International Journal of Analysis and Applications

International Journal of Analysis and Applications

Vanishing Theorems, Support Conditions, and Boundary Problems for $\overline{\partial}$ on Weak Z(q) Domains

Sayed Saber^{1,2,*}, Abdullah A. Alahmari³

¹Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia ²Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt ³Department of Mathematics, Faculty of Sciences, Umm Al-Qura University, Saudi Arabia

*Corresponding author: Sayed011258@science.bsu.edu.eg

Abstract. Let *X* be a complex manifold of complex dimension $n \ge 2$, and let $\Omega \in X$ be a relatively compact domain with smooth boundary that satisfies the weak Z(q)-condition. Assume \mathcal{F} is a holomorphic line bundle over *X*, and denote by $\mathcal{F}^{\otimes m}$ its *m*-th tensor power for some positive integer *m*. Provided there exists a strongly plurisubharmonic function defined in a neighborhood of the boundary $b\Omega$, it is possible to obtain solutions to the $\overline{\partial}$ -equation within Ω , under support conditions, for (p,q)-forms with $q \ge 1$ taking values in $\mathcal{F}^{\otimes m}$. Additionally, we study the solvability of the boundary $\overline{\partial}_b$ -problem on weak Z(q)-domains with smooth boundary in the setting of Kähler manifolds. Moreover, an extension theorem for $\overline{\partial}_b$ -closed differential forms will be proven.

1. Introduction

The study of the $\overline{\partial}$ -problem with support constraints has been a central topic in several complex variables and complex geometry. A fundamental contribution was made by Derridj [1], who utilized Carleman-type estimates to address the $\overline{\partial}$ -problem for forms with exact support on domains possessing smooth plurisubharmonic defining functions. Extending this direction, Shaw [2] proved solvability for the $\overline{\partial}$ -problem under support constraints on pseudoconvex domains in \mathbb{C}^n with merely C^1 boundaries, highlighting a relaxation of regularity conditions.

Later developments by Cao, Shaw, and Wang [3] investigated the ∂-problem with support conditions in locally Stein domains embedded within complex projective spaces, illustrating the subtle

Received: Apr. 29, 2025.

²⁰²⁰ Mathematics Subject Classification. 32F10, 32W05, 32L05, 32Q10, 32Q15, 53C55.

Key words and phrases. Compact complex manifolds; Kähler metrics; Vanishing theorems; Kodaira's embedding theorem; holomorphic line bundle.

interactions between positivity and projective geometry. In another significant advancement, Sambou [4] treated the $\overline{\partial}$ -problem for extendable currents defined over strongly *q*-convex or *q*-concave domains, applying refined cohomological and analytic techniques, see also [5–7].

Weak pseudoconvexity introduces additional challenges. Solutions to the $\overline{\partial}$ -problem with support constraints on weakly *q*-pseudoconvex domains with C^1 boundary were studied in [8,9], and these results were extended to the setting of Stein manifolds in [10], showing the important role played by the ambient complex geometry. Saber [11] further developed this theory for *E*-valued differential forms on weakly pseudoconvex domains, assuming positivity conditions on the curvature of the line bundle *E* and applying L^2 techniques in the spirit of Hörmander's methods [12].

Parallel to the ∂ -problem inside domains, the tangential Cauchy-Riemann operator ∂_b on boundaries has also been extensively studied. Folland and Kohn [13] established foundational results concerning the $\overline{\partial}_b$ -complex and the boundary behavior of $\overline{\partial}$ -solutions, leading to applications in CR geometry. Further work on boundary extension problems can be found in the contributions of Ohsawa [14, 15], where fine boundary regularity and extension properties were analyzed using techniques inspired by the theory of Levi convexity and Kodaira's vanishing theorems [16, 17]. Vesentini [18] and Griffiths [19] also [20,21] developed important tools linking positivity, convexity, and cohomological vanishing, which inform the background of this work.

The objective of this paper is to extend these classical and modern results to a broader geometric setting, namely, to weak Z(q) domains, a class that generalizes weak pseudoconvexity. Specifically, we address the $\overline{\partial}$ -problem for (p,q)-forms with $q \ge 1$ taking values in the *m*-fold tensor powers $\mathcal{F}^{\otimes \tau}$ of a holomorphic line bundle *E*, under the assumption of the existence of a strongly plurisubharmonic function in a neighborhood of the boundary.

Our first main result establishes the solvability of the ∂-equation with support constraints:

Theorem 1.1. Let X be a complex manifold of dimension $n \ge 2$, and let $\Omega \in X$ be a weak Z(q) domain with smooth boundary. Suppose \mathcal{F} is a holomorphic line bundle over X, and let $\mathcal{F}^{\otimes \tau}$ denote its *m*-fold tensor product, for a positive integer *m*. Assume there exists a strongly plurisubharmonic function defined in a neighborhood of b Ω . Then, for any $\phi \in L^2_{p,q}(X, \mathcal{F}^{\otimes \tau})$, supported in $\overline{\Omega}$, with $q \ge 1$, satisfying $\overline{\partial}\phi = 0$ in the distribution sense on X, there exists a solution $u \in L^2_{p,q-1}(X, \mathcal{F}^{\otimes \tau})$, also supported in $\overline{\Omega}$, such that

$$\overline{\partial} u = \phi$$

in the distribution sense on X.

In addition to interior results, we explore applications to the boundary theory. We study the $\overline{\partial}_b$ -problem for CR forms on $b\Omega$, extending classical extension theorems by providing C^k -smooth $\overline{\partial}$ -closed extensions into Ω under suitable conditions. Our approach leverages estimates and techniques related to Carleman inequalities, spectral theory, and vanishing theorems, building on methods found in works such as [22,23].

Moreover, inspired by ideas from Grauert-Lieb [20] and recent developments by Saber and collaborators [24]- [41], we obtain new solvability criteria for the $\overline{\partial}_b$ -problem with Sobolev regularity on the boundary and the existence of exact support solutions. This work also connects with broader questions concerning the L^2 theory on weakly pseudoconvex and pseudoconcave domains, as studied in [42–49].

Thus, this paper aims to contribute to the growing understanding of the $\overline{\partial}$ -equation and boundary problems on non-classical domains, bridging analytic techniques with complex geometric structures.

The objective of this paper is to extend classical and modern results concerning the solvability of the $\overline{\partial}$ -equation and boundary $\overline{\partial}_b$ -problems to the broader setting of weak Z(q) domains. Specifically, the authors aim to solve the $\overline{\partial}$ -equation with support constraints for (p,q)-forms (with $q \ge 1$) valued in high tensor powers of a holomorphic line bundle, assuming the existence of a strongly plurisubharmonic function near the boundary; investigate boundary solvability for the $\overline{\partial}_b$ -problem on weak Z(q) domains with smooth boundaries in Kähler manifolds; and establish extension theorems for $\overline{\partial}_b$ -closed forms from the boundary into the domain. The overall goal is to contribute to the growing understanding of the $\overline{\partial}$ -equation and boundary problems on non-classical domains, bridging analytic techniques with complex geometric structures.

The paper is organized as follows: In Section 2, we introduce preliminary concepts, including weakly Z(q) domains, Hermitian metrics, and the relevant function spaces. Section 3 is devoted to proving the main solvability theorem for the $\overline{\partial}$ -equation with support conditions. In Section 4, we address the $\overline{\partial}_b$ -problem on the boundary and provide extension theorems for CR forms. Section 5 presents extension results for differential forms from the boundary into the interior of the domain.

2. Weakly Z(q) Domains

Let *X* be an *n*-dimensional complex manifold, and let Ω denote an open subset of *X* with defining function ρ . Suppose *E* is a holomorphic line bundle over *X*, and let \mathcal{F}^* represent its dual bundle. Consider an open cover $\{\mathcal{U}_j\}_{j\in J}$ of *X* such that *E* is trivial over each \mathcal{U}_j , i.e., $\pi^{-1}(\mathcal{U}_j) \simeq \mathcal{U}_j \times \mathbb{C}$. Assume that on each \mathcal{U}_j , local holomorphic coordinates are given by $(z_j^1, z_j^2, \dots, z_j^n)$. Let $\{e_{jk}\}$ denote the system of transition functions of *E* relative to this covering.

An (p,q)-form $\phi = \{\phi_i\}$ on *X* can be locally expressed as

$$\phi_j = \sum_{C_r, D_s}' \phi_{j, C_r \overline{D_s}} dz_j^{C_r} \wedge d\overline{z_j}^{D_s},$$

where $C_r = (c_1, ..., c_r)$ and $D_s = (d_1, ..., d_s)$ are strictly increasing multi-indices, and Σ' indicates summation over such ordered indices.

