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ABSTRACT. Classical statistical methods rely on precise data to estimate population means using auxiliary information 

but often face issues like bias and high mean squared error (MSE). Neutrosophic statistics extend classical approaches 

by incorporating vague, indeterminate, and uncertain data. This study introduces the Modified One-Step M-estimator 

(NMOM), which utilizes auxiliary information to improve estimation accuracy. The Neutrosophic Median Absolute 

Deviation (NMAD) is also employed to measure robustness against outliers and uncertainty. Empirical studies and 

simulations compare NMOM with the Neutrosophic Standard Mean (NSM) using metrics such as mean, median, 

standard deviation, covariance, NMAD, number of outliers, and NMSE. Results show that NMOM is more robust than 

NSM, particularly in managing outliers, reducing variance, and achieving lower MSE. The use of NMAD strengthens 

NMOM’s ability to produce reliable estimates under uncertain data conditions. This highlights NMOM’s effectiveness 

in fields like finance, engineering, and medicine, where data imprecision is a key concern. 

 

1. Introduction 

The presence of outliers in data can significantly impact the reliability and accuracy of 

parameter estimation. Outliers are data points that deviate markedly from the overall pattern of 

a dataset and may arise due to measurement errors, data entry mistakes, or inherent variability 

in the observed phenomena. While outliers can provide meaningful insights in some cases, they 

often distort the results of statistical analyses, leading to biased parameter estimates, reduced 

efficiency, and poor model performance. Handling outliers is, therefore, a critical step in ensuring 

the robustness and reliability of statistical inference. 
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In classical statistics, most standard methods for mean parameter estimation are highly 

sensitive to outliers. These methods assume that the data follow a well-defined distribution, often 

normal, and are free from extreme deviations. However, when outliers are present, the mean can 

shift considerably, and can become unreliable, leading to conclusions that misrepresent the 

underlying data structure. This sensitivity to outliers undermines the validity of the results, 

particularly in fields such as Iin finance, engineering, and medical research, where real-world 

datasets often exhibit irregularities and contamination.  

Limited attention has been given to detecting and addressing outliers in unclear, 

ambiguous, or indeterminate, or when they are in the form of intervals. This challenge also affects 

parameter estimation, making it a critical area for further research. To address such situations, 

fuzzy logic is a valuable tool that handles data with imprecision. Fuzzy statistics are used to 

analyze such datasets introduced by [1] but does not account for the degree of indeterminacy 

inherent in the data. [2] further expanded this concept by introducing neutrosophy, a framework 

that incorporates both determinate and indeterminate aspects of uncertain or imprecise data. This 

distinctive feature makes neutrosophic approaches highly versatile and well-suited for handling 

uncertainty, indeterminacy, or vagueness. 

 Recent advancements in neutrosophic statistics have addressed key challenges related to 

uncertainty and ambiguity in robust parameter estimator. For example, [3] proposed a 

neutrosophic predictive estimator for the finite population mean using kernel regression, offering 

a robust alternative to classical methods. Similarly, [4] introduced a neutrosophic calibration 

approach to improve stratification weights and estimate the empirical cumulative distribution 

function (CDF) of finite populations, showcasing a novel application of neutrosophic techniques. 

Further developments include a neutrosophic estimator with minimum mean squared error 

(MSE) for improved population mean estimation [5] and a neutrosophic modified ratio-cum-

product log-type estimator utilizing medians of auxiliary variables [6].  

Furthermore, [7] advanced the field by proposing neutrosophic ratio-type estimators, 

which leverage auxiliary information for more effective finite population mean estimation. 

Additionally, three neutrosophic exponential ratio-type estimators were developed, utilizing 

auxiliary variables to enhance precision [8]. Addressing sampling gaps, a "neutrosophic median 

ranked set sampling" method was introduced to estimate population means in ambiguous 

datasets [9]. Collectively, these advancements underscore the growing relevance of neutrosophic 

statistics in tackling real-world data uncertainties and improving parameter estimation 

methodologies. It can be seen that all these approaches did not focus on identifying the outliers 

in the neutrosophic dataset.   In the meantime, [10] and [11] have developed the Grubbs test and 

the Dixon test under neutrosophic environments in order to identify outliers. However, both 
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studies did not extend to mean parameter estimation, highlighting the need for a robust technique 

to address this gap.  

In the classical framework, the popular robust statistical technique for analysing classical 

datasets is the Median Absolute Deviation (MAD) as it is robust to outliers [12] and the Modified 

One-Step M-Estimator (MOM) is preferable by [13]. While both methods are robust and designed 

to handle non-normal or contaminated data, they serve different purposes and are used in distinct 

contexts. MAD is a measure of variability that is highly resistant to outliers because it relies on 

the median, which is less sensitive to extreme values compared to the mean. It calculates the 

median of the absolute deviations from the dataset's median, making it an effective tool for 

estimating scale in the presence of outliers or skewed distributions. 

