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Abstract. In this paper, we introduce the concept of θ−contraction and θ−φ−contraction in a generalized setting such

as quasi-metric spaces with the aim to study existence of the unique fixed point for self mapping. Our established

theorems extend and elaborate classical conclusions of standart metric supported by many examples and corollaries as

a further completion of the results in the current literature.

1. Introduction

The most celebrated result of the theory of metric fixed points is the Banach contraction prin-

ciple [1]. Due to its importance, several authors have obtained many interesting extensions and

generalizations [2, 5, 8].

In 1931, for the first time quasi-metric spaces were introduced by Wilson [14], in such a way that

without the requirement that the (asymmetric) metric d has to satisfy d(x, y) = d(y, x). As such,

any metric space is a quasi-metric space but the converse is not true. Various fixed point results

were established on such spaces; see [7, 9–12] and references therein. In quasi-metric spaces some

notions, as convergence, compactness and completeness are different from those in metric case.

Collins and zimer [3] have discussed these notions in the quasi-metric space.

Recently, Samet et al. [4] introduced a new concept of θ−contraction and established some fixed

point results for such mappings in complete generalized metric spaces and generalized the results

of Banach contraction on such space.

Received: May 2, 2025.

2020 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. fixed point; quasi-metric spaces; θ−φ−contraction.

https://doi.org/10.28924/2291-8639-23-2025-156
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-156


2 Int. J. Anal. Appl. (2025), 23:156

Very recently, Zheng et al. [13] introduced a new concept of θ − φ−contraction and established

some fixed point results for such mappings in complete metric spaces and generalized the results

of Brower and Kannan.

In this paper, aspired by the notion of Samet et al [4] and the notion introduced by Zheng et al. [13],

we present a new notion of generalized θ−contraction and θ−φ−contraction and establish various

fixed point theorems for such mappings in complete quasi-metric spaces. The results presented in

the paper improve and extend the corresponding results of Kannan. [5] and Reich [8].

2. Preliminaries

Definition 2.1. Let X be a non-empty set and d : X ×X→ R+ be a mapping such that for all x, y, z ∈ X
satisfies

(i) d(x, y) = d(y, x) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, z) + d(z, y). (Triangular Inequality)
Then (X, d) is called an quasi-metric space.

Definition 2.2. [3]. Let (X, d) is a quasi-metric space and {xn}n∈N be a sequence in X, and x ∈ X.
(i) The sequence {xn}n∈N right (left) converges to x if and only if

lim
n→+∞

d (x, xn) = lim
n→+∞

d (xn, x) = 0.

(ii) The sequence {xn}n∈N right Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε),
for all m > n ≥ N such that d (xn, xm) < ε.

(iii) The sequence {xn}n∈N left Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε),
for all m > n ≥ N, such that d (xm, xn) < ε.

Lemma 2.1. [3]. Let (X, d) be a quasi-metric space and {xn}n be a sequence in X. If {xn}n right converges
to x ∈ X and left converges to y ∈ X, then x = y.

Definition 2.3. [3]. Let (X, d) be a quasi-metric space. X is said to be right (left) complete if every right
(left) Cauchy sequence {xn}n in X right (left) converges to x ∈ X.

Definition 2.4. [3]. Let (X, d) be a quasi-metric space. X is said to be complete if X is right and left
complete.

The following definition was given by Samet et al in [4].

Definition 2.5. [4] Let ΘC be the family of all functions θ : ]0,+∞[→ ]1,+∞[ such that
(θ1) θ is increasing, i.e., for all x, y ∈ R+ such that x < y, θ (x) < θ (y) ∀x, y ∈ X;

(θ2) For each sequence xn ∈ ]0,+∞[,

lim
n→∞

xn = 0, if and only if lim
n→∞

θ (xn) = 1;

(θ3) θ is continuous.
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Definition 2.6. [4] Let ΘG be the family of all functions θ : ]0,+∞[→ ]1,+∞[ such that
(θ1) θ is increasing, i.e., for all x, y ∈ R+ such that x < y, θ (x) < θ (y) ∀x, y ∈ X;
(θ2) For each sequence xn ∈ ]0,+∞[,

lim
n→∞

xn = 0, if and only if lim
n→∞

θ (xn) = 1;

(θ3) there exist r ∈ ]0, 1[ and l > 0 such that limn→∞
θ(t)−1

tr = l;
(θ4) θ is continuous.

In [13]. Zheng Presented the concept of θ − φ−contraction on metric spaces and proved the

following nice result.

Definition 2.7. [13] Let Φ be the family of all functions φ: [1,+∞[→ [1,+∞[, such that
(φ1) φ is increasing;
(φ2) For each t ∈ ]1,+∞[, limn→∞φn(t) = 1;
(φ3) φ is continuous.

Lemma 2.2. [13] If φ ∈ Φ. Then φ(1)=1, and φ(t) < t for all t ∈ ]1 +∞[.

Definition 2.8. [13]. Let (X, d) be a metric space and T : X→ X be a mapping.
T is said to be a θ−φ−contraction if there exist θ ∈ Θ and φ ∈ Φ such that for any x, y ∈ X,

d (Tx, Ty) > 0⇒ θ [d (Tx, Ty)] ≤ ϕ [θ (N (x, y))] ,

where

N (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
.