Let the Hermitian metric on X be given locally by

$$ds^{2} = \sum_{\phi,\beta=1}^{n} g_{j,\phi\overline{\beta}}(z) \, dz_{j}^{\nu} \, d\overline{z}_{j}^{\beta},$$

where $g_{i,\phi\overline{\beta}}$ are smooth functions. The associated (1, 1)-form is

$$\omega = \frac{\sqrt{-1}}{2} \sum_{\nu,\beta=1}^{n} g_{j,\phi\overline{\beta}}(z) \, dz_{j}^{\nu} \wedge d\overline{z}_{j}^{\beta}$$

If $d\omega = 0$, the metric ds^2 is called a Kähler metric, and ω is the corresponding Kähler form. A complex manifold that admits a Kähler metric is referred to as a Kähler manifold.

Now, let $h = \{h_j\}$ denote a Hermitian metric on E relative to the cover $\{\mathcal{U}_j\}_{j\in J}$, satisfying the compatibility condition $h_j = |e_{jk}|^2 h_k$ on overlaps $\mathcal{U}_j \cap \mathcal{U}_k$. Given integers $p, q \ge 0$ and $\tau \ge 1$, we introduce the following function spaces. We denote by $\mathscr{C}_{p,q}^{\infty}(\Omega, \mathcal{F}^{\otimes \tau})$ the space of smooth (p, q)-forms on Ω valued in $\mathcal{F}^{\otimes \tau}$, and $\mathscr{C}_{p,q}^{\infty}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ the subspace of forms smoothly extendable up to the boundary $b\Omega$. We denote by $\mathscr{D}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ the space of smooth (p, q)-forms with compact support in Ω .

The Hodge star operator \star maps $\mathscr{C}^{\infty}_{p,q}(\mathcal{X}, \mathcal{F}^{\otimes \tau})$ into $\mathscr{C}^{\infty}_{n-s,n-r}(\mathcal{X}, \mathcal{F}^{\otimes \tau})$. The conjugation operator $\#_{\mathcal{F}^{\otimes \tau}}$ maps $\mathscr{C}^{\infty}_{p,q}(\mathcal{X}, \mathcal{F}^{\otimes \tau})$ to $\mathscr{C}^{\infty}_{q,p}(\mathcal{X}, \mathcal{F}^{*\otimes \tau})$ and is given by

$$#_{\mathcal{F}^{\otimes \tau}}\phi = h^{\tau}\overline{\phi}.$$

It commutes with the Hodge star operator. Similarly, we define

$$\#_{\mathcal{F}^{*\otimes \tau}}: \mathscr{C}^{\infty}_{p,q}(\mathcal{X}, \mathcal{F}^{*\otimes \tau}) \longrightarrow \mathscr{C}^{\infty}_{q,p}(\mathcal{X}, \mathcal{F}^{\otimes \tau})$$

by

$$#_{\mathcal{F}^{*\otimes \tau}}\phi = h^{-m}\overline{\phi},$$

and note that $\#_{\mathcal{F}^{*\otimes \tau}}$ is the inverse of $\#_{\mathcal{F}^{\otimes \tau}}$.

We define

$$\mathscr{B}_{p,q}(\overline{\Omega},\mathcal{F}^{\otimes \tau}) = \left\{ \phi \in \mathscr{C}^{\infty}_{p,q}(\overline{\Omega},\mathcal{F}^{\otimes \tau}) ; \, \star \#_{\mathcal{F}^{\otimes \tau}} \phi \Big|_{b\Omega} = 0 \right\}.$$

Also, dV will denote the volume element corresponding to the Hermitian metric ds^2 .

The Cauchy-Riemann operator

$$\overline{\partial}: \mathscr{C}^{\infty}_{p,q-1}(\Omega, \mathcal{F}^{\otimes \tau}) \longrightarrow \mathscr{C}^{\infty}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$$

is defined in the standard way. Its formal adjoint is denoted by ϑ_{τ} . ker $(\overline{\partial}, \mathcal{F}^{\otimes \tau})$ for the kernel of $\overline{\partial}$, dom $(\overline{\partial}, \mathcal{F}^{\otimes \tau})$ for its domain, and range $(\overline{\partial}, \mathcal{F}^{\otimes \tau})$ for its range. The Dolbeault cohomology group is defined as

$$H^{p,q}(\mathcal{X},\mathcal{F}^{\otimes \tau}) = \frac{\mathscr{C}^{\infty}_{p,q}(\mathcal{X},\mathcal{F}^{\otimes \tau}) \cap \ker(\overline{\partial},\mathcal{F}^{\otimes \tau})}{\overline{\partial}(\mathscr{C}^{\infty}_{p,q-1}(\mathcal{X},\mathcal{F}^{\otimes \tau}))}.$$

On the boundary $b\Omega$, we consider the quotient space

$$\mathscr{C}_{p,q}^{\infty}(b\Omega,\mathcal{F}^{\otimes \tau}) = \mathscr{C}_{p,q}^{\infty}(\overline{\Omega},\mathcal{F}^{\otimes \tau})/\mathscr{D}_{p,q}(\Omega,\mathcal{F}^{\otimes \tau}),$$

and the natural projections

$$\pi_{p,q}: \mathscr{C}^{\infty}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau}) \longrightarrow \mathscr{C}^{\infty}_{p,q}(b\Omega, \mathcal{F}^{\otimes \tau}),$$

and

$$\sigma_{p,q}:\bigoplus_{p,q}\mathscr{C}^{\infty}_{p,q}(\overline{\Omega},\mathcal{F}^{\otimes \tau})\longrightarrow \mathscr{C}^{\infty}_{p,q}(b\Omega,\mathcal{F}^{\otimes \tau}).$$

We shall simply denote by $u|_{b\Omega}$ the projection $\pi_{p,q}(u)$.

The tangential Cauchy-Riemann operator

$$\overline{\partial}_b: \mathscr{C}^{\infty}_{p,q}(b\Omega, \mathcal{F}^{\otimes \tau}) \longrightarrow \mathscr{C}^{\infty}_{r,s+1}(b\Omega, \mathcal{F}^{\otimes \tau})$$

is defined by

$$\overline{\partial}_b = \sigma_{r,s+1} \circ d \circ (\pi_{p,q})^{-1}.$$

Functions f on $b\Omega$ satisfying $\overline{\partial}_b f = 0$ are called CR functions. A function f is CR if and only if there exists a smooth extension F on $\overline{\Omega}$ such that $F|_{b\Omega} = f$ and $\overline{\partial}F = 0$.

For smooth sections ϕ , $u \in \mathscr{C}_{p,q}^{\infty}(X, \mathcal{F}^{\otimes \tau})$, the pointwise inner product $(\phi, u)_{\tau}$ is defined by

$$(\phi, u)_{\tau} dV = \phi_j \wedge \star h^{\tau} \mathcal{U}_j = \phi_j \wedge \star \#_{\mathcal{F}^{\otimes \tau}} \mathcal{U}_j.$$

The global inner product is given by

$$\langle \phi, u \rangle_{\tau,\Omega} = \int_{\Omega} \phi \wedge \star \#_{\mathcal{F}^{\otimes \tau}} u,$$

and the corresponding norm is

$$\|\phi\|_{\tau,\Omega}^2 = \langle \phi, \phi \rangle_{\tau,\Omega}.$$

Finally, for $\phi \in \mathscr{C}_{p,q}^{\infty}(\Omega, \mathcal{F}^{\otimes \tau})$ and $\eta \in \mathscr{D}_{p,q-1}(\Omega, \mathcal{F}^{\otimes \tau})$, the formal adjoint operator ϑ_{τ} corresponding to $\overline{\partial}$ is defined as usual.

Definition 2.1. Let $\pi : E \longrightarrow X$ be a holomorphic line bundle. We say that E is positive over a subset $\Omega \subseteq X$ if there exists a collection of coordinate charts $\{\mathcal{U}_j\}_{j\in J}$ covering X such that $\pi^{-1}(\mathcal{U}_j)$ are trivial bundles, together with a Hermitian metric $h = \{h_j\}$ defined along the fibres of E, satisfying that $-\log h_j$ is strictly plurisubharmonic on each $\mathcal{U}_j \cap \Omega$ for all $j \in J$.

Utilizing the framework of complex tensor calculus for Kähler manifolds with boundary, we arrive at the following important result (refer to [15]).

