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Abstract. The Hyers–Ulam stability of functional equations is a subject of mathematical research that examines the

approximate validity of these equations. This notion investigates if a function that nearly fulfills a specified functional

equation must be near a precise solution of that equation. Numerous research have investigated this domain, examining

the stability of diverse functional equations under varying situations. In this present work, we investigated Hyers-Ulam

stability of a n-dimensional additive functional equation in modular spaces using the fixed point approach with the

help of Fatou property.

1. Introduction

Stability in functional equations occurs when an inequality serves as a perturbation. In 1940,

Ulam posed a question about the stability of functional equations [29], which Hyers responded
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to in [9]. Both Aoki [2] and Rassias [23] extended Hyers’ theorem to additive mappings and

linear mappings, respectively, by taking into account an unbounded Cauchy difference. Rassias

considered a mapping f : X→ Y satisfying the condition

‖ f (x1 + x2) − f (x1) − f (x2)‖ε (‖x1‖
p + ‖x2‖

p)

for all x1, x2 ∈ X, where ε ≥ 0 and 0 ≤ p < 1. Afterwards, other mathematicians generalized and

expanded this theorem for p , 1. In the last few decades, we have learned a lot about the stability

of various functional equations [1, 6–8, 11, 12, 26, 27, 30, 31].

The modular theory of linear space was formulated by Nakano, with considerable developments

contributed by Amemiya, Koshi, Shimogaki, Yamamuro, and others. Orlicz, Mazur, Musielak,

Luxemburg, and Turpin [17,20,28], together with other researchers, have further and more compre-

hensively advanced these theories. Modular space theory is increasingly utilized, demonstrating

its importance in various Orlicz spaces [22] and [16, 18], which have extensive applications [20].

The significance of applications lies in the complex structure of modular function spaces, which

are also furnished with norm or metric concepts that are modularly equivalent to Banach Spaces.

In 1974, a comparable fixed point result was presented and proven by Ćirić in [3], relating to the

original Banach fixed-point contracting theorem. Razani [24] have recently sought to expand their

conceptual framework to include modular spaces. The results in metric spaces are comparable

to those of ćirić; however, the ∆2 condition remains unaddressed. The inquiry also pertained to

whether the results of Ćirić could be established without imposing a stringent ∆2-condition within

the modular framework.

In 1950, Nakano introduced modular spaces in relation to order spaces [21]. The spaces were

established based on Orlicz Spaces theory, which substitutes an abstract functional with advan-

tageous qualities, namely an integrated nonlinear function that governs the evolution of space

elements. Readers are advised to refere [4], [5], [10], [15], and [25] for further insights into fixed

point theory in modular spaces, as detailed in those references. In the study cited in [25], Sadeghi

conducted an investigation into the Hyers-Ulam stability of the generalised Jensen functional

equation

f (rx + sy) = rg(x) + sh(x)

in modular spaces. In [13], Kim et al. explored the generalised Hyers-Ulam-Rassias stability of a

nonic functional equation

f (x + 5y) − 9 f (x + 4y) + 36 f (x + 3y) − 84 f (x + 2y) + 126 f (x + y)

−126 f (x) + 84 f (x− y) − 36 f (x− 2y) + 9 f (x− 3y) − f (x− 4y) = 9! f (y)

for mappings from linear spaces into modular spaces that satisfy the ∆2-condition, utilising a

fixed point theorem in modular spaces. Applying the fixed point theorem in probabilistic modular

spaces, Zolfaghari et al. investigated the Hyers-Ulam stability of the general mixed additive and
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quadratic functional equation

f (x + ky) + f (x− ky) = f (x + y) + f (x− y) +
2(k + 1)

k
f (ky) − 2(k + 1) f (y),

in [34].