Theorem 2.1. [13]. Let (X, d) be an complete metric space and let T : X → X be an θ − φ-contraction.
Then T has a unique fixed point.

3. Main result

In this paper, we presented the conceptθ-contraction andθ−φ-contraction of quasi-metric space

and we prove some fixed point results for such spaces. Also, we derive some useful corollaries of

these results.

Theorem 3.1. Let (X, d) be a quasi-metric space and T : X→ X be a mapping. If there exists θ ∈ ΘG and
r ∈ ]0, 1[ such that for all x, y ∈ X

max{d (Tx, Ty) , d (Ty, Tx)} > 0⇒ θ [d (Tx, Ty)] ≤ [θ (M (x, y))]r , (3.1)

where

M (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
.

and

d (y, x) ≤ d
(
T2y, x

)
Then T has a unique fixed point.
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Proof. Let x0 ∈ X be an arbitrary point in X, we define the sequence {xn} by xn+1 = Txn, for all

n ∈N.

If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0 and d (xn0+1, xn0) = 0, then xn0 is a fixed point of

T. Then we assume that d (xn, xn+1) > 0 or d (xn+1, xn) > 0.

Step 1. We claim that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0. (3.2)

Applying (3.1) with x = xn−1 and y = xn, we obtain

θ (d (xn, xn+1)) = θ (d (Txn−1, Txn))

≤ [θ (M (xn, xn−1))]
r ,

where

M (xn−1, xn) = max (d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1)
}

= max (d (xn−1, xn) , d (xn, xn+1)
}

.

Suppose that d (xn−1, xn) ≤ d (xn, xn+1) for some positive integer n, we have

θ (d (xn, xn+1)) ≤ [θ (d (xn, xn+1))]
r < θ (d (xn, xn+1)) ,

which is a contradiction. Hence

θ (d (xn, xn+1)) ≤ [θ (d (xn−1, xn))]
r
≤ ... ≤ [θ (d (x0, x1))]

rn
(3.3)

Since r ∈ ]0, 1[, we obtain

θ (d (xn, xn+1)) < θ (d (xn−1, xn)) .

By (θ1), we have

d (xn, xn+1) < d (xn−1, xn) . (3.4)

Applying (3.1) with x = xn and y = xn−1, we obtain

θ (d (xn+1, xn)) = θ (d (Txn, Txn−1))

≤ [θ (M (xn, xn−1))]
r

where

M (xn, xn−1) = max (d (xn, xn−1) , d (xn, xn+1) , d (xn−1, xn)
}

= max (d (xn−1, xn) , d (xn, xn−1)
}

.

Suppose that d (xn, xn−1) ≤ d (xn+1, xn) for some n ∈N.

Case 1 : d (xn, xn−1) ≥ d (xn−1, xn), we get

θ (d (xn, xn−1)) ≤ θ (d (xn+1, xn))

≤ [θ (d (xn, xn−1))]
r

< θ (d (xn, xn−1)) .
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Which is a contradiction.

Case 2 : d (xn, xn−1) < d (xn−1, xn), we get

θ (d (xn+1, xn)) ≤ [θ (d (xn−1, xn))]
r .

Since d (y, x) ≤ d
(
T2y, x

)
, so d (xn−1, xn) ≤ d (xn+1, xn) . Which implies that

θ (d (xn+1, xn)) ≤ [θ (d (xn−1, xn))]
r

≤ [θ (d (xn+1, xn))]
r

< θ (d (xn+1, xn)) ,

which is a contradiction. Hence

θ (d (xn+1, xn)) ≤ [θ (d (xn, xn−1))]
r
≤ ... ≤ [θ (d (x1, x0))]

rn
(3.5)

Since r ∈ ]0, 1[ and (θ1), we conclude that

d (xn+1, xn) < d (xn, xn−1) . (3.6)

From (3.4), the sequence d (xn, xn+1)n∈N is monotone nonincreasing. So there exists α ≥ 0 such

that

lim
n→∞

d (xn, xn+1) = α. (3.7)

Assume that α > 0. By property of θ and using (3.3), we obtain

1 < θ(α) ≤ θ (d (xn, xn+1)) ≤ [θ (d (x0, x1))]
rn

(3.8)

Letting limn→∞ in (3.8) and using (θ2), we get

1 < θ(α) ≤ lim
n→+∞

[θ (d (x0, x1))]
rn

.

Therefore,

1 < θ(α) ≤ 1

Which is a contradiction. Thus, α = 0, then

lim
n→∞

d (xn,xn+1) = 0. (3.9)

From (3.6), the sequence d (xn+1, xn)n∈N is monotone nonincreasing. So there exists λ ≥ 0 such

that

lim
n→∞

d (xn+1, xn) = λ. (3.10)

Assume that λ > 0. By property of θ and using (3.5), we obtain

1 < θ(λ) ≤ θ (d (xn+1, xn)) ≤ [θ (d (x1, x0))]
rn

(3.11)

Letting limn→∞ in (3.11) and using (θ2), we get

1 < θ(λ) ≤ lim
n→+∞

[θ (d (x1, x0))]
rn

.
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Therefore,

1 < θ(α) ≤ 1

Which is a contradiction. Thus, λ = 0, then

lim
n→∞

d (xn+1, xn) = 0. (3.12)

Step 2 : We prove that {xn}n∈N is a Cauchy sequence.