On the other hand, MOM is a robust method for estimating the central tendency of a 

dataset. It empirically determines how many observations should be trimmed, allowing for 

different amounts of trimming in the tails or even no trimming at all. Together, MAD and MOM 

provide robust solutions for analyzing data that deviates from normality or contains 

contamination, with MAD focusing on variability and MOM on central tendency.  

Many studies have explored the use of robust methods. For instance, [14] applied MAD 

in conjunction with neural network training, demonstrating its utility in enhancing model 

robustness. [15] investigated the joint asymptotic normality of MAD with the sample median, 

providing theoretical insights into its statistical properties. Additionally, [16] highlighted MAD's 

effectiveness as a less sensitive alternative to traditional measures when dealing with extreme 

values, making it a preferred choice for analyzing datasets with outliers. On the other hand, [17] 

pioneered M-estimators by extending maximum likelihood estimation to handle outliers, laying 

the foundation for robust statistical techniques. 

[18] emphasized that the MOM estimator specifically trims only the extreme values in a 

dataset, with the trimming process tailored to the data distribution, making it particularly 

effective for managing non-normal data. Furthermore, [19] endorsed the MOM estimator for its 

strong capability to detect and handle outliers in data distributions, further solidifying its 

reputation as a robust and reliable statistical tool. Together, these studies underscore the 

versatility and effectiveness of MAD and MOM in precise and crisp datasets. However, the 

primary goal of this study is to introduce an improved robust method above within a 

neutrosophic framework.  

Therefore, this study contributes by introducing a neutrosophic approach that integrates 

robust statistical techniques for uncertainty, imprecision, and indeterminacy which are the 

Neutrosophic Median Absolute Deviation (NMAD), for robust outlier detection with a 

Neutrosophic Modified One-step M-estimator (NMOM) for accurate parameter estimation. This 

approach aims to enhance parameter estimation in the presence of outliers, providing a reliable 
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and flexible framework for analysing uncertain and imprecise data. The study also evaluates the 

effectiveness of the proposed method using both simulation studies and real-world temperature 

datasets, highlighting its practical applicability in environments where data irregularities are 

prevalent. 

Thus, this study is conducted to develop and propose a robust method that can effectively 

account for uncertainty, imprecision, and indeterminacy in data while accurately identifying 

outliers and estimating parameters. To validate the effectiveness of the proposed method, 

simulations are carried out under different scenarios that consider a wide range of data 

variations. These simulations allow for a systematic evaluation of the method's performance 

across multiple conditions, such as datasets with varying levels of variance and outliers. 

Following the simulations, the method is further validated by applying it to real-world datasets. 

This step ensures the practical applicability of the method and demonstrates its reliability and 

versatility in handling real-world challenges, such as environmental measurements, economic 

indicators, or social survey data, where uncertainty and indeterminacy are common.  

2. Neutrosophic and its properties  

The neutrosophic independent random variable is defined as 𝑋𝑁 = 𝑋𝐿 + 𝐼𝑁𝑋𝑈; 𝐼𝑁 ∈

[𝐼𝐿 , 𝐼𝑈], where 𝑋𝐿 is the determined and 𝐼𝑁𝑋𝑈 is the indetermined part. Also, 𝐼𝑁 ∈ [𝐼𝐿, 𝐼𝑈] is an 

undetermined interval. To identify the neutrosophic random variable, subscript 𝑁 is used as 

shown above. Now consider a neutrosophic sample of size 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈]. The neutrosophic 

sample mean and standard deviation can be written as below  

According to [20], (𝑋 − 𝑋̅𝑁)2 given by 

2.1 Neutrosophic Median & Median Absolute Deviation About Median 

The neutrosophic median (NM) is determined from the neutrosophic sample data set by 

selecting the value that lies at the midpoint of the observations each at lower and upper data. Let 

𝑀̂𝑁 denote the sample median of the neutrosophic data where 𝑀̂𝑁 ∈ [𝑀̂𝐿, 𝑀̂𝑈].  