Mohiuddine et al. presented a novel generalised quartic functional equation type and found

its general solution in [19]. In addition, they looked into the stability outcomes when applying

the Hyers technique in modular space without the ∆b-condition, without the Fatou property, and

without both of these conditions. In addition, they used a fixed-point method based on the concept

of the Fatou property in modular spaces to study the stability results. The non-stability of a unique

case is further proven by demonstrating a relevant counter example.

2. Preliminaries

We start by examining several critically significant concepts.

Definition 2.1. [33] Let V be a vector space over K (C or R). We called a generalized functional
f : V → [0,∞] is a modular if every scalars a1, a2 and for u, v ∈ V,

(a) f (u) = 0⇔ u = 0,
(b) f (a1u) = f (u) with |a1| = 1,
(c) f (a1u + a2v) ≤ f (u) + f (v), ∀ a1, a2 ≥ 0 and a1 + a2 = 1.

If (c) is substituted by
(c
′

) f (a1u + a2v) ≤ a1 f (u) + a2 f (v) for every scalars a1, a2 ≥ 0 and a1 + a2 = 1, then f is thus said
to as convex modular.

The f is a modular that defines an appropriate modular space, i.e. a V f vector space provided with:

V f = {u ∈ V| f (cu)→ 0 as c→ 0}.

Definition 2.2. [33] If V f is a modular space and the sequence {vn} in V f , then

(i) vn
f
−→ v if f (vn − v)→ 0 as n→∞.

(ii) {vn} is known as f -Cauchy if f (vl − vn)→ 0 as l, n tends to∞.
(iii) A subset A ⊆ V f is known as f -complete if and only if every f -Cauchy sequence is f -convergent in

A.

Definition 2.3. [33] Let V f be a modular space and a non-empty subset A ⊆ V f . The mapping Υ : A→ A
is referred to as a quasicontraction, if there is k < 1 satisfies

f (Jl− Jm) ≤ k max{ f (l−m), f (l− Jm), f (m− Jl), f (l− Jl), f (m− Jm)},

for any l, m ∈ A.

Definition 2.4. [33] Let V f be a modular space, a non-empty subset A ⊆ V f , and a function Υ : A→ A,
the Υ orbit around a point v is

O(Υ) := {u, Υu, Υ2u, · · · },
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the quantity
Υ f (Υ) := sup{ f (p− q)|p, q ∈ O(Υ)},

is then related to Υ and is referred to as the orbital diameter of Υ at v. If Υ f (Υ) < ∞, in particular one says
that Υ has an orbit of v that is limited to v.

Fatou property: The f -modular will have the Fatou property if and only if f (v) ≤ limm→∞ inf f (vm)

whenever {vm}
f
−→ v. A modular function is stated to fulfil the conditions ∆2 if there is k > 0 which

satisfies f (2v) ≤ k f (v), for every v ∈ V f .

Theorem 2.1. [33] Let a modular space W f such that f fulfils the Fatou property and A ⊆ W f be a

f -complete. If Υ : A → A is a quasicontraction and Υ has a bounded orbit at v0, then {Υnv0}
f
−→ α, where

α ∈ A.

In this work, we introduce new generalized additive functional equation

ζ
( ∑

1≤ j≤n

jv j

)
=

∑
1≤ j≤n

jζ(v j), (2.1)

where n ≥ 2, and investigated Hyers-Ulam stability of this additive functional equation in modular

space by utilizing the fixed point theory with the help of Fatou property.

Theorem 2.2. If ζ is an odd mapping between two real vector spaces V and W, which fulfils the equation
(2.1) for all v1, v2, · · · , vn ∈ V, then the function ζ is additive.

3. Hyers-Ulam Stability

Consider V as a linear space, W as a Banach space, W f as a f -complete modular space, and f as

a convex modular on W f with the Fatou property which fulfils the ∆2-condition with 0 < k ≤ 2.

For notational handiness, we can define the mapping ζ : V →W f as follows:

Dζ (v1, v2, · · · , vn) = ζ
( ∑

1≤ j≤n

jv j

)
−

∑
1≤ j≤n

jζ(v j),

for all v1, v2, · · · , vn ∈ V.