Firstly we show {xn}n∈N is right-Cauchy sequence i.e. limn,m→∞ d (xn, xm) = 0.

From condition (θ3), there exist k ∈ ]0, 1[ and l > 0 such that

lim
n→∞

θ [d (xn, xn+1)] − 1

d (xn, xn+1)
k

= l

Suppose that l < ∞. In this case, let A = l
2 . From the definition of the limit, there exists n0 ∈ N

such that

|
θ [d (xn, xn+1)] − 1

d (xn, xn+1)
k
− l| ≤ A f or all n ≥ n0.

This implies that

θ [d (xn, xn+1)] − 1

d (xn, xn+1)
k

≥ A f or all n ≥ n0.

Then

n
[
d (xn, xn+1)

k
]
≤ Bn [θ (d (xn, xn+1)) − 1] f or all n ≥ n0.

Where A = 1
B

Now, suppose that l = ∞. Let B > 0. From the definition of the limit, there exists n0 ∈N such that

|
θ [d (xn, xn+1)] − 1

d (xn, xn+1)
k
| ≥ B f or all n ≥ n0.

This implies that

n
[
d (xn, xn+1)

k
]
≤ An [θ (d (xn, xn+1)) − 1] f or all n ≥ n0.

Where A = 1
B .

Thus, in all cases, there exist A > 0 and n0 ∈N such that

n
[
d (xn, xn+1)

k
]
≤ An [θ (d (xn, xn+1)) − 1] f or all n ≥ n0.

By continuing this process we have,

n
[
d (xn, xn+1)

k
]
≤ An

[
(θ (d (x0, x1)))

rn
− 1

]
f or all n ≥ n0. (3.13)

Letting n→∞ in (3.13), we obtain

lim
n→∞

n
[
d (xn, xn+1)

k
]
= 0.



Int. J. Anal. Appl. (2025), 23:156 7

Thus, there exists n1 ∈N such that

d (xn, xn+1) ≤
1

n
1
k

, f or all n ≥ n1. (3.14)

Now, by triangular inequality and using (3.14), we get

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ... + d (xm−1, xm) , f or all m > n ≥ n1

≤
1

n
1
k

+
1

(n + 1)
1
k

+ ... +
1

(m− 1)
1
k

≤

∞∑
i=n

1

i
1
k

.

From the convergence of the series
∑
∞

i=n
1

i
1
k

, we deduce that {xn}n∈N is right-Cauchy sequence in

(X, d).
Secondly we show {xn}n∈N is left-Cauchy sequence i.e. limm,n→∞ d (xm, xn) = 0

Applying (3.1) with x = xn and y = xn−1, then. From condition (θ3), there exist k ∈ ]0, 1[ and l > 0

such that

lim
n→∞

θ [d (xn+1, xn)] − 1

d (xn+1, xn)
k

= l.

Suppose that l < ∞. In this case, let H = l
2 . From the definition of the limit, there exists n0 ∈ N

such that

|
θ [d (xn+1, xn)] − 1

d (xn+1, xn)
k
− l| ≤ H f or all n ≥ n0.

This implies that

θ [d (xn+1, xn)] − 1

d (xn+1, xn)
k

≥ H f or all n ≥ n0.

Then

n
[
d (xn+1, xn)

k
]
≤Mn [θ (d (xn+1, xn)) − 1] f or all n ≥ n0.

Where H = 1
M Suppose that l = ∞. Let M > 0. From the definition of the limit, there exists n0 ∈N

such that

|
θ [d (xn+1, xn)] − 1

d (xn+1, xn)
k
| ≥M f or all n ≥ n0.

This implies that

n
[
d (xn+1, xn)

k
]
≤ Hn [θ (d (xn+1, xn)) − 1] f or all n ≥ n0.

Where H = 1
M .

Thus, in all cases, there exist H > 0 and n ∈N such that

n
[
d (xn+1, xn)

k
]
≤ An [θ (d (xn+1, xn)) − 1] f or all n ≥ n0.
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By continuing this process we have,

n
[
d (xn+1, xn)

k
]
≤ Hn

[
(θ (d (x1, x0)))

rn
− 1

]
f or all n ≥ n0. (3.15)

Letting n→∞ in (3.15), we obtain

lim
n→∞

n
[
d (xn+1, xn)

k
]
= 0.

Thus, there exists n1 ∈N such that

d (xn+1, xn) ≤
1

n
1
k

, f or all n ≥ n1. (3.16)

Now, by triangular inequality and using (3.16), we get

d (xm, xn) ≤ d (xm, xm+1) + d (xm+1, xm+2) + ... + d (xn−1, xn) , f or all n > m ≥ n1

≤
1

m
1
k

+
1

(m + 1)
1
k

+ ... +
1

(n− 1)
1
k

≤

∞∑
i=m

1

i
1
k

.