𝑋𝑁
̅̅ ̅̅ = 𝑋𝐿

̅̅ ̅ + 𝑋𝑈
̅̅̅̅ 𝐼𝑁;  where, 𝑋𝐿

̅̅ ̅ =
1

𝑛𝑁
∑ 𝑋𝐿

𝑛𝑁
𝑖=1 ,   𝑋𝑈

̅̅̅̅ =
1

𝑛𝑁
∑ 𝑋𝑈

𝑛𝑁
𝑖=1  (1) 

𝑆𝐷𝑁 = √
∑ (𝑋−𝑋̅𝑁)2

𝑛𝑁
𝑖=1

𝑛𝑁
; where  𝑆𝐷𝑁 ∈ [𝑆𝐷𝐿 , 𝑆𝐷𝑈] (2) 

(𝑋 − 𝑋̅𝑁)2 =

[
 
 
 
 min(

(𝑎𝑖𝑏𝑖𝐼𝐿)(𝑎̅ + 𝑏̅𝐼𝐿), (𝑎𝑖 + 𝑏𝑖𝐼𝐿)(𝑎̅ + 𝑏̅𝐼𝑈)

(𝑎𝑖𝑏𝑖𝐼𝑈)(𝑎̅ + 𝑏̅𝐼𝐿), (𝑎𝑖 + 𝑏𝑖𝐼𝑈)(𝑎̅ + 𝑏̅𝐼𝑈)
)

max(
(𝑎𝑖𝑏𝑖𝐼𝐿)(𝑎̅ + 𝑏̅𝐼𝐿), (𝑎𝑖 + 𝑏𝑖𝐼𝐿)(𝑎̅ + 𝑏̅𝐼𝑈)

(𝑎𝑖𝑏𝑖𝐼𝑈)(𝑎̅ + 𝑏̅𝐼𝐿), (𝑎𝑖 + 𝑏𝑖𝐼𝑈)(𝑎̅ + 𝑏̅𝐼𝑈)
)
]
 
 
 
 

, 𝐼𝑁 ∈ [𝐼𝐿 , 𝐼𝑈].    (3) 
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Then, the neutrosophic median 𝑀̂𝑁 is expressed as follows:  

Next, the neutrosophic median absolute deviation (NMAD) is found by first compute the 

absolute differences each lower and upper data and their median value. Then, find the 

neutrosophic median of the absolute difference for |𝑋𝐿 − 𝑀̂𝐿| and |𝑋𝑈 − 𝑀̂𝑈|. We denote the 

NMAD as 𝑁𝑀𝐴𝐷𝑁 where 𝑁𝑀𝐴𝐷𝑁 ∈ [𝑁𝑀𝐴𝐷𝐿 , 𝑁𝑀𝐴𝐷𝑈].  

The neutrosophic median absolute deviation about median (𝑁𝑀𝐴𝐷𝑁) is a robust measure 

of statistical dispersion, often used to detect outliers. It is derived from the neutrosophic Median 

Absolute Deviation (NMAD) but scaled to approximate the standard deviation under a normal 

distribution. This is to ensure that 𝑁𝑀𝐴𝐷𝑁 provides as estimate that aligns with the standard 

deviation in a normal distribution [21].  

𝑁𝑀𝐴𝐷𝑁𝑁 =
𝑁𝑀𝐴𝐷𝑁

0.6745
     (6) 

where 𝑁𝑀𝐴𝐷𝑁𝑁 ∈ [𝑁𝑀𝐴𝐷𝑁𝐿 , 𝑁𝑀𝐴𝐷𝑁𝑈]. 

The value 𝑋𝑁 is considered an outlier if it meets the criteria of the robust decision rule in Eq. 7-8: 

To ensure that the Normalized Median Absolute Deviation (MADN) is comparable to the 

standard deviation for normally distributed data, it is multiplied by a common scaling factor of 

1.4826, which is derived based on the assumption of normality.   

2.2 Neutrosophic Modified One Step M-estimator & MSE 

The neutrosophic modified one step M estimator is defined by 

𝜇𝑚̃ =
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
 , 𝜇𝑚̃  ∈ [𝜇𝐿 ,̃ 𝜇𝑈̃]. (9) 

The MSE is given as  

𝑀𝑆𝐸(𝜇𝑚̃) = 𝑉𝑎𝑟(𝜇𝑚̃) + 𝐵𝑖𝑎𝑠 (𝜇𝑚̃)2  (10) 

If 𝑛 is odd, 𝑀̂𝑁 = 𝑥
𝑁(

𝑛+1

2
)
.  (4) 

If 𝑛 is even, 𝑀̂𝑁 =
𝑥
𝑁(

𝑛
2)

+𝑥
𝑁(

𝑛
2+1)

2
 . (5) 

|𝑋𝑁−𝑀̂𝑁|

𝑁𝑀𝐴𝐷𝑁𝑁
> 1.4826  (7) 

Or when 
|𝑋𝑁−𝑀̂𝑁|

𝑁𝑀𝐴𝐷𝑁𝑁
< −1.4826 , (8) 
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where  

𝑉𝑎𝑟(𝜇𝑚̃) is the variance of the estimator and 𝐵𝑖𝑎𝑠(𝜇𝑚̃) = 𝐸(𝜇𝑚̃) − 𝜇𝑚̃ is the bias of the estimator.  