Proposition 2.1. Suppose X is a Kähler manifold of complex dimension n, and let $\Omega \in X$ be a relatively compact open subset. Consider a holomorphic line bundle E over X, and denote by $\mathcal{F}^{\otimes \tau}$ its τ -fold tensor product for some positive integer τ . Let U^* be a neighborhood of the boundary $b\Omega$, and denote by $\overline{\nabla}$ the covariant derivative induced by the Kähler metric ds^2 . Then, for all $\tau \ge 1$ and for any $\phi \in \mathscr{B}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ with supp $\phi \in U^*$, where $p \ge 0$ and $q \ge 1$, the following identity holds:

$$\begin{split} \|\overline{\partial}\phi\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2} &= \|\overline{\nabla}\phi\|_{\tau}^{2} + \int_{b\Omega} h_{j}^{\tau} |\nabla\rho|^{-1} \sum_{\beta,\gamma=1}^{n} \frac{\partial^{2}\rho}{\partial z^{\beta} \partial \overline{z}^{\gamma}} \phi_{jC_{r}\overline{B}_{s-1}}^{\beta} \overline{\phi_{j}^{C_{r}\gamma B_{s-1}}} \, dS \\ &+ \int_{\Omega} h_{j}^{\tau} \sum_{\beta,\gamma=1}^{n} s \left(\delta_{\tau}^{\sigma} \left[m \Theta_{\overline{\phi}}^{\overline{\beta}} + R_{\overline{\phi}}^{\overline{\beta}} \right] - R_{\tau\overline{\phi}}^{\sigma\overline{\beta}} \right) \phi_{jC_{r}\overline{B}_{s-1}}^{\beta} \overline{\phi_{j}^{C_{r}\gamma B_{s-1}}} \, dV. \end{split}$$
(2.1)

Here, the various terms are defined as follows:

$$\begin{split} \|\overline{\nabla}\phi\|_{\tau}^{2} &= \int_{\Omega} \sum_{\phi,\beta=1}^{n} g_{j}^{\overline{\rho}\phi} \overline{\nabla}_{\beta} \phi_{jC_{r}\overline{D}_{s}} \overline{\nabla}_{\phi} \phi_{j}^{\overline{C}_{r}\overline{D}_{s}} \, dV, \\ R_{\beta\overline{\nu}\gamma}^{\phi} &= -\frac{\partial}{\partial\overline{z}_{j}^{\nu}} \left(\sum g_{j}^{\overline{\sigma}\phi} \frac{\partial}{\partial z_{j}^{\nu}} g_{j\beta\overline{\sigma}} \right) \quad (Riemann \ curvature \ tensor), \\ R_{\phi\overline{\nu}} &= -\frac{\partial^{2}}{\partial z_{j}^{\nu} \partial\overline{z}_{j}^{\nu}} \left(\log \det(g_{j\phi\overline{\beta}}) \right) \quad (Ricci \ curvature \ tensor), \\ \Theta_{\phi\overline{\nu}} &= -\frac{\partial^{2}}{\partial z_{j}^{\nu} \partial\overline{z}_{j}^{\nu}} (\log h) \quad (curvature \ tensor \ of \ E), \\ \delta_{\tau}^{\sigma} \quad (Kronecker \ delta \ symbol). \end{split}$$

For the C^{∞} -function λ , we define the gradient of λ as the vector

$$\operatorname{grad} \lambda = \left(\frac{\partial \lambda}{\partial z^{1}}, \dots, \frac{\partial \lambda}{\partial z^{n}}, \overline{\frac{\partial \lambda}{\partial z^{1}}}, \dots, \overline{\frac{\partial \lambda}{\partial z^{n}}}\right),$$
$$|\operatorname{grad} \lambda|^{2} = (\operatorname{grad} \lambda) \overline{(\operatorname{grad} \lambda)} = \sum_{\phi=1}^{n} \left|\frac{\partial \lambda}{\partial z^{\phi}}\right|^{2} + \sum_{\beta=1}^{n} \left|\frac{\partial \lambda}{\partial z^{\beta}}\right|^{2},$$

and we set

$$(\mathscr{L}(\lambda)\phi,\phi) = \sum_{B_{s-1}} \sum_{\beta,\gamma=1}^{n} \frac{\partial^2 \lambda}{\partial z^{\beta} \partial z^{\overline{\gamma}}} \phi_{\overline{B}_{s-1}}^{\beta} \overline{\phi}_{\overline{B}_{s-1}}^{\gamma B_{s-1}}.$$
(2.2)

Since $d\lambda \neq 0$ on *U*, then grad $\lambda \neq 0$ on *U* also. The following lemma which is theorem 1.1.3 of [12].

Lemma 2.1. Let H_i (i = l, 2, 3) be three Hilbert spaces and

 $T: H_1 \longrightarrow H_2$ and $S: H_2 \longrightarrow H_3$,

be closed linear operators with dense domains such that ST = 0*. Assume that for any sequence* $\{f_{\nu}\}$ *such that* $f_{\nu} \in H_2 \cap \text{dom } S \cap \text{dom } T$ *,*

$$\|\phi_{\nu}\|_{H_{2}}^{2} \leq 1 \quad and \quad \lim_{\nu \to \infty} \|S\phi_{\nu}\|_{H_{3}}^{2} = 0, \quad \lim_{\nu \to \infty} \|T\phi_{\nu}\|_{H_{1}}^{2} = 0,$$

we can choose a strongly convergent subsequence of $\{f_v\}$. Then Range(T) is closed and $\mathcal{H}(S)/Range(T)$ is a finite dimensional vector space.

Definition 2.2. Let $\Omega \subset \mathbb{C}^n$ be a domain with C^{τ} boundary $b\Omega$. We say that a defining function ρ for Ω is uniformly C^{τ} if there exists an open neighborhood U of $b\Omega$ such that:

- dist $(b\Omega, bU) > 0$,
- $\|\rho\|_{C^\tau(U)} < \infty$,
- $\inf_U |\nabla \rho| > 0.$

This condition is trivial on domains with compact boundary. We identify real (1, 1)-forms with Hermitian matrices as follows:

$$c = \sum_{j,k=1}^{n} i c_{j\bar{k}} \, dz_j \wedge d\bar{z}_k$$

For a function ϕ , we set:

$$\phi_k = \frac{\partial \phi}{\partial z_k}, \quad \phi_{\bar{j}} = \frac{\partial \phi}{\partial \bar{z}_j}.$$

Let $I_q = \{(i_1, \ldots, i_q) \in \mathbb{N}^n : 1 \le i_1 < \cdots < i_q \le n\}$. For $I \in I_{q-1}$, $J \in I_q$, and $1 \le j \le n$, define:

 $\epsilon_J^{jI} = \begin{cases} (-1)^{|\sigma|}, & \text{if } \{j\} \cup I = J \text{ as sets, and } |\sigma| \text{ is the permutation length,} \\ 0, & \text{otherwise.} \end{cases}$

For $u = \sum_{J \in I_q} \mathcal{U}_j d\bar{z}_J$, define:

$$u_{jI} = \sum_{J \in \mathcal{I}_q} \epsilon_J^{jI} u_J.$$

The induced CR-structure at $z \in b\Omega$ is:

$$T_z^{1,0}(\mathsf{b}\Omega) = \{L \in T^{1,0}(\mathbb{C}^n) : \partial \rho(L) = 0\}.$$

Let $T^{1,0}(b\Omega)$ be the space of C^{m-1} sections of $T_z^{1,0}(b\Omega)$, and set $T^{0,1}(b\Omega) = \overline{T^{1,0}(b\Omega)}$. The exterior algebra generated by these spaces is denoted $T^{p,q}(b\Omega)$. For U a suitably small neighborhood of $b\Omega$, define the projection

$$\tau: \Lambda^{p,q}(U) \longrightarrow \Lambda^{p,q}(b\Omega).$$

If we normalize ρ so that $|d\rho| = 1$ on b Ω , then the Levi form \mathscr{L} is defined by

$$\mathscr{L}(-iL\wedge\bar{L})=i\partial\bar{\partial}\rho(-iL\wedge\bar{L}),$$

for any $L \in T^{1,0}(\mathbf{b}\Omega)$.

Definition 2.3. *Given a set* $M \subset \mathbb{C}^n$ *, a* tubular neighborhood of M is an open set of the form

$$U_r = \{ p \in \mathbb{C}^n : \operatorname{dist}(p, M) < r \},\$$

where dist(\cdot , \cdot) denotes the Euclidean distance. We call *r* the radius of U_r .

We adopt the definition of weak Z(q) from [12].

Definition 2.4. Let $\Omega \in X$ be a domain with a uniformly C^{τ} defining function $\rho, \tau \geq 2$. We say b Ω (or Ω) satisfies weak Z(q) if there exists a Hermitian matrix $Y = (Y^{kj})$ of functions on b Ω , uniformly bounded in $C^{\tau-1}$, such that:

1.
$$\sum_{j=1}^{n} Y^{\bar{k}j} \rho_{j} = 0 \text{ on } b\Omega;$$

2. All eigenvalues of Y lie in [0,1];
3.
$$\mu_{1} + \dots + \mu_{q} - \sum_{j,k=1}^{n} Y^{\bar{k}j} \rho_{j\bar{k}} \ge 0, \text{ where } \mu_{1}, \dots, \mu_{n-1} \text{ are the eigenvalues of the Levi form } \mathscr{L} \text{ in creasing order;}$$

in

 $4. \inf_{z \in b\Omega} |q - \operatorname{Tr}(\mathbf{Y})| > 0.$

Definition 2.5. We say that $u \in L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ is supported in $\overline{\Omega}$ (supp $u \subset \overline{\Omega}$) or u vanishes to infinite order at the boundary of Ω if u vanishes on $b\Omega$.