From the convergence of the series
∑
∞

i=m
1

i
1
k

, we deduce that {xn}n∈N is left-Cauchy sequence in

(X, d).
Finally, we deduce that {xn}n∈N is a Cauchy sequence in complete quasi-metric space (X, d). By

completeness of (X, d), there exists z, w ∈ X such that

lim
n→∞

d (xn, z) = 0 and lim
n→∞

d (w, xn) = 0.

By Lemma (2.3), we get z = w.

Step 3: we prove that z = Tz, i.e. d (Tz, z) = 0 and d (z, Tz) = 0.

Arguing by contradiction, we assume that d (Tz, z) > 0 or d (z, Tz) > 0.

First assume that d (z, Tz) > 0. By triangular inequality we get

d (Txn, Tz) ≤ d (Txn, z) + d (z, Tz) (3.17)

and

d (z, Tz) ≤ d (z, Txn) + d (Txn, Tz) (3.18)

It follows from (3.17) and (3.18) that

lim
n→+∞

d (Txn, Tz) = d (z, Tz) . (3.19)

So, there exists n0 ∈N such that

d (Txn, Tz) ≥ d (z, Tz) > 0 f or all n ≥ n0.

and we have

max{d (Txn, Tz) , d (Tz, Txn)} > 0.
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Applying (3.1) with x = xn and y = z, we obtain

θ (d (Txn, Tz)) ≤ [θ (M (xn, z))]r , (3.20)

where

M (xn, z) = max
{
d (xn, Txn) , d (z, Tz) , d (xn, z)

}
.

and

lim
n→+∞

M (xn, z) = d (z, Tz) . (3.21)

Taking the limit as n→∞ in (3.20) and using the properties of θ, we obtain we obtain

lim
n→+∞

θ (d (Txn, Tz)) = θ
(

lim
n→+∞

d (Txn, Tz)
)

= θ (d (z, Tz))

≤

[
θ
(

lim
n→+∞

M (xn, z)
)]r

= [θ (d (z, Tz))]r

< θ (d (z, Tz)) .

which is contradiction.

If d (Tz, z) > 0, by similar method, we get contradiction. Therefore d (z, Tz) = 0 and d (Tz, z) = 0,

Hence z = Tz.

Step 4. Uniqueness.

Suppose that there are two distinct point z, u ∈ X such that Tz = z and Tu = u. Then d(z, u) =

d(Tz, Tu) > 0 or d(u, z) = d(Tu, Tz) > 0.

Applying (3.1) with x = z and y = u, we obtain

θ (d(z, u)) ≤ [θ (M(z, u))]r ,

where

M(z, u) = max
{
d (z, u) , d (z, Tz) , d (u, Tu)

}
= d(z, u)

which implies that θ (d(z, u)) < θ (d(z, u)). Is a contradiction, thus, z = u. �

Example 3.1. Let X = [1,+∞[. Define d : X ×X→ [0,+∞[ by

d(x, y) = max{y− x, 0} f or all x, y ∈ X.

Then (X, d) is a complete quasi-metric space.
Define mapping T : X→ X by

T(x) =
√

x.
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Then, T(x) ∈ [1,+∞[. Let θ (t) = e
√

t, r = 1
2 . It obvious that θ ∈ Θ and r ∈ ]0, 1[ .

Let x, y ∈ [1,+∞[, then we have

d(y, x) = max{x− y, 0} and d(T2y, x) = max{x− y
1
4 , 0}.

So,

max{x− y, 0} ≤ max{y− y
1
4 , 0},

which implies that

d(y, x) ≤ d(T2y, x) f or all x, y ∈ X.

On the other hand

d(Tx, Ty) = d
(√

x,
√

y
)
= max{

√
y−
√

x, 0},

and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max
{
max{y− x, 0}, max{

√
x− x, 0}, max{

√
y− y, 0}

}
.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0⇔ y > x. Hence

d(Tx, Ty) =
√

y−
√

x, θ(d(Tx, Ty) = e
√√

y−
√

x

and

M(x, y) = max
{
y− x,

√
x− x,

√
y− y

}
= y− x.

Then, we have

[θ(d(x, y))]
1
2 =

[
e
√

y−x
] 1

2 = e
√√

y−x.

On the other hand

θ(d(Tx, Ty) − [θ(d(x, y))]
1
2 = e

√√
y−
√

x
− e
√√

y−x.

Since x, y ∈ [1,+∞[, then
√

y−
√

x ≤
√

y− x.

Since e
√

x is increasing for all x ≥ 0. Hence

e
√√

y−
√

x
− e
√√

y−x

which implies that

θ(d(Tx, Ty) ≤ [θ(d(x, y))]
1
2

≤ [θ(max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
, d (y, Tx))]

1
2

Hence, the condition (3.1) is satisfied. Therefore, T has a unique fixed point z = 1.