Theorem 3.1. Let a mapping Γ : Vn
→ [0,+∞) such that

lim
m→∞

1
2m Γ (2mv1, 2mv2, · · · , 2mvn) = 0, (3.1)

and
Γ (2v1, 2v2, · · · , 2vn) ≤ 2LΓ (v1, v2, · · · , vn) , (3.2)

for every vi ∈ V; i = 1, 2, · · · , n, with 0 < L < 1. If an odd mapping ζ : V →W f with ζ(0) = 0 fulfils

f (Dζ (v1, v2, · · · , vn)) ≤ Γ (v1, v2, · · · , vn) , (3.3)

for all vi ∈ V; i = 1, 2, · · · , n, then there is only one additive solution Q4 : V →W f satisfies

f (Q4(v) − ζ(v)) ≤
1

2(1− L)
Γ(0, v, 0, · · · , 0), (3.4)
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for every v ∈ V.

Proof. Let us define the set

ξ = {p : V →W f }

and f is a function on ξ as

f (p) =: inf{α > 0 : f (p(v)) ≤ αΓ(0, v, 0, · · · , 0), ∀ v ∈ V}.

Now, We need to demonstrate that the function f is a convex modular on ξ. Clearly, f holds the

modular conditions (a) and (b). So that, it is enough to verify that the function f is convex, and so

(c
′

) is holds. For any given ε > 0, then there exist α1 > 0 and α2 > 0 which are real constants such

that

f (p) ≤ α1 ≤ f (p) + ε and f (q) ≤ α2 ≤ f (q) + ε.

Also

f (p(v)) ≤ α1Γ(0, v, 0, · · · , 0), f (q(v)) ≤ α2Γ(0, v, 0, · · · , 0), v ∈ V.

Let us consider for any a1, a2 ≥ 0 and a1 + a2 = 1, then we have

f (a1p(v) + a2q(v)) ≤ a1 f (p(v)) + a2 f (q(v))

≤ (α1a1 + α2a2) Γ(0, v, 0, · · · , 0),

so we get

f (a1p + a2q) ≤ a1 f (p) + a2 f (q) + (a1 + a2)ε.

From this, we conclude that the function f is convex modular on ξ. Next, we want to verify that

ξ f is f -complete.

Suppose {pn} is a f -Cauchy sequence in ξ f and for every ε > 0. Then there is a non-negative

integer n0 ∈N satisfies

f (pn − pm) < ε, ∀ n, m ≥ n0. (3.5)

We have

f (pn(v) − pm(v)) ≤ εΓ(0, v, 0, · · · , 0), v ∈ V, n, m ≥ n0. (3.6)

Therefore, a f -Cauchy sequence {pn(v)} in W f . As W f is f -complete, thus {pn(v)} is convergent in

W f , for every v ∈ V. Now, let us define a mapping p : V →W f by

p(v) := lim
n→∞

pn(v), v ∈ V. (3.7)

As f holds the Fatou property, using (3.6), it arrives that

f (pn(v) − p(v)) ≤ lim inf
m→∞

f (pn(v) − pm(v)) ≤ εΓ(0, v, 0, · · · , 0), (3.8)

so

f (pn − p) ≤ ε, (3.9)

for all n ≥ n0. Thus, {pn} is f -converges. Hence ξ f is f -complete.
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Next, we want to prove that f holds the Fatou property. Suppose that a f -convergent sequence

{pn} converges to a point p ∈ ξ f .

For every ε > 0 and n ∈N, let a real constant αn such that

f (pn) ≤ αn ≤ f (pn) + ε. (3.10)

So

f (pn(v)) ≤ αnΓ(0, v, 0, · · · , 0), ∀v ∈ V. (3.11)

We know that f holds the Fatou property, we get

f (p(v)) ≤ lim
n→∞

inf f (pn(v))

≤ lim
n→∞

infαnΓ(0, v, 0, · · · , 0)

≤

[
lim
n→∞

inf f (pn) + ε
]

Γ(0, v, 0, · · · , 0).