Definition 2.6. $\phi \in L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ is supported in $\overline{\Omega}$ (supp $\phi \subset \overline{\Omega}$) or ϕ vanishes to infinite order at the boundary of Ω if ϕ vanishes on $b\Omega$.

To prove the basic estimate (3.6), the following lemma which is Theorem 1.1.3 of [12] is needed.

Lemma 2.2. Let $H_i(j = l, 2, 3)$ be three Hilbert spaces and

$$T: H_1 \longrightarrow H_2$$
 and $S: H_2 \longrightarrow H_3$

be closed linear operators with dense domains such that ST = 0*. Assume that for any sequence* $\{f_v\}$ *such that* $f_v \in H_2 \cap \text{dom } S \cap \text{dom } T$ *,*

$$\|\phi_{\nu}\|_{H_{2}}^{2} \leq 1 \quad and \quad \lim_{\nu \to \infty} \|S\phi_{\nu}\|_{H_{3}}^{2} = 0, \quad \lim_{\nu \to \infty} \|T\phi_{\nu}\|_{H_{1}}^{2} = 0,$$

one can choose a strongly convergent subsequence of $\{f_v\}$. Then range(*T*) is closed and $\mathcal{H}(S)/range(T)$ is a finite dimensional vector space.

3. Proof of Theorem 1

Let *X* be an *n*-dimensional complex manifold and $\Omega \in X$ a relatively compact domain with smooth boundary $b\Omega$ satisfying the weak Z(q) condition. Assume $E \to X$ is a holomorphic line bundle that is positive in a neighborhood *V* of $b\Omega$. Let $h = \{h_j\}$ denote a Hermitian metric for *E* on *X* that ensures the positivity over *V* with respect to an open covering $\{\mathcal{U}_j\}_{j\in J}$ of *X*. Then, the curvature form

$$\sum_{\phi,\beta=1}^{n} \left(-\frac{\partial^2 \log h_j}{\partial z_j^{\phi} \partial \overline{z}_j^{\beta}} \right) dz^{\phi} \wedge d\overline{z}^{\beta},$$

induces a Kähler metric given locally by

$$d\sigma^2 = \sum_{\phi,\beta=1}^n \left(-\frac{\partial^2 \log h_j}{\partial z_j^{\phi} \partial \overline{z}_j^{\beta}} \right) dz^{\phi} d\overline{z}^{\beta},$$

on *V*. One can choose a defining function ρ for $b\Omega$ based on the geodesic distance corresponding to the metric $d\sigma^2$. This leads to the following result.

Lemma 3.1. There exist neighborhoods V, V' of $b\Omega$, an open covering $\{\mathcal{U}_j\}_{j\in J}$ of X, a Hermitian metric $h = \{h_i\}$ on E, and a Hermitian metric

$$ds^2 = \sum_{\phi, \beta=1}^n g_{j\phi\overline{\beta}}(z) dz_j^{\phi} d\overline{z}_j^{\beta}$$

on X satisfying:

(1) $V \in V'$, with $\overline{V'}$ contained in a smooth tubular neighborhood of $b\Omega$;

- (2) $\pi^{-1}(\overline{\mathcal{U}}_i)$ is trivial for every $j \in J$, and if $\mathcal{U}_i \cap b\Omega \neq \emptyset$, then $\mathcal{U}_j \subseteq V$;
- (3) The bundle E remains positive over V' relative to the metric h;
- (4) On V', the Hermitian metric ds^2 agrees with the Kähler metric $d\sigma^2$.

In the context of Lemma 1, we have the following key estimate (compare with Appendix II in [51–53]).

Proposition 3.1. There exist a constant C > 0 independent of m, and an integer $\tau_0 > 0$, such that for all integers $\tau \ge \tau_0$, and for $p \ge 0$, $q \ge 1$, we have

$$\|\overline{\nabla}\phi\|_{\tau,\Omega\setminus K}^{2} + (\tau - \tau_{0})\|\phi\|_{\tau,\Omega\setminus K}^{2} \le C\left(\|\overline{\partial}\phi\|_{\tau,\Omega}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau,\Omega}^{2} + \|\phi\|_{\tau,K}^{2}\right),\tag{3.1}$$

where $K = \Omega \setminus (\Omega \cap V)$ and $\overline{\nabla}$ denotes the (0, 1)-type covariant derivative associated with ds^2 .

Proof. Adopting the setting from Lemma 1, let $\chi \in C^{\infty}(X)$ satisfy $\operatorname{supp}(\chi) \Subset V'$ and $\chi = 1$ on \overline{V} . Applying the basic L^2 -estimate (equation (2.2)) to $\chi \phi$ and noting that the third term on the right-hand side is non-negative due to the weak Z(q) condition for $q \ge 1$, yields

$$\|\overline{\nabla}(\chi\phi)\|_{\tau}^{2} + \int_{\tau} h^{\tau} \sum_{\beta,\gamma=1}^{n} s \left(\delta_{\tau}^{\sigma} [\tau \Theta_{\overline{\phi}}^{\overline{\beta}} + R_{\overline{\phi}}^{\overline{\beta}}] - r R_{\tau\overline{\phi}}^{\sigma\overline{\beta}} \right) \times (\chi\phi)_{j,C_{p}\overline{B}_{s-1}}^{\beta} \overline{(\chi\phi)_{j}^{\overline{C}_{p}\gamma B_{s-1}}} \, dV \le \|\overline{\partial}(\chi\phi)\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}(\chi\phi)\|_{\tau}^{2}$$

$$(3.2)$$

Since the first integral is non-negative over V', we derive

$$\|\overline{\nabla}\phi\|_{\tau,\Omega\setminus K}^{2} \leq \|\overline{\nabla}(\chi\phi)\|_{\tau}^{2}.$$
(3.3)

Recalling that in *V*', the Hermitian metric matrix $g_{j\phi\overline{\beta}}$ coincides with the curvature matrix $\Theta_{\phi\overline{\beta}}$, it follows that

$$\Theta_{\overline{\phi}}^{\overline{\beta}} = \sum_{\gamma=1}^{n} g_{j}^{\overline{\beta}\gamma} \Theta_{\gamma\overline{\phi}} = \delta_{\phi}^{\beta}$$

Moreover, on supp(χ), there exists a constant C > 0, independent of *m*, ensuring that the Hermitian form

$$\sum_{\beta,\gamma=1}^{n} s\left(\delta_{\tau}^{\sigma} R_{\overline{\phi}}^{\overline{\beta}} - r R_{\tau\overline{\phi}}^{\sigma\overline{\beta}}\right) (\chi\phi)_{j,\sigma C_{r-1}\overline{\beta}\overline{D}_{s-1}} \overline{(\chi\phi)_{j}^{\overline{\tau}\overline{C}_{r-1}\phi D_{s-1}}}$$

is bounded below by

$$-C\sum (\chi\phi)_{j,C_r\overline{D}_s}\overline{(\chi\phi)_j^{\overline{C}_rD_s}}.$$

Setting $\tau_0 = [C] + 1$, it follows for all $\tau \ge \tau_0$ that

$$\begin{aligned} (\tau - \tau_0) \|\phi\|_{\tau,\Omega\setminus K}^2 &\leq (\tau - \tau_0) \|\chi\phi\|_{\tau}^2 \leq \int_{\tau} h^{\tau} \sum_{\beta,\gamma=1}^n s\left(\delta_{\tau}^{\sigma} [\tau\Theta_{\overline{\phi}}^{\overline{\beta}} + R_{\overline{\phi}}^{\overline{\beta}}] - rR_{\tau\overline{\phi}}^{\sigma\overline{\beta}}\right) \\ &\times (\chi\phi)_{jC_{\tau}\overline{B}_{s-1}}^{\beta} \overline{(\chi\phi)_{j}^{\overline{C}_{\tau}\gamma B_{s-1}}} \, dV. \end{aligned}$$

$$(3.4)$$

Furthermore, we estimate

$$\begin{aligned} \|\overline{\partial}(\chi\phi)\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}(\chi\phi)\|_{\tau}^{2} &\leq 2\left(\|\overline{\partial}\chi \wedge \phi\|_{\tau}^{2} + \|\overline{\partial}\chi \wedge \star\phi\|_{\tau}^{2} + \|\chi\overline{\partial}\phi\|_{\tau}^{2} + \|\chi\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2}\right) \\ &\leq C\left(\|\overline{\partial}\phi\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2} + \|\phi\|_{\tau,\Omega\setminus K}^{2}\right), \end{aligned} \tag{3.5}$$

where $C \ge 4 \max\{l, c_0 \sup | \operatorname{grad} \chi|_{ds^2}(x)\}$ and c_0 depends only on dim *X*. Substituting (3.3), (3.4), and (3.5) into (3.2), we complete the proof.