Let 𝜇𝑚̃ =
1

𝑛′
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1  where 𝑛′ = 𝑛 − 𝑖1 − 𝑖2 

The expectation of NMOM is  

𝐸(𝜇𝑚̃) = 𝐸 [
1

𝑛′
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1 ] =

1

𝑛′
∑ 𝐸[𝑋𝑖𝑁]

𝑛−𝑖2
𝑖=𝑖1+1    

 
(11) 

Assuming that 𝐸[𝑋𝑖𝑁] = 𝜇, we get 

𝐸(𝜇𝑚̃) = 𝜇.  (12) 

which means the estimator is unbiased. 

Next, to evaluate the performance of NMOM, we utilized variance neutrosophic given by:  

𝑉𝑎𝑟(𝜇𝑚̃) = 𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛′
)

2

− [𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛′
)]

2

 .   (13) 

Expectation of the squared 𝜇𝑚̃ is 

𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
)

2

=
1

𝑛′2 𝐸 [∑ 𝑋𝑖𝑁
2𝑛−𝑖2

𝑖=𝑖1+1 + 2∑ 𝑋𝑖𝑁𝑋𝑗𝑁𝑖<𝑗 ].  (14) 

Since 𝐸[𝑋𝑖𝑁
2 ] = 𝑉𝑎𝑟 (𝑋𝑖𝑁) + (𝐸[𝑋𝑖𝑁])2 = 𝜎2 + 𝜇2, and assuming independence:  

𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
)

2

=
1

𝑛′2 (𝑛′(𝜎2 + 𝜇2) + 2∑ 𝜇2
𝑖<𝑗 ).  (15) 

Since there are (𝑛
′

2
) =

𝑛′(𝑛′−1)

2
 terms in the second sum, therefore  

𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
)

2

=
𝑛′(𝜎2+𝜇2)+𝑛′(𝑛′−1)𝜇2

𝑛′2 =
𝑛′𝜎2+𝑛′𝜇2+𝑛′2𝜇2−𝑛′𝜇2

𝑛′2 =
𝑛′𝜎2+𝑛′2𝜇2

𝑛′2  .   (16) 

Hence, compute variance of NMOM is  

𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
)

2

− [𝐸 (
∑ 𝑋𝑖𝑁

𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
)]

2

=
𝑛′𝜎2+𝑛′2𝜇2

𝑛′2 − 𝜇2 =
𝜎2

𝑛′ =
𝜎2

𝑛−𝑖1−𝑖2
.      (17) 

where 𝑉𝑎𝑟(𝜇𝑚̃) ∈ [𝑉𝑎𝑟(𝜇𝐿  ) ,̃ 𝑉𝑎𝑟(𝜇𝑈)̃].   
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Furthermore, the NMSE of NMOM is  

𝑀𝑆𝐸(𝜇𝑚̃) = 𝐸[(𝜇𝑚̃ −  𝜇)2] = 𝑉𝑎𝑟(𝜇𝑚̃) + [𝐸(𝜇𝑚̃) − 𝜇]2.   (18) 

If 𝜇𝑚̃ is unbiased, then: 

𝑀𝑆𝐸(𝜇𝑚̃) = 𝑉𝑎𝑟(𝜇𝑚̃) =
𝜎2

𝑛−𝑖1−𝑖2
.    (19) 

This result shows that the NMSE of NMOM will be smaller than MSE of the standard mean. We 

can express this as a ratio where  

𝑀𝑆𝐸(𝑋̅)

𝑀𝑆𝐸 (𝜇𝑚̃)
=

𝑛

𝑛−𝑖1−𝑖2
≥ 1.    

3. Simulation Procedure  

This section presents a Monte Carlo simulation study conducted to evaluate the 

performance of the proposed NMOM compared to the neutrosophic standard mean under 

varying percentages of outliers and variances. The study examines the robustness and efficiency 

of these estimators in handling contaminated datasets, providing insights into their relative 

performance in the presence of outliers. Neutrosophic random samples of sizes 50 and 300 were 

generated from a neutrosophic normal distribution with a mean interval of [5,6]. Specified 

percentages of outliers (e.g., 0%, 5%, 10%, and 15%) were introduced into the contaminated 

datasets to simulate diverse conditions outlined in Tables 4 and 5. The simulation study was 

repeated 10,000 times to ensure reliable and stable results, offering a comprehensive analysis of 

the estimators' behavior under different conditions.  