Thus, we obtain

f (p) ≤ lim
n→∞

inf f (pn) + ε.

Hence, f also holds the Fatou property.

Let us define a mapping σ : ξ f → ξ f by

σp(v) =
1
2

p(2v),

for all v ∈ V and p ∈ ξ f . Let p, q ∈ ξ f and an arbitrary constant α ∈ [0, 1] with f (p− q) < α. Utilizing

the definition of f , we obtain

f (p(v) − q(v)) ≤ αΓ(0, v, 0, · · · , 0)

for every v ∈ V. By inequality (3.2) and the above inequality, we reach

f
(

p(2v)
2
−

q(2v)
2

)
≤

1
2

f (p(2v) − q(2v))

≤
1
2
αΓ (0, 2v, 0, · · · , 0)

≤ αLΓ(0, v, 0, · · · , 0),

for every v ∈ V. Hence,

f (σp− σq) ≤ L f (p− q), ∀ p, q ∈ ξ f .

i.e., σ is a f -contraction. We are now proving that σ has a ζ limited orbit. Replacing (v1, v2, · · · , vn)

by (0, v, 0, · · · , 0) in (3.3), we get

f (ζ(2v) − 2ζ(v)) ≤ Γ(0, v, 0, · · · , 0),

⇒ f
(
ζ(2v)

2
− ζ(v)

)
≤

1
2

Γ(0, v, 0, · · · , 0), v ∈ V. (3.12)
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Replacing v with 2v in (3.12), we get

f
(
ζ(22v)

2
− ζ(2v)

)
≤

1
2

Γ(0, 2v, 0, · · · , 0),

⇒ f
(
ζ(22v)

22 −
ζ(2v)

2

)
≤

1
22 Γ(0, 2v, 0, · · · , 0), v ∈ V. (3.13)

By using (3.12) and (3.13), we get

f
(
ζ(22v)

22 − ζ(v)
)
≤ f

(
ζ(22v)

22 −
ζ(2v)

2
+
ζ(2v)

2
− ζ(v)

)
≤ f

(
ζ(22v)

22 −
ζ(2v)

2

)
+ f

(
ζ(2v)

2
− ζ(v)

)
≤

1
22 Γ(0, 2v, 0, · · · , 0) +

1
2

Γ(0, v, 0, · · · , 0), v ∈ V. (3.14)

We can easily see this through induction

f
(
ζ (2nv)

2n − ζ(v)
)
≤

n∑
i=1

1
2i Γ

(
0, 2i−1v, 0, · · · , 0

)
≤

1
L2

Γ(0, v, 0, · · · , 0)
n∑

i=1

Li

≤
1

2(1− L)
Γ(0, v, 0, · · · , 0), (3.15)

for all v ∈ V. This results from (3.15) inequality

f
(
ζ (2nv)

2n −
ζ (2mv)

2m

)
≤

1
2

f
(
2
ζ (2nv)

2n − 2ζ(v)
)
+

1
2

f
(
2
ζ (2mv)

2m − 2ζ(v)
)

≤
k
2

f
(
ζ (2nv)

2n − ζ(v)
)
+

k
2

f
(
ζ (2mv)

2m − ζ(v)
)

≤
k
2

1
2(1− L)

Γ(0, v, 0, · · · , 0) +
k
2

1
2(1− L)

Γ(0, v, 0, · · · , 0)

≤
k

2(1− L)
Γ(0, v, 0, · · · , 0), v ∈ V,

and n, m ∈N. We conclude that by defining f ,

f (σnζ− σmζ) ≤
k

2(1− L)
.

