 such that Assumption 3.1 hold. Then, every weak
cluster of point {wk} belong to Γ.
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Proof. Let x̄ be a weak sequential cluster point of {wk}, meaning that wkl ⇀ x̄ as l → ∞ for some

subsequence {wkl} of {wk}. Let (v, u) ∈ Gra(∇g + ∂h),that is , u−∇g(v) ∈ ∂h(v). By the difination of

yk, we have that,

ukl − ykl − τkl∇g(ukl)

τkl

∈ ∂h(ykl)

Using the maximal monotonicity of ∂h, we have

〈v− ykl ,∇g(v) −
ukl − ykl − τkl∇g(ukl)

τkl

〉 ≥ 0.

Thus, by monotonicity of ∇g, we have〈
v− ykl , u〉 ≥ 〈v− ykl ,∇g(v) +

ukl − ykl − τkl∇g(ukl)

τkl

〉
= 〈v− ykl,∇g(v) −∇g(ykl)〉+ 〈v− ykl ,∇g(ykl) −∇g(ukl)〉+ 〈v− ykl ,

ukl − ykl

τkl

〉.

≥ 〈v− ykl ,∇g(ykl) −∇g(ukl)〉+
1
τkl

〈v− ykl , ukl − ykl〉.

Using the continuity condition on ∇g, lim
l→∞

1
τkl
> 0, (3.39) and (3.40) that,

〈v− x̄, u〉 = lim
l→∞
〈v− ykl , u〉 ≥ 0, (3.41)

from which, together with the maximal monotonicity of∇g+ ∂h, we obtain that x̄ ∈ arg min(g+ h).
Therefore, x̄ ∈ Γ, lastly by appliying Lemma 2.5, we conclude that {wk} converges weakly to a

solution of Γ. �

4. Numerical Example

In this section, we showcase two numerical experiments to illustrate the effectiveness of our

algorithms. We utilize the MATLAB software to carry out these experiments. We compare our

proposed method with the methods given in [8] and [20]. We choose the control parameters as

follows:

θk =
k

k+1 , δk =
1

k+1 , βk =
1

k+2 and λk =
1
k3 . We also let τ1 = 0.07, µ = 0.5. For [8, Algorithm 3], we

set β = 5, qn = 1
k+1 + 1, f : C → C is defined by f (x) = 1

100 x. We choose σ = 2, δ = 0.1, t1 = 1,

γk =
1

10k+1 and ε = 1
k2 in [20, Algorithm 7].

Example 4.1. Let H = Rm. We consider the LASSO problem formulated as follows:

min
x∈Rm

1
2
‖Bx− d‖2 + λ‖x‖1, (4.1)

where λ ≥ 0 is a regularization parameter. To apply this formulation, we set g(x) = 1
2‖Bx− d‖2 and h(x) =

λ‖x‖1 in (1.1), where B ∈ Rn×m is a random matrix and d ∈ Rn is a random vector. It is easy to see that
∇g(x) = BT(Bx− d). By letting λ = 1, we also have that proxτkh(x) = arg miny∈Rm

{
1

2τk
‖y− x‖2 + ‖y‖1

}
.

Furthermore,

proxτkh(x) = [proxτk |·|x1, proxτk |·|x2, · · · , proxτk |·|xm]
T
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where proxτk |·|xi = max{xi − τk, 0}sign(xi). We select the initial points w0 and w1 randomly in Rn and
then vary the values of n and m as follows:

Case 1 n = 400 and m = 500;

Case 2 n = 300 and m = 700;

Case 3 n = 500 and m = 800;

Case 4 n = 700 and m = 1000.

The execution of the process is stopped at ‖wk+1 −wk‖ ≤ 10−4. The result of this example is given in figure
1.

Example 4.2. Suppose H1 = Rm and H2 = Rn. Let us consider the objective function given as follows:

S(x) := ∂Cx + ∂Q(Ax),

where A ∈ Rn×m is a random matrix, ∂C and ∂Q denote the indicator function of two nonempty, closed and
convex subsets C and Q of H1 and H2, respectively. Then, the problem (1.1) reduces to

min
x∈C

1
2
‖(I − PQ)Ax‖2.
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Figure 1. Numerical results for Example, Top Case I; Bottom Case II
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Figure 2. Top left: Case 1, Top right: Case 2, Bottom left: Case 3, Bottom right: Case 4.

For this formulation to hold, we set n = m and A is the identity matrix. Let C = {x ∈ Rm : ‖x‖ ≤ r}
with a random number r > 0, Q = {y ∈ Rn : 〈a, y〉 ≤ b}with a random vector a ∈ Rm and a random

b ∈ R. We choose the initial points w0 and w1 randomly in Rm and then vary the value m as follows:

Case I m = 200;

Case II m = 400;

Case III m = 700;

Case IV m = 1000.

The execution of the process is stopped at ‖wk+1 −wk‖ ≤ 10−4. The result of this example is given

in figure 1.
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