If we remove our condition d(y, x) ≤ d(Ty2, x) f or all x, y ∈ X., it may be that T does not admit a

fixed point.
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Example 3.2. Let X =
[

1
4 , 3

5

]
. Define d : X ×X→ [0,+∞[ by

d(x, y) = max{y− x, 0} f or all x, y ∈ X.

Then (X, d) is a complete quasi-metric space.
Define mapping T : X→ X by

T(x) =
√

x + 1
4

Then, T(x) ∈
[

1
4 , 3

5

]
. Let θ (t) = e

√
t, r = 1

2 . It obvious that θ ∈ Θ and r ∈ ]0, 1[ .

Let x, y ∈
[

1
4 , 3

5

]
, then we have

d(y, x) = max{x− y, 0} and d(T2y, x) = max{x−
1
4


√ √

y + 1
4

+ 1

 , 0}.

If x > y and y = 1
4 . So,

max{x− y, 0} = x−
1
4
> max{x−

1
4


√ √

y + 1
4

+ 1

 , 0}.

which implies that

d(y, x) > d(T2y, x).

On the other hand

d(Tx, Ty) = d
( √

x + 1
4

,
√

y + 1
4

)
= max{

√
y−
√

x
4

, 0},

and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max
{

max{y− x, 0}, max{
√

x + 1
4

− x, 0}, max{
√

y + 1
4

− y, 0}
}

.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0⇔ y > x. Hence

d(Tx, Ty) =
√

y−
√

x
4

, θ(d(Tx, Ty) = e
√√

y−
√

x
2

and

M(x, y) = max
{

y− x,
√

x + 1
4

− x,
√

y + 1
4

− y
}

≥ y− x.

Then, we have

[θ(d(x, y))] = e
√√

y−x.

On the other hand

θ(d(Tx, Ty) −
√
[θ(d(x, y))] = e

√√
y−
√

x
2 − e

√√
y−x.
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Since x, y ∈
[

1
4 , 3

5

]
and the function et is increasing for all t ∈

[
1
4 , 3

5

]
, then

e
√√

y−
√

x
2 ≤ e

√√
y−x.

Which implies that

θ(d(Tx, Ty) ≤ [θ(d(x, y))]
1
2

≤ [θ(max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
, d (y, Tx))]

1
2

Hence, T has no fixed point.

Theorem 3.2. Let (X, d) be a quasi-metric space and T : X → X be a mapping. If there exists φ ∈ φ and
θ ∈ Θ such that for all x, y ∈ X

max{d (Tx, Ty) , d (Ty, Tx)} > 0⇒ θ [d (Tx, Ty)] ≤ φ [θ (M (x, y))] (3.22)

where

M (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
.

and

d (y, x) ≤ d
(
T2y, x

)
Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X, we define the sequence {xn} by xn+1 = Txn, for all

n ∈N.

If there exists n0 ∈N such that d (xn0 , xn0+1) = 0 and d (xn0+1, xn0) = 0, then xn0 is a fixed point of T.

Then, we assume that d (xn, xn+1) > 0 or d (xn+1, xn) > 0. Then max{d (xn, xn+1) , d (xn+1, xn)} > 0

Step 1. We claim that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0. (3.23)

Applying (3.22) with x = xn−1 and y = xn, we obtain

θ (d (xn, xn+1)) = θ (d (Txn−1, Txn))

≤ φ [θ (M (xn−1, xn))]

where

M (xn−1, xn) = max (d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1)
}

= max (d (xn−1, xn) , d (xn, xn+1)
}

.

Suppose that d (xn−1, xn) ≤ d (xn, xn+1) for some positive integer n, we have

θ (d (xn, xn+1)) ≤ φ [θ (d (xn, xn+1))]

By Lemma (2.9), we obtain

θ (d (xn, xn+1)) < θ (d (xn, xn+1)) .
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Which is a contradiction, then

θ (d (xn, xn+1)) ≤ φ [θ (d (xn−1, xn))] ≤ ... ≤ φn [θ (d (x0, x1))] (3.24)

By Lemma (2.9), we obtain

θ (d (xn, xn+1)) < θ (d (xn−1, xn)) .

By (θ1), we have

d (xn, xn+1) < d (xn−1, xn) . (3.25)

Applying (3.22) with x = xn and y = xn−1, we obtain

θ (d (xn+1, xn)) = θ (d (Txn, Txn−1))

≤ φ [θ (M (xn, xn−1))]

where

M (xn, xn−1) = max{d (xn, xn−1) , d (xn, xn+1) , d (xn−1, xn)}

= max{d (xn−1, xn) , d (xn, xn−1)}.

Suppose that d (xn, xn−1) ≤ d (xn+1, xn) for some n ∈N.

Case 1 : d (xn, xn−1) ≥ d (xn−1, xn), we get

θ (d (xn, xn−1)) ≤ θ (d (xn+1, xn))

≤ φ [θ (d (xn, xn−1))]

< θ (d (xn, xn−1)) .

Which is a contradiction.