Proposition 3.2. There exists a positive constant τ^* such that for every $\tau \ge \tau^*$, the space of harmonic forms $\mathcal{H}_{p,q}^{\tau}(\mathcal{F}^{\otimes \tau})$ is finite-dimensional, and there exists a constant $C_{\tau} > 0$, depending on τ , satisfying

$$\|\phi\|_{\tau}^{2} \leq C_{\tau} \left(\|\overline{\partial}\phi\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2} \right), \tag{3.6}$$

for all $\phi \in \text{Dom}(\overline{\partial}, \mathcal{F}^{\otimes \tau}) \cap \text{Dom}(\overline{\partial}_{\tau}^{*}, \mathcal{F}^{\otimes \tau})$ whenever $q \ge 1$.

Proof. Let τ_0 , *C*, and *K* be as specified in Proposition 3. Define $\tau^* = \tau_0 + 1$. Following a similar argument as in Proposition 3, let χ be a smooth, real-valued function compactly supported in *X*, with $\chi = 1$ on *K*. For $\tau \ge \tau^*$ and $\phi \in \mathscr{B}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$, applying (3.1) yields

$$\|\phi\|_{\tau}^{2} \leq C_{\tau} \left(\|\overline{\partial}\phi\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2} + \|\chi\phi\|_{\tau}^{2} \right).$$

where C_{τ} depends only on *m*.

Now, consider a sequence $\{\phi_{\nu}\}$ where each $\phi_{\nu} \in \text{Dom }\overline{\partial} \cap \text{Dom }\overline{\partial}_{\tau}^{*}$, satisfying $\|\phi_{\nu}\|_{\tau}^{2} \leq 1$ and

$$\lim_{\nu\to\infty}\|\overline{\partial}\phi_\nu\|_\tau^2=0,\quad \lim_{\nu\to\infty}\|\overline{\partial}_\tau^*\phi_\nu\|_\tau^2=0.$$

According to Lemma 2, there exists a subsequence $\{\phi_{\nu_k}\}$ that converges strongly on Ω .

Since the metric ds^2 is complete and the space $\mathscr{D}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ is dense in $\text{Dom}\,\overline{\partial}_{\tau}^*$ with respect to the norm

$$\|\phi\|_{\tau}^2 + \|\overline{\partial}\phi\|_{\tau}^2 + \|\overline{\partial}_{\tau}^*\phi\|_{\tau}^2$$

(see [17], Theorem 1.1), we can assume that $\chi \phi_{\nu} \in \mathscr{D}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$. Thus,

$$\|\overline{\partial}(\chi\phi_{\nu})\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}(\chi\phi_{\nu})\|_{\tau}^{2} + \|\chi\phi_{\nu}\|_{\tau}^{2} = \langle \Box^{\tau}(\chi\phi_{\nu}), \chi\phi_{\nu}\rangle_{\tau} + \langle\chi\phi_{\nu}, \chi\phi_{\nu}\rangle_{\tau}$$

is bounded, due to the properties of $\{\phi_{\nu}\}$.

Since the elliptic operator \Box^{τ} is coercive on $\mathscr{D}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ ([4], Theorem (2.2.1)), and using Rellich's compactness lemma ([4], Appendix A.1.6), we deduce that there is a subsequence $\{\phi_{\nu_k}\}$ converging strongly on compact subsets of Ω . From estimate (3.1), we conclude that $\{\phi_{\nu_k}\}$ converges strongly throughout Ω . Therefore, by Hörmander's Theorem 1.1.2 and 1.1.3 ([12]), there exists a constant $C_{\tau} > 0$ such that

$$\|\phi\|_{\tau}^{2} \leq C_{\tau} \left(\|\overline{\partial}\phi\|_{\tau}^{2} + \|\overline{\partial}_{\tau}^{*}\phi\|_{\tau}^{2} \right), \tag{3.7}$$

for all $\phi \in \operatorname{Dom}(\overline{\partial}, \mathcal{F}^{\otimes \tau}) \cap \operatorname{Dom}(\overline{\partial}_{\tau}^{*}, \mathcal{F}^{\otimes \tau})$ orthogonal to $\mathcal{H}_{p,q}^{\tau}(\mathcal{F}^{\otimes \tau})$.

Furthermore, any $\phi \in \mathcal{H}_{p,q}^{\tau}(\mathcal{F}^{\otimes \tau})$ satisfies $\Box^{\tau} \phi = 0$, meaning ϕ is a harmonic form with values in $\mathcal{F}^{\otimes \tau}$. Since ϕ vanishes outside *K* by (3.1), and as no connected component of Ω is contained in *K*, the unique continuation property ensures that ϕ must vanish identically. Thus,

$$\mathcal{H}_{p,q}^{\tau}(\mathcal{F}^{\otimes \tau}) = \{0\}.$$

Combining this with (3.7), the proposition is proved.

Remark 3.1. Suppose there exists a strongly plurisubharmonic function ϕ defined on a neighborhood V of $b\Omega$. Then any line bundle E becomes positive over a relatively compact neighborhood of $b\Omega$. To see this, let h be a Hermitian metric on E over X and extend ϕ smoothly to X, ensuring it agrees with the original near $b\Omega$. Then, for some integer $\tau^* > 0$, the modified metric $h_{\tau} = h\mathcal{F}^{-\tau\Phi}$ endows E with positivity over a relatively compact subset V' \Subset V for all $\tau \ge \tau^*$.

Remark 3.2. It should be noted that there exist pseudoconvex domains with smooth boundary $b\Omega$ where no strongly plurisubharmonic function exists near $b\Omega$, yet there still exists a line bundle that is positive in a neighborhood of $b\Omega$ (cf. [50]).

Theorem 3.1. Let X be an n-dimensional complex manifold , and let $\Omega \in X$ be a weak Z(q)-domain with a smooth boundary. Assume E is a holomorphic line bundle over X, and denote by $\mathcal{F}^{\otimes \tau}$ the m-fold tensor product of E for each positive integer m. Suppose that a strongly plurisubharmonic function exists in a neighborhood of $\partial \Omega$. Then, there exists a positive integer τ_0 such that for all $\tau \geq \tau_0$, $p \geq 0$, and $q \geq 1$, one can construct a bounded linear operator $N^{\tau} : L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau}) \to L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$ satisfying:

- (i) Range(\mathcal{N}^{τ}) \subset Dom(\Box^{τ}) and $\mathcal{N}^{\tau}\Box^{\tau} = I \Pi^{\tau}$ on Dom(\Box^{τ});
- (ii) for any $\phi \in L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$, the following Hodge-type decomposition holds:

$$\phi = \overline{\partial} \, \overline{\partial}_{\tau}^* \mathcal{N}^{\tau} \phi \oplus \overline{\partial}_{\tau}^* \, \overline{\partial} \mathcal{N}^{\tau} \phi \oplus \Pi^{\tau} \phi;$$

- (iii) $\mathcal{N}^{\tau}\overline{\partial} = \overline{\partial}\mathcal{N}^{\tau}$ on $\operatorname{Dom}(\overline{\partial})$;
- (iv) $\mathcal{N}^{\tau}\overline{\partial}_{\tau}^{*} = \overline{\partial}_{\tau}^{*}\mathcal{N}^{\tau}$ on $\operatorname{Dom}(\overline{\partial}_{\tau}^{*})$;
- (v) the operators N^{τ} , $\overline{\partial}N^{\tau}$, and $\overline{\partial}_{\tau}^{*}N^{\tau}$ are bounded on $L^{2}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$.

Proof. From estimate (3.6), it follows that

$$\|\phi\|_{\tau} \le C_{\tau} \|\Box^{\tau}\phi\|_{\tau},\tag{3.8}$$

for all $\phi \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial}^*_{\tau})$ with $q \ge 1$. Since \Box^{τ} is densely defined, closed, and linear, it follows by [12] that Range(\Box^{τ}) is closed.

Moreover, because \Box^{τ} is self-adjoint, the standard Hodge decomposition yields:

$$L^2_{p,q}(\Omega,\mathcal{F}^{\otimes \tau}) = \overline{\partial} \, \overline{\partial}_\tau^*(\mathrm{Dom}(\Box^\tau)) \oplus \overline{\partial}_\tau^* \, \overline{\partial}(\mathrm{Dom}(\Box^\tau)).$$

Since

$$\Box^{\tau}: \mathrm{Dom}(\Box^{\tau}) \longrightarrow \mathrm{Range}(\Box^{\tau})$$

is bijective, there exists a bounded inverse

$$\mathcal{N}^{\tau}: L^{2}_{p,q}(\Omega, \mathcal{F}^{\otimes \tau}) \longrightarrow \mathrm{Dom}(\Box^{\tau})$$

such that $\mathcal{N}^{\tau} \Box^{\tau} \phi = \phi$ for all $\phi \in \text{Dom}(\Box^{\tau})$. Furthermore, by definition, we obtain $\Box^{\tau} \mathcal{N}^{\tau} = I$ on $L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$. Hence properties (i) and (ii) are verified.