The simulation study will be discussed in the following manner. The process begins by generating 

data from a neutrosophic normal distribution with a mean interval of [5,6] and varying levels of 

variance and contamination percentages (0%, 5%, 10%, 15%). Next, several neutrosophic 

statistical measures are computed: the standard mean, median, standard deviation, median 

absolute deviation, and median absolute deviation about the median. The process then identifies 

outliers using Equation (7-8). Based on whether outliers are present, the analysis branches into 

two different approaches for estimating the mean parameter: 

1. If no outliers are detected, the mean parameter is estimated using the neutrosophic 

standard approach. 

2. If outliers are present, the mean parameter is estimated using a neutrosophic modified 

one-step M-estimator. 

Finally, the process concludes by comparing the Mean Squared Error (MSE) of the neutrosophic 

approaches, likely to evaluate which method performs better under different contamination 

scenarios. This methodology appears to be designed to handle uncertainty and imprecision in 

data through neutrosophic statistics, with special consideration for robust estimation when 

outliers are present. The flowchart of the study using neutrosophic data is illustrated in Figure 1. 
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Table 1: Descriptive statistics under neutrosophic statistics for simulation study when 𝑛𝑁 =

[300, 300] 

 Neutrosophic Standard Mean estimator with variance 

[1,1] 

Neutrosophic Modified one-step estimator with 

variance [1,1] 

Outliers’ 

percentage 

 

 

Statistics 

 

0% 10% 15% 0% 10% 15% 

𝑋𝑁̅  [5.5352, 6.8868] [6.5039, 8.143] [6.9806, 8.7063]  [5.4971, 6.8478] [5.6806, 7.1289] [5.8269, 7.5021] 

𝑀̂𝑁 [5.5347, 6.8863] [6.5003, 8.1375] [6.9798, 8.7044]  [5.4971, 6.8481] [5.6812, 7.1251] [5.825, 7.4903]   

𝑀𝐴𝐷𝑁  [0.0541, 0.0798]  [0.1844, 0.238]   [0.2136, 0.2579] [0.0594, 0.086]   [0.0697, 0.1161] [0.0808, 0.1575]  

𝑆𝐷𝑁  [0.0544, 0.0798] [0.1876, 0.2416] [0.2145, 0.2541] [0.0589, 0.0864]  [0.073, 0.1157]   [0.0847, 0.1567] 

 

As shown in Table 1, the comparison between the Neutrosophic Standard Mean Estimator (NSM) 

and the Neutrosophic Modified One-Step Estimator (NMOM) indicates that both estimators yield 

similar performance when no outliers are present. However, when 15% outliers are introduced, 

notable differences emerge. The 𝑋̅𝑁 and median 𝑀̂𝑁 of the estimator increase significantly, 

indicating that it is more sensitive to the presence of outliers. In conclusion, while both estimators 

perform similarly in the absence of outliers, the NMOM estimator proves to be more robust and 

reliable in datasets contaminated with outliers, as it shows less variability and distortion across 

increasing levels of contamination. 

Table 2: Neutrosophic MSE and Bias for NSM and NMOM for 𝑛𝑛 = [50, 50]. 

 

Estimator 

Neutrosophic Standard Mean 
Neutrosophic Modified One Step M-

estimator 

Outliers’ 

percentage 
Variance Bias MSE Bias MSE 

0% [1, 1] [−0.002779, 0.1345]  [0.01956, 0.03878] [−0.002191, 0.1345] [0.02132, 0.04059] 

[4, 8] [0.0004884, 0.13782]  [0.1160, 0.1410] [0.00073, 0.1373] [0.1272, 0.1525] 

[8,8] [−0.007861,0.1292] [0.1565,0.1811] [−0.006198, 0.13036] [0.1705, 0.1961] 

5% [1, 1] [0.1772, 0.31901]   [0.05096, 0.12246] [0.0975, 0.2369] [0.03203, 0.07992] 

[4, 8] [0.4392, 0.5875] [0.3103,0.4687] [0.2438, 0.3867] [0.1938, 0.2908] 

[8,8] [0.5013, 0.6511] [0.4077, 0.5884] [0.2758, 0.4195] [0.2562, 0.3652] 

10% [1,1] [0.2972, 0.4420] [0.10789, 0.21605] [0.1738, 0.3154] [0.0538, 0.1244] 

[4, 8] [0.7316, 0.8873] [0.6558, 0.9140] [0.4312, 0.5789] [0.3264, 0.4828] 

[8,8] [0.8407,0.9989] [0.8631, 1.1623] [0.4917, 0.6409] [0.4305,0.6091] 

15% [1, 1] [0.4772,0.6265] [0.2473, 0.4132] [0.3095,0.4547] [0.1211, 0.2335] 

[4, 8] [1.170, 1.337] [1.4978, 1.922] [0.761, 0.917] [0.7324,1.0020] 

[8,8] [1.3498, 1.5208] [1.9783, 2.4773] [0.8755, 1.0342] [ 0.9686, 1.2822] 
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Table 3: Neutrosophic MSE and Bias for NSM and NMOM for 𝑛𝑛 = [300, 300]. 