Case 2 : d (xn, xn−1) < d (xn−1, xn), we get

θ (d (xn+1, xn)) ≤ φ [θ (d (xn−1, xn))]

Since d (y, x) ≤ d
(
T2y, x

)
, so d (xn−1, xn) ≤ d (xn+1, xn) Which implies that

θ (d (xn+1, xn)) ≤ φ [θ (d (xn−1, xn))]

≤ φ [θ (d (xn+1, xn))]

< θ (d (xn+1, xn)) ,

which is a contradiction. Hence

θ (d (xn+1, xn)) ≤ φ [θ (d (xn, xn−1))] ≤ ... ≤ φn [θ (d (x1, x0))] (3.26)

By Lemma (2.9) and (θ1), we conclude that

d (xn+1, xn) < d (xn, xn−1) . (3.27)
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From (3.25), the sequence d (xn, xn+1)n∈N is monotone nonincreasing . So there exists α ≥ 0 such

that

lim
n→∞

d (xn, xn+1) = α. (3.28)

Letting limn→∞ in (3.24) and using (φ2) and (θ3), we get

1 ≤ lim
n→+∞

θ (d (xn, xn+1)) ≤ lim
n→+∞

φn [θ (d (xn−1, xn))]

Thus, limn→+∞ θ (d (xn, xn+1)) = 1, then by (θ2) implies that

lim
n→∞

d (xn,xn+1) = 0. (3.29)

From (3.27), the sequence d (xn+1, xn)n∈N is monotone nonincreasing . So there exists λ ≥ 0 such

that

lim
n→∞

d (xn, xn+1) = λ. (3.30)

Letting limn→∞ in (3.26) and using (φ2) and (θ3), we get

1 ≤ lim
n→+∞

θ (d (xn+1, xn)) ≤ lim
n→+∞

φn [θ (d (xn, xn−1))]

Thus, limn→+∞ θ (d (xn+1, xn)) = 1, then by (θ2) implies that

lim
n→∞

d (xn+1, xn) = 0. (3.31)

Step 2 : We prove that {xn}n∈N is a Cauchy sequence. Firstly we show {xn}n∈N is right-Cauchy

sequence. If otherwise there exists an ε > 0 and sequences
(
n(k)

)
k

and
(
m(k)

)
k

such that, for all

positive integers k,
(
n(k)

)
>

(
m(k)

)
> k,

d
(
m(k), n(k)

)
≤ ε (3.32)

and

d
(
m(k), n(k)−1

)
< ε (3.33)

By triangular inequality, we obtain

ε ≤ d
(
xm(k) , xn(k)

)
≤ d

(
xm(k) , xn(k)−1

)
+ d

(
xn(k)−1 , xn(k)

)
< ε+ d

(
xn(k)−1 , xn(k)

)
Taking the limit as k→∞, we obtain

lim
k→∞

d
(
xm(k) , xn(k)

)
= ε. (3.34)

Now, by triangular inequality, we have

d
(
xm(k)+1 , xn(k)+1

)
≤ d

(
xm(k)+1 , xm(k)

)
+ d

(
xm(k) , xn(k)+1

)
(3.35)

≤ d
(
xm(k)+1 , xm(k)

)
+ d

(
xm(k) , xn(k)

)
+ d

(
xn(k) , xn(k)+1

)
. (3.36)

d
(
xm(k) , xn(k)

)
≤ d

(
xm(k) , xm(k)+1

)
+ d

(
xm(k)+1 , xn(k)

)
(3.37)

≤ d
(
xm(k) , xm(k)+1

)
+ d

(
xm(k)+1 , xn(k)+1

)
+ d

(
xn(k)+1 , xn(k)

)
(3.38)
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Letting k→∞ in the above inequalities, we obtain

lim
k→∞

d
(
xm(k)+1 , xn(k)+1

)
= ε. (3.39)

By (3.39), let B = ε
2 > 0, from the definition of the limit, there exists n0 ∈N such that

|d
(
xm(k)+1 , xn(k)+1

)
− ε| ≤ B ∀n ≥ n0.

This implies that

d
(
xm(k)+1 , xn(k)+1

)
≥ B > 0 ∀n ≥ n0.

Applying (3.22) with x = xm(k) and y = xm(k) , we have

θ
(
d
(
xm(k)+1 , xm(k)+1

))
≤ φ

[
θ
(
M

(
xm(k) , xn(k)

))]
, (3.40)

where

M
(
xm(k) , xn(k)

)
= max

{
d
(
xm(k) , xn(k)

)
, d

(
xm(k) , xm(k)+1

)
, d

(
xn(k) , xn(k)+1

)}
.

Therefore by (3.34) and (3.29), we get that

lim
k→+∞

M
(
xm(k) , xn(k)

)
= ε. (3.41)

Letting k→∞ in (3.40) and using (3.41), (φ3), (θ3) and Lemma (2.9), we obtain

θ(ε) ≤ φ [θ(ε)] < θ(ε)

which is a contradiction .