To verify (iv), take $\phi \in \text{Dom}(\overline{\partial}_{\tau}^*)$. Using (ii), we express:

$$\overline{\partial}_{\tau}^{*}\phi = \overline{\partial}_{\tau}^{*}\overline{\partial}\overline{\partial}_{\tau}^{*}\mathcal{N}^{\tau}\phi$$

thus,

$$\mathcal{N}^{ au}\overline{\partial}_{ au}^{*}\phi=\mathcal{N}^{ au}\overline{\partial}_{ au}^{*}\overline{\partial\partial}_{ au}^{*}\mathcal{N}^{ au}\phi$$

Since $\Box^{\tau} = \overline{\partial}_{\tau}^* \overline{\partial} + \overline{\partial} \overline{\partial}_{\tau}^*$, we rewrite:

$$\mathcal{N}^{\tau}\overline{\partial}_{\tau}^{*}\phi=\overline{\partial}_{\tau}^{*}\mathcal{N}^{\tau}\phi.$$

The same method shows that $\mathcal{N}^{\tau}\overline{\partial} = \overline{\partial}\mathcal{N}^{\tau}$ on $\text{Dom}(\overline{\partial})$.

Now, given that $\overline{\partial}\phi = 0$, applying (iii) leads to

$$\overline{\partial}\mathcal{N}^{\tau}\phi=\mathcal{N}^{\tau}\overline{\partial}\phi=0.$$

Applying (ii) yields

$$\phi = \overline{\partial} \, \overline{\partial}_{\tau}^* \mathcal{N}^{\tau} \phi$$

which implies that $u = \overline{\partial}_{\tau}^* \mathcal{N}^{\tau} \phi$ solves $\overline{\partial} u = \phi$.

Finally, since $\operatorname{Range}(\mathcal{N}^{\tau}) \subset \operatorname{Dom}(\Box^{\tau})$, applying (3.6) to $\mathcal{N}^{\tau}\phi$ gives:

$$\|\mathcal{N}^{\tau}\phi\|_{\tau} \leq C_{\tau}\|\phi\|_{\tau},$$
$$|\overline{\partial}\mathcal{N}^{\tau}\phi\|_{\tau} + \|\overline{\partial}_{\tau}^{*}\mathcal{N}^{\tau}\phi\|_{\tau} \leq 2\sqrt{C_{\tau}}\|\phi\|_{\tau}.$$

Thus, all stated properties are proved.

Theorem 3.2. Assume the hypotheses of Theorem 2 are satisfied. Let $\phi \in L^2_{p,q}(X, \mathcal{F}^{\otimes \tau})$ be a form such that $\operatorname{supp}(\phi) \subset \overline{\Omega}$, with $q \ge 1$, and $\overline{\partial}\phi = 0$ in the sense of distributions on X. Then, there exists a form $u \in L^2_{p,q-1}(X, \mathcal{F}^{\otimes \tau})$, supported in $\overline{\Omega}$, such that

$$\overline{\partial} u = \phi$$

in the sense of distributions on X.

Proof. Let $\phi \in L^2_{p,q}(X, \mathcal{F}^{\otimes \tau})$ with $\operatorname{supp}(\phi) \subset \overline{\Omega}$. Clearly, ϕ can be viewed as an element of $L^2_{p,q}(\Omega, \mathcal{F}^{\otimes \tau})$. By Theorem 2, the solution operator $\mathcal{N}^{\tau}_{n-p,n-q}$ is well-defined for $n-q \geq 1$. Define the form u on Ω by

$$u = - \star \#_{\mathcal{F}^{\otimes \tau}} \overline{\partial} \mathcal{N}_{n-p,n-q}^{\tau} \#_{\mathcal{F}^{\otimes \tau}} \star \phi.$$
(3.9)

Extend *u* to *X* by setting u = 0 on $X \setminus \overline{\Omega}$. Our goal is to prove that *u* satisfies $\overline{\partial}u = \phi$ distributionally on *X*.

г	-	
L		
L		

First, we establish that $\overline{\partial} u = \phi$ on Ω in the distribution sense. Let η belong to $\text{Dom}(\overline{\partial}, \mathcal{F}^{*\otimes \tau})$. Then

$$\langle \overline{\partial}\eta, \#_{\mathcal{F}^{\otimes \tau}} \star \phi \rangle_{\tau,\Omega} = (-1)^{p+q} \langle \phi, \#_{\mathcal{F}^{\otimes \tau}} \star \overline{\partial}\eta \rangle_{\tau,\Omega}.$$

Due to the density of $\mathscr{B}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ in $\text{Dom}(\overline{\partial}, \mathcal{F}^{\otimes \tau}) \cap \text{Dom}(\overline{\partial}^*, \mathcal{F}^{\otimes \tau})$ (see Proposition 1) and because ϑ^{τ} coincides with $\overline{\partial}_{\tau}^*$ on $\mathscr{B}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ when acting distributionally, we infer

$$\langle \overline{\partial} \eta, \#_{\mathcal{F}^{\otimes \tau}} \star \phi \rangle_{\tau,\Omega} = \langle \phi, \overline{\partial}_{\tau}^{\star} \#_{\mathcal{F}^{\otimes \tau}} \star \eta \rangle_{\tau,\Omega}$$

Given that $supp(\phi) \subset \overline{\Omega}$ and using the distributional assumption $\overline{\partial}\phi = 0$, it follows that

$$\langle \overline{\partial} \eta, \#_{\mathcal{F}^{\otimes \tau}} \star \phi \rangle_{\tau,\Omega} = \langle \overline{\partial} \phi, \#_{\mathcal{F}^{*\otimes \tau}} \star \eta \rangle_{\tau,X} = 0,$$

implying

$$\overline{\partial}_{\tau}^{*}(\#_{\mathcal{F}^{\otimes \tau}} \star \phi) = 0 \quad \text{on} \quad \Omega$$

in the distributional sense. Applying Theorem 2(iv), we obtain

$$\overline{\partial}_{\tau}^{*} \mathcal{N}_{n-p,n-q}^{\tau}(\#_{\mathcal{F}^{\otimes \tau}} \star \phi) = \mathcal{N}_{n-r,n-s-1}^{\tau} \overline{\partial}_{\tau}^{*}(\#_{\mathcal{F}^{\otimes \tau}} \star \phi) = 0.$$
(3.10)

Now, compute $\overline{\partial}u$ on Ω using (3.9), (3.10), and standard properties of \star and #:

$$\begin{aligned} \overline{\partial}u &= -\overline{\partial} \star \#_{\mathcal{F}^{*\otimes\tau}} \overline{\partial} \mathcal{N}_{n-p,n-q}^{\tau} \#_{\mathcal{F}^{\otimes\tau}} \star \phi \\ &= (-1)^{p+q} \star \#_{\mathcal{F}^{*\otimes\tau}} \overline{\partial}_{\tau}^{*} \overline{\partial} \mathcal{N}_{n-p,n-q}^{\tau} \#_{\mathcal{F}^{\otimes\tau}} \star \phi \\ &= (-1)^{p+q} \star \#_{\mathcal{F}^{*\otimes\tau}} (\overline{\partial}_{\tau}^{*} \overline{\partial} + \overline{\partial} \overline{\partial}_{\tau}^{*}) \mathcal{N}_{n-p,n-q}^{\tau} \#_{\mathcal{F}^{\otimes\tau}} \star \phi \\ &= (-1)^{p+q} \star \#_{\mathcal{F}^{*\otimes\tau}} \#_{\mathcal{F}^{\otimes\tau}} \star \phi \\ &= \phi. \end{aligned}$$

Since *u* vanishes outside $\overline{\Omega}$, we verify the distributional identity on X as follows. Let $\eta \in \text{Dom}(\overline{\partial}^*_{\tau}, \mathcal{F}^{\otimes \tau})$. Then:

$$\langle u, \overline{\partial}_{\tau}^* \eta \rangle_{\tau, X} = \langle u, \overline{\partial}_{\tau}^* \eta \rangle_{\tau, \Omega}$$

= $\langle \#_{\mathcal{F}^{\otimes \tau}} \star \overline{\partial}_{\tau}^* \eta, \#_{\mathcal{F}^{\otimes \tau}} \star u \rangle_{\tau, \Omega}.$

Since

$$#_{\mathcal{F}^{\otimes \tau}} \star u = (-1)^{r+s+1} \overline{\partial} \mathcal{N}_{n-p,n-q}^{\tau} #_{\mathcal{F}^{\otimes \tau}} \star \phi \in \mathrm{Dom}(\overline{\partial}_{\tau}^{*}, \mathcal{F}^{*\otimes \tau}),$$

we can apply integration by parts to get

$$\begin{split} \langle u, \overline{\partial}_{\tau} \eta \rangle_{\tau, X} &= (-1)^{p+q} \langle \overline{\partial} \#_{\mathcal{F}^{\otimes \tau}} \star \eta, \#_{\mathcal{F}^{\otimes \tau}} \star u \rangle_{\tau, \Omega} \\ &= \langle \#_{\mathcal{F}^{\otimes \tau}} \star \eta, \#_{\mathcal{F}^{\otimes \tau}} \star \overline{\partial} u \rangle_{\tau, \Omega} \\ &= \langle \overline{\partial} u, \eta \rangle_{\tau, \Omega}. \end{split}$$

Using the previous calculation that $\overline{\partial} u = \phi$, we find

$$\langle u, \overline{\partial}_{\tau}^* \eta \rangle_{\tau, X} = \langle \phi, \eta \rangle_{\tau, \Omega} = \langle \phi, \eta \rangle_{\tau, X}.$$

Hence, $\overline{\partial} u = \phi$ in the distribution sense on *X*, completing the proof.