 

Estimator 

Neutrosophic Standard Mean 
Neutrosophic Modified One Step M-

estimator 

Outliers’ 

percentage 
Variance  Bias MSE Bias MSE 

0% [1, 1] [4.085e

− 4, 0.1378]  

[3.389e

− 3,0.02262] 

[5.479e

− 4, 0.1372] 

[3.667𝑒

− 3, 0.02274] 

[4, 8] [0.0020, 0.1392]  [0.0590, 0.0815] [0.0032, 0.1396] [0.0643, 0.0872] 

[8,8] [−0.0046, 0.1328] [0.0782, 0.0999] [−0.0045, 0.1323] [0.0847, 0.1066] 

5% [1, 1] [0.1504, 0.2915]   [0.02601,0.08864] [0.08309, 0.2222] [0.01075,0.05345] 

[4, 8] [0.3673, 0.5136] [0.1954, 0.3275] [0.2047, 0.3466] [0.1093, 0.1910] 

[8,8] [0.4195, 0.5677] [0.2542, 0.4047] [0.2282, 0.3710] [0.1400, 0.2300] 

10% [1,1] [0.3004, 0.4453] [0.0936,0.2019] [0.1786, 0.3203] [0.0359, 0.1069] 

[4, 8] [0.7326, 0.8880] [0.6013, 0.8567] [0.4377, 0.5853] [0.2635, 0.4183] 

[8,8] [0.8438,1.0026] [0.7903, 1.0877] [0.4985, 0.6480] [0.3405, 0.5166] 

15% [1, 1] [0.4504, 0.5991] [0.2062, 0.3625] [0.2910,0.4357] [0.0889, 0.1944] 

[4, 8] [1.0979, 1.2625] [1.2766, 1.6690] [0.7089, 0.8631] [0.5815, 0.8284] 

[8,8] [1.2681, 1.4375] [1.6863, 2.1489] [0.8135, 0.9713] [ 0.7592, 1.0459] 

 

From Table 1 - 3, the Neutrosophic Standard Mean (NSM) estimator and the Neutrosophic 

Modified One-Step (NMOM) estimator reveals that the 𝑁𝑀𝑂𝑀 estimator exhibits greater 

robustness, particularly in the presence of outliers. As the percentage of outliers increases, both 

estimators experience an increase in bias and 𝑀𝑆𝐸. However, 𝑁𝑀𝑂𝑀 consistently maintains a 

lower bias than NSM, indicating that it is less influenced by the presence of extreme values. 

Additionally, 𝑁𝑀𝑂𝑀 shows lower 𝑀𝑆𝐸 across all variance levels, further demonstrating its 

stability. When variance increases from [1,1] to [8,8], both estimators become less efficient, but 

𝑁𝑆𝑀 deteriorates more significantly compared to 𝑁𝑀𝑂𝑀. This trend suggests that 𝑁𝑀𝑂𝑀 

remains more reliable across different variance conditions. At higher outlier percentages, such as 

15%, the difference becomes even more pronounced, with 𝑁𝑆𝑀 showing substantially higher 

𝑀𝑆𝐸 than 𝑁𝑀𝑂𝑀, highlighting its susceptibility to contamination. Furthermore, for larger sample 

sizes, as shown in the Table 5 for 𝑛𝑁 = [300, 300], the 𝑁𝑀𝑂𝑀 estimator maintains its advantage 

in both bias and 𝑀𝑆𝐸, reinforcing its robustness. At 15% outliers with high variance ([8,8]), 𝑁𝑆𝑀 

has a significantly higher bias and 𝑀𝑆𝐸 compared to 𝑁𝑀𝑂𝑀, demonstrating that 𝑁𝑆𝑀 is more 

prone to error when the data is contaminated. This further confirms 𝑁𝑀𝑂𝑀’𝑠 superior 

performance, especially when dealing with large-scale datasets where outliers may be present. 