Consequently, {xn}n∈N is a right-Cauchy sequence in (X, d).
Secondly we prove that {xn}n ∈N is a left-Cauchy sequence, if otherwise there exists an ε > 0 and

sequences
(
n(k)

)
k

and
(
m(k)

)
k

such that, for all positive integers k,
(
n(k)

)
>

(
m(k)

)
> k,

d
(
n(k), m(k)

)
≤ ε (3.42)

and

d
(
n(k)−1, m(k)

)
< ε (3.43)

By triangular inequality, we obtain

ε ≤ d
(
xn(k) , xm(k)

)
≤ d

(
xn(k) , xn(k)−1

)
+ d

(
xn(k)−1, xm(k)

)
< d

(
xn(k), xn(k)−1

)
+ ε

Taking the limit as k→∞, we obtain

lim
k→∞

d
(
xn(k) , xm(k)

)
= ε. (3.44)

Now, by triangular inequality, we have

d
(
xn(k)+1 , xm(k)+1

)
≤ d

(
xn(k)+1 , xn(k)

)
+ d

(
xn(k) , xm(k)+1

)
(3.45)

≤ d
(
xn(k)+1 , xn(k)

)
+ d

(
xn(k) , xm(k)

)
+ d

(
xm(k) , xm(k)+1

)
(3.46)
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and

d
(
xn(k) , xm(k)

)
≤ d

(
xn(k) , xn(k)+1

)
+ d

(
xn(k)+1, xm(k)

)
(3.47)

≤ d
(
xn(k) , xn(k)+1

)
+ d

(
xn(k)+1 , xm(k)+1

)
+ d

(
xm(k)+1 , xm(k)

)
(3.48)

Letting k→∞ in the above inequalities, we obtain

lim
k→∞

d
(
xm(k)+1 , xn(k)+1

)
= ε. (3.49)

By (3.49), let A = ε
2 > 0, from the definition of the limit, there exists n1 ∈N such that

|d
(
xn(k)+1 , xm(k)+1

)
− ε| ≤ A ∀n ≥ n1.

This implies that

d
(
xn(k)+1 , xm(k)+1

)
≥ A > 0 ∀n ≥ n1.

Applying (3.22) with x = xn(k) and y = xm(k) , we have

θ
(
d
(
xn(k)+1 , xn(k)+1

))
≤ φ

[
θ
(
M

(
xn(k) , xm(k)

))]
(3.50)

where

M
(
xn(k) , xm(k)

)
= max

{
d
(
xn(k) , xm(k)

)
, d

(
xn(k) , xn(k)+1

)
, d

(
xm(k) , xm(k)+1

)}
.

Therefore by (3.29) and (3.44), we get that

lim
k→+∞

M
(
xn(k) , xm(k)

)
= ε. (3.51)

Letting k→∞ in (3.48) using (3.49) and Lemma (2.9), we obtain

θ(ε) ≤ φ [θ(ε)] < θ(ε),

which is a contradiction. Consequently, {xn}n∈N is a left-Cauchy sequence in (X, d).
Hence, by completeness of (X, d), there exist z, u ∈ X such that

lim
n→+∞

d (xn, z) = lim
n→+∞

d (u, xn) = 0. (3.52)

So, from Lemma (2.3), we get z = u and hence

lim
n→+∞

d (xn, z) = lim
n→+∞

d (z, xn) = 0.

Step 3: we prove that z = Tz, i.e. d (Tz, z) = 0 and d (z, Tz) = 0.

Arguing by contradiction, we assume that d (Tz, z) > 0 or d (z, Tz) > 0.

First assume that d (z, Tz) > 0. As in the proof of Theorem (3.1), we get

lim
n→+∞

d (Txn, Tz) = d (z, Tz) . (3.53)

So there exists n0 ∈N such that

d (Txn, Tz) ≥ d (z, Tz) > 0 f or all n ≥ n0.
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Applying (3.22) with x = xn and y = z, we obtain

θ (d (Txn, Tz)) ≤ φ [θ (M (xn, z))] , (3.54)

where

M (xn, z) = max
{
d (xn, Txn) , d (z, Tz) , d (xn, z)

}
.

Since lim
n→+∞

d (xn, xn+1) = d (xn, z) = 0, we obtain that

lim
n→+∞

M (xn, z) = d (z, Tz) . (3.55)

Taking the limit as n→∞ in (3.54) and using the properties of φ and θ, we obtain we obtain

lim
n→+∞

θ (d (Txn, Tz)) = θ
(

lim
n→+∞

d (Txn, Tz)
)

= θ (d (z, Tz))

≤ φ
[
θ
(

lim
n→+∞

M (xn, z)
)]

= φ [θ (d (z, Tz))]

< θ (d (z, Tz)) .

which is contradiction.

If d (Tz, z) > 0, by similar method, we get contradiction. Therefore d (z, Tz) = 0 and d (Tz, z) = 0,

Hence z = Tz.

Step 4. Uniqueness.

Suppose that there are two distinct point z, u ∈ X such that Tz = z and Tu = u. Then d(z, u) =

d(Tz, Tu) > 0 or d(u, z) = d(Tu, Tz) > 0.