This means that an orbit of σ at ζ is bounded. The sequence of {σnζ} f -converges into Q4 ∈ ξ f ,

according to Theorem 1.5 in [33]. Now, we have the f -contractivity of σ, that

f (σnζ− σQ4) ≤ L f
(
σn−1ζ−Q4

)
.
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If we pass n→∞ and apply f Fatou property, we get this

f (σQ4 −Q4) ≤ lim inf
n→∞

f (σQ4 − σ
nζ)

≤ L lim inf
n→∞

f
(
Q4 − σ

n−1ζ
)
= 0.

Thus, Q4 is a fixed point of σ. Switching (v1, v2, · · · , vn) by
(
2lv1, 2lv2, · · · , 2lvn

)
in (3.3), we get

f
(
Dζ

(
2lv1, 2lv2, · · · , 2lvn

))
≤ Γ

(
2lv1, 2lv2, · · · , 2lvn

)
,

for all v1, v2, · · · , vn ∈ V. Therefore

f
( 1
2l

Dζ
(
2lv1, 2lv2, · · · , 2lvn

))
≤

1
2l

Γ
(
2lv1, 2lv2, · · · , 2lvn

)
. (3.16)

Employing the limit l→∞, we get

DQ4 (v1, v2, · · · , vn) = 0,

for all v1, v2, · · · , vn ∈ V. It follows from Theorem 2.2, that Q4 is additive. By using (3.15), we get

(3.4).

Let Q
′

4 : V →W f be another additive mapping that meets inequality (3.4) to proved the unique

character of Q4. Then Q4
′

is a σ fixed point.

f
(
Q4 −Q

′

4

)
= f

(
σQ4 − σQ

′

4

)
≤ L f

(
Q4 −Q

′

4

)
.

which implies that f
(
Q4 −Q

′

4

)
= 0. This proves that Q4 = Q

′

4. Therefore, the function Q4 is the

unique solution. This completes the proof. �

Corollary 3.1. Let a function Γ : Vn
→ [0,+∞) such that

lim
l→∞

1
2l

Γ
(
2lv1, 2lv2, · · · , 2lvn

)
= 0,

and

Γ (2v1, 2v2, · · · , 2vn) ≤ L2Γ (v1, v2, · · · , vn) ,

for all v1, v2, · · · , vn ∈ V with 0 < L < 1. If an odd mapping ζ : V →W with ζ(0) = 0 which fulfils

‖Dζ(v1, v2, · · · , vn)‖ ≤ Γ(v1, v2, · · · , vn), (3.17)

for every vi ∈ V; i = 1, 2, · · · , n, then there is only one additive solution Q4 : V →W satisfies

‖Q4(v) − ζ(v)‖ ≤
1

2(1− L)
Γ(0, v, 0, · · · , 0),

for every v ∈ V.

Proof. Each normed space is known to be a f (v) = ‖v|modular space and to hold the ∆2-condition

with k = 2. �
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Remark 3.1. If we replacing Γ(v1, v2, · · · , vn) by α (
∑n

i=1 ‖vi‖
p) and taking L = 2p−1 in Corollary 3.1, we

arrive the stability results for the sum of norms that

‖Q4(v) − ζ(v)‖ ≤
α‖v‖p

(2− 2p)
, v ∈ V,

where α and p are constants with p < 1.

Remark 3.2. If we replacing Γ(v1, v2, · · · , vn) by α (
∑n

i=1 ‖vi‖
np +

∏n
i=1 ‖vi‖

p) and taking L = 2np−1 in
Corollary 3.1, we arrive the stability results for the sum of product of norms that

‖Q4(v) − ζ(v)‖ ≤
α‖v‖np

(2− 2np)
, v ∈ V,

where α and p are constants with np < 1.