4. On the Solvability of the $\overline{\partial}_b$ -Equation

In this section, we present several results related to the existence of solutions for the ∂_b -problem.

Theorem 4.1. Let X be a Kähler manifold of complex dimension $n \ge 2$, and let $\Omega \in X$ denote a relatively compact domain with smooth boundary, assumed to satisfy the weak Z(q) condition. Let E be a holomorphic line bundle over X, and denote by $\mathcal{F}^{\otimes \tau}$ its m-fold tensor product for some positive integer m. Suppose that a strongly plurisubharmonic function exists in an open neighborhood of b Ω . Then for any $f \in C^{\infty}_{p,q}(b\Omega, \mathcal{F}^{\otimes \tau})$ with $1 \le q \le n-2$ and $\overline{\partial}_b f = 0$, there exists an extension $F \in C^{\infty}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ satisfying $F|_{b\Omega} = f$ and $\overline{\partial}F = 0$.

Proof. The proof follows the arguments of Theorem 4.1 in Saber [48].

Theorem 4.2. Assume the same setup as in the previous theorem. Given $f \in C_{p,q}^{\infty}(b\Omega, \mathcal{F}^{\otimes \tau})$ for $1 \le q \le n-2$ with $\overline{\partial}_b f = 0$, there exists a function $u \in C_{p,q-1}^{\infty}(b\Omega, \mathcal{F}^{\otimes \tau})$ such that $\overline{\partial}_b u = f$.

Proof. Let $f \in C_{p,q}^{\infty}(b\Omega, \mathcal{F}^{\otimes \tau})$ satisfy $\overline{\partial}_b f = 0$. From Theorem 5.1, there is an extension $F \in C_{p,q}^{\infty}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ with $F|_{b\Omega} = f$ and $\overline{\partial}F = 0$. Using Theorem 3, we find $U \in C_{p,q-1}^{\infty}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ such that $\overline{\partial}U = F$ in Ω . Setting $u = U|_{b\Omega}$ yields $\overline{\partial}_b u = f$.

Corollary 4.1. Let X be a Kähler manifold of complex dimension $n \ge 2$, and let $\Omega \in X$ be a smoothly bounded domain that is weakly q-concave. Let E be a holomorphic line bundle on X and $\mathcal{F}^{\otimes \tau}$ its m-fold tensor product. Assume a strongly plurisubharmonic function exists in a neighborhood of $b\Omega$. If $H^{p,q}(X, \mathcal{F}^{\otimes \tau}) = 0$, then for each $f \in C^{\infty}_{p,q}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ with $\overline{\partial} f = 0$ and $1 \le q \le n-2$, there exists $u \in C^{\infty}_{p,q-1}(\overline{\Omega}, \mathcal{F}^{\otimes \tau})$ such that $\overline{\partial} u = f$.

Proof. The proof follows the methodology of Corollary 4.3 in Saber [48].

Finally, we summarize a necessary and sufficient condition for the solvability of the $\bar{\partial}$ -problem with boundary data in a fractional Sobolev space.

Theorem 4.3. Let X, Ω , and E be as in Theorem 5.1. Suppose $f \in W_{p,q}^{1/2}(b\Omega, \mathcal{F}^{\otimes \tau})$ with $0 \le p \le n$ and $1 \le q \le n-2$, satisfying $\overline{\partial}_b f = 0$. Then there exists a function $F \in L^2_{p,q-1}(\Omega, \mathcal{F}^{\otimes \tau})$ such that $F|_{b\Omega} = f$ and $\overline{\partial}F = 0$ in Ω .

Proof. This result is obtained following the proof of Theorem 4.4 in Saber [48].

5. Extension of Forms from the Boundary

Let *X* be a connected complex manifold of complex dimension $n \ge 2$, and let $\Omega \Subset X$ be an open subset with a \mathscr{C}^{∞} -smooth boundary. Suppose *E* is a holomorphic vector bundle over *X*. In this section, we establish several extension results.

Lemma 5.1. Given any $\phi \in C^{\infty}_{p,q}(b\Omega, E)$ satisfying $\overline{\partial}_b \phi = 0$, there exists an extension $\phi \in C^{\infty}_{p,q}(\overline{\Omega}, E)$ such that $\phi|_{b\Omega} = \phi$ and $\overline{\partial \phi}$ vanishes to infinite order along $b\Omega$.

Proof. The argument follows similarly to that presented in Ohsawa [14, 15].

Using foundational results from the theory of Kodaira, Andreotti, and Vesentini (see Kodaira [17] and Andreotti-Vesentini [22]), we derive the following sufficient condition for smooth extension up to a given order.

Lemma 5.2. Let X be a connected Kähler manifold of dimension n, and let $\Omega \in X$ be a relatively compact domain with \mathscr{C}^{∞} -smooth boundary satisfying the weak Z(q) condition. Suppose E is a holomorphic vector bundle over X. Assume that Ω admits a \mathscr{C}^{∞} defining function ρ such that

 $\partial \overline{\partial} \Big(-\log(-\rho) \Big) \geq c \Big(\partial (-\log(-\rho)) \otimes \overline{\partial} (-\log(-\rho)) + \omega \Big)$

for some positive constant *c* on Ω . Then, for any $\psi \in C_{p,q}^{\infty}(b\Omega, E)$ with $\overline{\partial}_b \psi = 0$ and q < n - 1, and for any nonnegative integer *k*, there exists a $\overline{\partial}$ -closed *E*-valued (p,q)-form Ψ_k of class C^k on $\overline{\Omega}$ satisfying $\Psi_k|_{b\Omega} = \psi$.

Proof. The proof strategy parallels that of Ohsawa [14, 15].

Funding. The research work was funded by Umm Al-Qura University, Saudi Arabia under grant number: 25UQU4220004GSSR04.

Acknowledgment. The authors extend their appreciation to Umm Al-Qura University, Saudi Arabia for funding this research work through grant number: 25UQU4220004GSSR04.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- M. Derridj, Regularité pour ∂ dans Quelques Domaines Faiblement Pseudo-Convexes, J. Differ. Geom. 13 (1978), 559–576. https://doi.org/10.4310/jdg/1214434708.
- [2] M. Shaw, Local Existence Theorems with Estimates for $\bar{\partial}_b$ on Weakly Pseudo-convex CR Manifolds, Math. Ann. 294 (1992), 677–700. https://doi.org/10.1007/bf01934348.
- [3] J. Cao, M.C. Shaw, L. Wang, Estimates for the ∂̄-Neumann Problem and Nonexistence of C² Levi-Flat Hypersurfaces in ℙⁿ, Math. Z. 248 (2004), 183–221. https://doi.org/10.1007/s00209-004-0661-0.
- [4] S. Sambou, Résolution du ∂ pour les Courants Prolongeables Définis dans un Anneau, Ann. Fac. Sci. Toulouse Math. 11 (2002), 105–129. https://doi.org/10.5802/afst.1020.
- [5] O. Abdelkader, S. Saber, The ∂-Neumann Operator on Strongly Pseudoconvex Domain with Piecewise Smooth Boundary, Math. Slovaca 55 (2005), 317–328. https://eudml.org/doc/32121.
- [6] O. Abdelkader, S. Saber, Vanishing Theorems on Strongly *q*-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 02 (2005), 467–483. https://doi.org/10.1142/s0219887805000569.
- [7] O. Abdelkader, S. Saber, Solution to ∂-Equations with Exact Support on Pseudo-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 04 (2007), 339–348. https://doi.org/10.1142/s0219887807002090.
- [8] S. Saber, Solution to ∂ Problem with Exact Support and Regularity for the ∂-Neumann Operator on Weakly *q*-Convex Domains, Int. J. Geom. Methods Mod. Phys. 07 (2010), 135–142. https://doi.org/10.1142/s0219887810003963.
- [9] S. Saber, The ∂ -Neumann Operator on Lipschitz *q*-Pseudoconvex Domains, Czechoslov. Math. J. 61 (2011), 721–731. https://doi.org/10.1007/s10587-011-0021-2.