Overall, these findings suggest that the 𝑁𝑀𝑂𝑀 estimator is the superior choice for datasets 

containing outliers, as it offers greater accuracy and resilience against data contamination. 
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Figure 1. Process of the Neutrosophic Modified One-Step M Estimator Under Contamination 

 

4. Real-world Data 

The application of the Neutrosophic Modified One-step M-estimator (NMOM) is 

demonstrated through a comparative analysis of two distinct datasets, each presenting unique 

characteristics that make them valuable for this statistical approach. The first dataset, originally 

documented by [22], consists of COVID-19 mortality rates from the Netherlands spanning 30 days 

(March 31 to April 30, 2020), characterized by rough or imprecise measurements that inherently 

contain degrees of uncertainty. The second dataset, sourced from [23], comprises 50 observations 

of thickness measurements with holes and sheets, representing manufacturing quality control 
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data with its own form of indeterminacy. These datasets are particularly important for this 

application because they represent different domains (public health and manufacturing), contain 

different forms of uncertainty, feature varying sample sizes (30 versus 50 observations), and have 

been previously analyzed in published literature—enabling meaningful comparisons with 

established results. By applying NMOM to these diverse real-world datasets rather than 

simulated data, researchers can effectively demonstrate the method's versatility and robustness 

in handling outliers and indeterminacy across different fields, thereby establishing its practical 

value as a statistical tool for analyzing neutrosophic data in situations where traditional methods 

might be inadequate due to data imprecision or contamination. The two data sets in neutrosophic 

form is given in Table 4 below. 

Table 4: Two set of neutrosophic data 

Data Set 1 Data Set 2 

(14.918,15.66390), (10.056,11.18880), 

(12.274,12.88770), (10.289,10.80345), 

(10.832,11.37360), (7.099,7.45395), (5.928, 

6.22440), (13.211,13.87155), (7.968,8.36640), 

(7.584,7.96320), (5.555,5.83275), 

(6.027,6.32835), (4.097,4.30185), 

(3.611,3.79155), (4.960,5.20800), 

(7.498,7.87290), (6.940,7.28700), 

(5.307,5.57235), (5.048,5.30040), 

(2.857,2.99985), (2.254,2.36670), 

(5.431,5.70255), (4.462,4.68510), 

(3.883,4.07715), (3.461,3.63405), 

(3.647,3.82935), (1.974,2.07270), 

(1.273,1.33665), (1.416,1.48680), 

(4.235,4.44675). 

(0.03,0.05), (0.01,0.03), (0.05,0.07), 

(0.11,0.13), (0.13,0.15), (0.09,0.085), 

(0.21,0.223), (0.11,0.121), (0.07,0.082), 

(0.25,0.262), (0.23,0.243), (0.03,0.043), 

(0.13,0.142), (0.15,0.162), (0.07,0.083), 

(0.25,0.264), (0.322,0.34), (0.27,0.284), 

(0.13,0.145), (0.15,0.164), (0.23,0.243), 

(0.21,0.224), (0.10,0.122), (0.10,0.184), 

(0.20,0.242), (0.30,0.323), (0.12,0.164), 

(0.12,0.142), (0.05,0.082), (0.11,0.164), 

(0.20,0.245), (0.10,0.163), (0.11,0.324), 

(0.10,0.182), (0.20,0.243), (0.20,0.222), 

(0.10,0.163), (0.11,0.123), (0.20,0.242), 

(0.05,0.063), (0.01,0.024), (0.17,0.1840), 

(0.21,0.225), (0.11,0.143), (0.05,0.062), 

(0.03,0.042), (0.12,0.143), (0.25,0.263), 

(0.15,0.182), (0.10,0.162). 

 

5. Results and Discussion   

From Table 4, the Neutrosophic Modified One Step M-estimator demonstrates greater 

robustness and accuracy compared to the Neutrosophic Standard Mean. It yields a lower mean 

and median, indicating that it is less influenced by extreme values. Additionally, its lower 

standard deviation and covariance suggest that it is more stable and exhibits less variability. A 

significant difference is observed in the detection of outliers, where the modified estimator 

identifies seven outliers at lower and upper data, while the standard mean detects none. 
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Furthermore, the Mean Squared Error (MSE) for the modified estimator is significantly lower, 

highlighting its improved accuracy. Overall, the Neutrosophic Modified One Step M-estimator is 

a more reliable approach, as it effectively minimizes the impact of outliers and provides more 

precise estimates. 