Theorem 3.2. Let a mapping Γ : Vn
→ [0,+∞) satisfies

lim
m→∞

2mΓ
( v1

2m ,
v2

2m , · · · ,
vn

2m

)
= 0 (3.18)

and

Γ
(v1

2
,

v2

2
, · · · ,

vn

2

)
≤

L
2

Γ (v1, v2, · · · , vn) (3.19)

for all v1, v2, · · · , vn ∈ V with 0 < L < 1. If an odd mapping ζ : V →W f with ζ(0) = 0 which fulfils (3.3),
then there is only one additive solution Q4 : V →W f satisfies

f (Q4(v) − ζ(v)) ≤
L

2(1− L)
Γ(0, v, 0, · · · , 0), (3.20)

for every v ∈ V.

Proof. Let us define a set

ξ = {p : V →W f }

and f be a function on ξ as,

f (p) =: inf{α > 0 : f (p(v)) ≤ αΓ(0, v, 0, · · · , 0), ∀ v ∈ V}.

We have the same evidence as Theorem 3.1:

1. The function f is a convex modular on ξ.

2. ξ f is f -complete.

3. f holds the Fatou property.

We now think of the mapping σ : ξ f→ξ f
defined by:

σp(v) = 2p
(v
2

)
, v ∈ V,

and p ∈ ξ f . Let p, q ∈ ξ f and an arbitrary constant α ∈ [0, 1] with f (p − q) < α. Utilizing the

definition of f , we obtain

f (p(v) − q(v)) ≤ αΓ(0, v, 0, · · · , 0), v ∈ V.
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We get through assumption and above inequality, that

f
(
2p

(v
2

)
− 2q

(v
2

))
≤ k f

(
p
(v
2

)
− q

(v
2

))
≤ kαΓ

(
0,

v
2

, 0, · · · , 0
)

≤ αLΓ(0, v, 0, · · · , 0), v ∈ V.

Hence,

f (σp− σq) ≤ L f (p− q), p, q ∈ ξ f ,

i.e., σ is a f -contraction.

Next, we prove then that σ has a bounded orbit at ζ. Setting (v1, v2, · · · , vn) by (0, v, 0, · · · , 0) in

(3.3), we get

f (2ζ(v) − ζ(2v)) ≤ Γ(0, v, 0, · · · , 0), (3.21)

for every v ∈ V. Replacing v with v
2 in (3.21), we get

f
(
2ζ

(v
2

)
− ζ (v)

)
≤ Γ

(
0,

v
2

, 0, · · · , 0
)

, (3.22)

for every v ∈ V. Replacing v with v
2 in (3.22), we get

f
(
2ζ

( v
22

)
− ζ

(v
2

))
≤ Γ

(
0,

v
22 , 0, · · · , 0

)
, (3.23)

for all v ∈ V. By using (3.21) , (3.22) and (3.23), we get

f
(
22ζ

( v
22

)
− ζ(v)

)
≤ f

(
22ζ

( v
22

)
− 2ζ

(v
2

))
+ f

(
2ζ

(v
2

)
− ζ(v)

)
≤ k f

(
2ζ

( v
22

)
− ζ

(v
2

))
+ f

(
2ζ

(v
2

)
− ζ(v)

)
≤ 2Γ

(
0,

v
22 , 0, · · · , 0

)
+ Γ

(
0,

v
2

, 0, · · · , 0
)

, (3.24)

for every v ∈ V. We can easily see this through induction

f
(
2nζ

( v
2n

)
− ζ(v)

)
≤

1
2

n∑
i=1

2iΓ
(
0,

v
2i , 0, · · · , 0

)
≤

1
2

Γ(0, v, 0, · · · , 0)
n∑

i=1

Li

≤
L

2(1− L)
Γ(0, v, 0, · · · , 0), (3.25)

for every v ∈ V. It is the result of inequality (3.25) that

f
(
2nζ

( v
2n

)
− 2mζ

( v
2m

))
≤

1
2

f
(
2(2n)ζ

( v
2n

)
− 2ζ(v)

)
+

1
2

f
(
2(2m)ζ

( v
2m

)
− 2ζ(v)

)
≤

kL
2(1− L)

Γ(0, v, 0, · · · , 0), v ∈ V,
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and every n, m ∈N. We can conclude that by defining f ,

f (σnζ− σmζ) ≤
kL

2(1− L)
.