- [10] S. Saber, The L² ∂̄-Cauchy Problem on Weakly *q*-pseudoconvex Domains in Stein Manifolds, Czechoslov. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
- [11] S. Saber, The L² ∂̄-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/s1793557118500250.
- [12] L. Hörmander, L^2 Estimates and Existence Theorems for the $\bar{\partial}$ Operator, Acta Math. 113 (1965), 89–152. https://doi.org/10.1007/bf02391775.
- [13] G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, 1972.
- [14] T. Ohsawa, On the Extension L² Holomorphic Functions III: Negligible Weights, Math. Z. 219 (1995), 215–225. https://doi.org/10.1007/bf02572360.
- [15] T. Ohsawa, Pseudoconvex Domains in Pⁿ: A Question on the 1-Convex Boundary Points, in: G. Komatsu, M. Kuranishi (Eds.), Analysis and Geometry in Several Complex Variables, Birkhäuser Boston, Boston, MA, 1999: pp. 239–252. https://doi.org/10.1007/978-1-4612-2166-1_11.
- [16] K. Kodaira, On Kähler Varieties of Restricted Type (An Intrinsic Characterization of Algebraic Varieties), Ann. Math. 60 (1954), 28–48.
- [17] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, 1986.
- [18] E. Vesentini, Lectures on Levi Convexity of Complex Manifolds and Cohomology Vanishing Theorems, Tata Institute of Fundamental Research, Bombay, 1967.
- [19] P.A. Griffiths, The Extension Problem in Complex Analysis II; Embeddings with Positive Normal Bundle, Amer. J. Math. 88 (1966), 366–446. https://doi.org/10.2307/2373200.
- [20] H. Grauert, I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\overline{\partial} f = \alpha$ im Bereich der Beschränkten Formen, Rice Inst. Pamph. Rice Univ. Stud. 56 (1970), 29–50. https://hdl.handle.net/1911/63010.
- [21] X. Yang, RC-Positivity, Rational Connectedness and Yau's Conjecture, Cambridge J. Math. 6 (2018), 183–212. https://doi.org/10.4310/CJM.2018.v6.n2.a2.
- [22] A. Andreotti, E. Vesentini, Carleman Estimates for the Laplace-beltrami Equation on Complex Manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81–130. https://doi.org/10.1007/bf02684398.
- [23] L. Ho, The $\overline{\partial}$ -Problem on Weak Z(q) Domains, Math. Ann. 290 (1991), 3–18.
- [24] S. Saber, Solvability of the Tangential Cauchy-Riemann Equations on Boundaries of Strictly *q*-Convex Domains, Lobachevskii J. Math. 32 (2011), 189–193. https://doi.org/10.1134/S1995080211030115.
- [25] S. Saber, Global Boundary Regularity for the ∂-Problem on Strictly Q-convex and Q-concave Domains, Complex Anal. Oper. Theory 6 (2010), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1.
- [26] S. Saber, Solution to ∂ Problem for Smooth Forms and Currents on Strictly *q*-Convex Domains, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022.
- [27] S. Saber, The ∂-Problem on q-Pseudoconvex Domains with Applications, Math. Slovaca 63 (2013), 521–530. https: //doi.org/10.2478/s12175-013-0115-4.
- [28] S. Saber, The L² ∂̄-Cauchy Problem on Weakly *q*-Pseudoconvex Domains in Stein Manifolds, Czech. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
- [29] S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
- [30] S. Saber, The ∂-Problem With Support Conditions and Pseudoconvexity of General Order in Kähler Manifolds, J. Korean Math. Soc. 53 (2016), 1211–1223. https://doi.org/10.4134/JKMS.J140768.
- [31] S. Saber, Global Solution for the ∂-Problem on Non Pseudoconvex Domains in Stein Manifolds, J. Korean Math. Soc. 54 (2017), 1787–1799. https://doi.org/10.4134/JKMS.J160668.
- [32] S. Saber, Sobolev Regularity of the Bergman Projection on Certain Pseudoconvex Domains, Trans. A. Razmadze Math. Inst. 171 (2017), 90–102. https://doi.org/10.1016/j.trmi.2016.10.004.

- [33] S. Saber, The L² ∂̄-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250.
- [34] S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
- [35] S. Saber, Solution to ∂-Problem with Support Conditions in Weakly *q*-Convex Domains, Commun. Korean Math. Soc. 33 (2018), 409–421. https://doi.org/10.4134/CKMS.C170022.
- [36] S. Saber, Compactness of the Canonical Solution Operator on Lipschitz *q*-Pseudoconvex Boundaries, Electron. J. Differ. Equ. 2019 (2019), 48.
- [37] S. Saber, Compactness of the Complex Green Operator in a Stein Manifold, U.P.B. Sci. Bull. Ser. A 81 (2019), 185–200.
- [38] S. Saber, Compactness of the Weighted dbar-Neumann Operator and Commutators of the Bergman Projection with Continuous Functions, J. Geom. Phys. 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022.
- [39] S. Saber, Compactness of the Commutators of Toeplitz Operators on *q*-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
- [40] S. Saber, Global Solvability and Regularity for ∂ on an Annulus between Two Weakly Convex Domains Which Satisfy Property (P), Asian-Eur. J. Math. 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414.
- [41] S. Saber, L^2 Estimates and Existence Theorems for $\overline{\partial}_b$ on Lipschitz Boundaries of Q-Pseudoconvex Domains, Comptes Rendus. Mathématique 358 (2020), 435–458. https://doi.org/10.5802/crmath.43.
- [42] S. Saber, The ∂-Cauchy Problem on Weakly *q*-Convex Domains in CPⁿ, Kragujevac J. Math. 44 (2020), 581–591. https://doi.org/10.46793/KgJMat2004.581S.
- [43] S. Saber, A. Alahmari, Global Regularity of ∂ on Certain Pseudoconvexity, Trans. A. Razmadze Math. Inst. 175 (2021), 417–427.
- [44] S. Saber, On the Applications of Bochner-Kodaira-Morrey-Kohn Identity, Kragujevac J. Math. 45 (2021), 881–896. https://doi.org/10.46793/KgJMat2106.881S.
- [45] H.D.S. Adam, K.I.A. Ahmed, S. Saber, M. Marin, Sobolev Estimates for the ∂ and the ∂-Neumann Operator on Pseudoconvex Manifolds, Mathematics 11 (2023), 4138. https://doi.org/10.3390/math11194138.
- [46] H.D.S. Adam, K.I. Adam, S. Saber, G. Farid, Existence Theorems for the dbar Equation and Sobolev Estimates on q-Convex Domains, AIMS Math. 8 (2023), 31141–31157. https://doi.org/10.3934/math.20231594.
- [47] S. Saber, A. Alahmari, Compactness Estimate for the ∂-Neumann Problem on a q-Pseudoconvex Domain in a Stein Manifold, Kragujevac J. Math. 47 (2023), 627–636.
- [48] S. Saber, M. Youssif, Y. Arko, et al. Subellipticity, Compactness, H^{ϵ} Estimates and Regularity for $\bar{\partial}$ on Weakly *q*-Pseudoconvex/Concave Domains, Rend. Semin. Mat. Univ. Padova (2024). https://doi.org/10.4171/rsmup/160.
- [49] S. Saber, A.A. Alahmari, Generalization of Kodaira's Embedding Theorem for Compact Kähler Manifolds with Semi-positive Chern Class, Int. J. Anal. Appl. 23 (2025), 72. https://doi.org/10.28924/2291-8639-23-2025-72.
- [50] G.M. Henkin, A. Iordan, Regularity of ∂ on Pseudoconcave Compacts and Applications, Asian J. Math. 4 (2000), 855–884. https://doi.org/10.4310/ajm.2000.v4.n4.a9.
- [51] K. Takegoshi, On Weakly 1-complete Surfaces Without Non-constant Holomorphic Functions, Publ. Res. Inst. Math. Sci. 18 (1982), 1175–1183. https://doi.org/10.2977/prims/1195183302.
- [52] K. Takegoshi, Representation Theorems of Cohomology on Weakly 1-complete Manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 131–186. https://doi.org/10.2977/prims/1195183572.
- [53] K. Takegoshi, Global Regularity and Spectra of Laplace-Beltrami Operators on Pseudoconvex Domains, Publ. Res. Inst. Math. Sci. 19 (1983), 275–304.