 

Table 5: The descriptive summary of data set 1 with sample size [30,30] 

 Neutrosophic Standard Mean Neutrosophic Modified One Step 

M-estimator 

Mean   [6.14, 6.46] [4.84, 5.08] 

Median [5.37, 5.64] [4.96, 5.21] 

Standard deviation [3.45, 7.10] [1.81, 3.70] 

Covariance  [1.94, 7.79] [0.37, 0.73] 

No of outliers [0,0] [7,7] 

MSE [11.9, 13.7]  [3.26, 4.09] 

 

From table 5, while both methods yield similar mean and median values, the NMOM 

exhibits a lower standard deviation [0.0670,0.134] compared to the NSM [0.0766,0.156] indicating 

greater stability. Additionally, the covariance is slightly lower for the NMOM, suggesting 

reduced variability in relationships between variables. A significant distinction is in the detection 

of outliers, where the NSM detects none, whereas the NMOM estimator identifies three at lower 

data, making it more sensitive to extreme values. In terms of accuracy, the NMOM has a slightly 

higher lower bound for MSE [0.00678,0.00794] compared to the NSM [0.00586,0.00967] but it 

remains within a similar range.   

 

Table 6: The descriptive summary of data set 2 with sample size [50,50] 

 Neutrosophic Standard 

Mean 

Neutrosophic Modified 

One Step M-estimator 

Mean [0.138, 0.167] [0.128, 0.167] 

Median [0.12, 0.163] [0.11, 0.163] 

Standard deviation [0.0766, 0.156] [0.0670, 0.134] 

Covariance [0.555, 0.935] [0.524, 0.801] 

No of outliers [0,0] [3,0] 

MSE [0.00586, 0.00967]  [0.00678, 0.00794]  

 

In addition, by comparing the Neutrosophic Standard Mean and the Neutrosophic 

Modified One Step M-estimator across different sample sizes highlights the robustness of the 

modified estimator. In both cases, the NMOM estimator shows lower variability, as indicated by 
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the reduced standard deviation and covariance values. This suggests that it provides more stable 

estimates compared to the standard mean. Additionally, the NMOM estimator detects more 

outliers, reinforcing its ability to account for anomalies in the dataset. Although the Mean 

Squared Error for the NMOM estimator is slightly higher in the larger sample size, it remains 

relatively low, ensuring reliable performance. Overall, the findings confirm that the Neutrosophic 

Modified One Step M-estimator is a more effective approach for handling uncertainty and 

outliers, leading to more precise and robust statistical estimates. 

 

Figure 2: MSE values of NSM and NMOM across different outlier percentages with 

variance [1,1] 

 

 

Figure 3: MSE values of NSM and NMOM across different outlier percentages with 

variance [4,8] 



14  Int. J. Anal. Appl. (2025), 23:208 

 

 

Figure 4: MSE values of NSM and NMOM across different outlier percentages with 

variance [8,8] 

Figures 1 to 3 depict the MSE values for NSM and NMOM across different variance 

levels—[1,1], [4,8], and [8,8]—under varying outlier percentages (0%, 5%, 10%, and 15%). The 

influence of outliers is evident in all three bar charts, as the MSE values for both estimators 

increase with a higher percentage of outliers, indicating reduced estimation accuracy. However, 

NMOM consistently demonstrates lower MSE values compared to NSM across all variance levels, 

highlighting its robustness against outliers. These results clearly show that NMOM is a more 

effective estimator, especially in scenarios with high variance and a significant presence of 

outliers. Its ability to maintain lower MSE values across different conditions makes it a more 

reliable choice for statistical estimation in real-world applications where uncertainty and outliers 

are prevalent. 

6. Conclusions  

The findings from both empirical studies and simulation highlight the advantages of the 

Neutrosophic Modified One-Step M-estimator (NMOM) over the Neutrosophic Standard Mean 

(NSM), particularly in handling data variability and robustness against outliers. The presence of 

outliers in NMOM suggests that this method is more sensitive to detecting anomalies, whereas 

NSM potentially leading to biased estimations. Moreover, the lower standard deviation observed 

in NMOM confirms its ability to provide more stable and consistent results. This aligns with the 

expectations from simulation studies, which emphasize the efficiency of modified M-estimators 

in reducing the influence of extreme values. The covariance values further support this, as 

NMOM exhibits a more controlled spread, ensuring better reliability in data-driven decision-

making. Additionally, the Mean Squared Error (MSE) comparison demonstrates that NMOM 

maintains a similar level of accuracy to NSM while offering greater robustness. This is 

particularly crucial in fields requiring precise and reliable estimation methods, such as finance, 
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medical research, and engineering applications. In conclusion, the empirical and simulation-

based findings confirm that NMOM is a superior estimator for datasets containing noise or 

outliers. Its ability to enhance stability, reduce variability, and improve data accuracy makes it a 

more effective alternative to traditional methods, reinforcing its potential for application in 

complex real-world scenarios. Therefore, this study may be extended in the near future to include 

other types of mean estimators 
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