That means that σ orbit is limited to ζ. The sequence {σnζ} f -converges to Q4 ∈ ξ f from Theorem

1.5 in [33].

Now, by the f -contractivity of σ, we have

f (σnζ− σQ4) ≤ L f
(
σn−1ζ−Q4

)
.

Taking n→∞ and utilizing the Fatou property of f , we arrive

f (σQ4 −Q4) ≤ lim inf
n→∞

f (σQ4 − σ
nζ)

≤ L lim inf
n→∞

f
(
Q4 − σ

n−1ζ
)
= 0.

Therefore, Q4 is a fixed point of σ. Replacing (v1, v2, · · · , vn) by
(

v1
2l , v2

2l , · · · , vn
2l

)
in (3.3), we get

f
(
Dζ

(
2−lv1, 2−lv2, · · · , 2−lvn

))
≤ Γ

(
2−lv1, 2−lv2, · · · , 2−lvn

)
,

for all v1, v2, · · · , vn ∈ V. Therefore,

f
(
2lDζ

(v1

2l
,

v2

2l
, · · · ,

vn

2l

))
≤ klΓ

(v1

2l
,

v2

2l
, · · · ,

vn

2l

)
. (3.26)

Passing to the limit l→∞, we get

DQ4 (v1, v2, · · · , vn) = 0,

for all v1, v2, · · · , vn ∈ V. It follows from Theorem 2.2, that Q4 is additive. By using (3.25), we get

(3.20).

In order to prove that the uniqueness of Q4, consider another additive solution Q
′

4 : V →W f to

satisfy the inequality (3.4). Then Q
′

4 is a fixed point of σ.

f
(
Q4 −Q

′

4

)
= f

(
σQ4 − σQ

′

4

)
≤ L f

(
Q4 −Q

′

4

)
.

which implies that f
(
Q4 −Q

′

4

)
= 0 or Q4 = Q

′

4. Hence the proof is now completed. �

Corollary 3.2. Let a mapping Γ : Vn
→ [0,+∞) satisfies

lim
l→∞

2lΓ
(v1

2l
,

v2

2l
, · · · ,

vn

2l

)
= 0,

and

Γ
(v1

2
,

v2

2
, · · · ,

vn

2

)
≤

L
2

Γ (v1, v2, · · · , vn) ,

for every vi ∈ V; i = 1, 2, · · · , n, with 0 < L < 1. If an odd mapping ζ : V → W with ζ(0) = 0 which
fulfils (3.17), then there is only one additive solution Q4 : V →W fulfils

‖Q4(v) − ζ(v)‖ ≤
L

2(1− L)
Γ(0, v, 0, · · · , 0),

for every v ∈ V.



12 Int. J. Anal. Appl. (2025), 23:148

Proof. Each normed space is known to be a f (v) = ‖v|modular space and to hold the ∆2-condition

with k = 2. �

Remark 3.3. If we replacing Γ(v1, v2, · · · , vn) by α (
∑n

i=1 ‖vi‖
p) and taking L = 21−p in Corollary 3.2, we

arrive the stability results for the sum of norms that

‖Q4(v) − ζ(v)‖ ≤
α‖v‖p

(2p − 2)
, v ∈ V,

where α and p are constants with p > 1.

Remark 3.4. If we replacing Γ(v1, v2, · · · , vn) by α (
∑n

i=1 ‖vi‖
np +

∏n
i=1 ‖vi‖

p) and taking L = 21−np in
Corollary 3.2, we arrive the stability results for the sum of product of norms that

‖Q4(v) − ζ(v)‖ ≤
α‖v‖np

(2np − 2)
, v ∈ V,

where α and p are constants with np > 1.

4. Conclusion

In this present work, we investigated Hyers-Ulam stability of a n-dimensional additive func-

tional equation in modular spaces using the fixed point approach with the help of Fatou property.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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