Applying (3.22) with x = z and y = u, we obtain

θ (d(z, u)) ≤ φ [θ (M(z, u))] ,

where

M(z, u) = max
{
d (z, u) , d (z, Tz) , d (u, Tu)

}
= d(z, u)

which implies that θ (d(z, u)) < θ (d(z, u)). Is a contradiction, thus, z = u. �

Corollary 3.1. Let (X, d) be a quasi-metric space and T : X→ X be a mapping. If there exists θ ∈ ΘC and
r ∈ ]0, 1[ such that for all x, y ∈ X

max{d (Tx, Ty) , d (Ty, Tx)} > 0⇒ θ [d (Tx, Ty)] ≤ [θ (M (x, y))]r , (3.56)

where

M (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
.

and

d (y, x) ≤ d
(
T2y, x

)
Then T has a unique fixed point.
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Proof. Let φ (t) = tk, for all t ∈ [1,+∞[. It is obvious that φ ∈ Φ and, we have

max{d (Tx, Ty) , d (Ty, Tx)} > 0⇒ θ [d (Tx, Ty)] ≤ φ [θ (M (x, y))] . (3.57)

Hence T satisfies in assumption of Theorem (3.4) and is the unique fixed point of T. �

Corollary 3.2. Let (X, d) be a complete quasi-metric space, there exists α ∈
]
0, 1

2

[
for any x, y ∈ X,

max{d (Tx, Ty) , d (Ty, Tx)} > 0, we have

d (Tx, Ty) ≤ α [d (Tx, x) + d (y, Ty)] .

Then T has a fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[, and φ (t) = t2α for all t ∈ [1,+∞[.

It is obvious that θ ∈ Θ and φ ∈ Φ. Therefore,

θ (d (Tx, Ty)) = ed (Tx, Ty)

≤ eα (d (Tx, x) + d (y, Ty))

= e
2α

(
d (Tx, x) + d (y, Ty)

2

)

=

e
(

d (Tx, x) + d (y, Ty)
2

)
2α

= φ

[
θ

(
d (Tx, x) + d (y, Ty)

2

)]
≤ φ [θ (max{d (x, y) , d (Tx, x) , d (y, Ty)})]

Therefore, from Theorem 3.4, T has a unique fixed point x ∈ X. �

Corollary 3.3. Let (X, d) be a complete quasi-metric space, there exists λ ∈
]
0, 1

3

[
for any x, y ∈ X,

max{d (Tx, Ty) , d (Ty, Tx)} > 0, we have

d (Tx, Ty) ≤ α [d (x, y) + d (Tx, x) + d (y, Ty)] .

Then T has a fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[, and φ (t) = t3λ for all t ∈ [1,+∞[. It is obvious that θ ∈ Θ

and φ ∈ Φ. Therefore,

θ (d (Tx, Ty)) = ed (Tx, Ty)

≤ e
3λ

(d (x, y) + d (Tx, x) + d (y, Ty))
3

=

e
(d (x, y) + d (Tx, x) + d (y, Ty))

3


3λ
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= φ

[
θ

((
(d (x, y) + d (Tx, x) + d (y, Ty))

3

))]
≤ φ [θ (max{d (x, y) , d (Tx, x) , d (y, Ty)})] .

Therefore, from Theorem 3.4, T has a unique fixed point x ∈ X. �

Example 3.3. Let X = [1,+∞[. Define d : X ×X→ [0,+∞[ by

d(x, y) = max{y− x, 0} f or all x, y ∈ X.

Then (X, d) is a complete quasi-metric space.
Define mapping T : X→ X by

T(x) =
√

x + 1
2

Then, T(x) ∈ [1,+∞[. Let θ (t) =
√

t + 1, φ (t) = t+1
2 . It obvious that θ ∈ Θ and φ ∈ Φ.

Let x, y ∈ [1,+∞[, then we have

d(y, x) = max{x− y, 0} and d(T2y, x) = max{x−

√ √
y + 1
8

−
1
2

, 0}.

So,

max{x− y, 0} ≤ max{x−

√ √
y + 1
8

−
1
2

, 0},

which implies that

d(y, x) ≤ d(T2y, x) f or all x, y ∈ X.

On the other hand

d(Tx, Ty) = d
( √

x + 1
2

,
√

y + 1
2

)
= max{

√
y−
√

x
2

, 0},

and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max
{

max{y− x, 0}, max{
√

x + 1
2

− x, 0}, max{
√

y + 1
2

− y, 0}
}

.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0⇔ y > x. Hence

d(Tx, Ty) =
√

y−
√

x
2

, θ(d(Tx, Ty) =

√
√

y−
√

x
2

+ 1

and

M(x, y) = y− x.

Then, we have

φ [θ(d(x, y))] =
√

y− x
2

+ 1.
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On the other hand

θ(d(Tx, Ty) −φ [θ(d(x, y))] =

√
√

y−
√

x
2

+ 1−
√

y− x
2

+ 1

=

√
√

y−
√

x
2

−

√
y− x
2

.

Since x, y ∈ [1,+∞[, then √
√

y−
√

x
2

−

√
y− x
2

≤ 0.

Which implies that

θ(d(Tx, Ty) ≤ φ [θ(d(x, y))]

≤ φ [θ(max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
, d (y, Tx))]

Hence, the condition (3.22) is satisfied. Therefore, T has a unique fixed point z = 1.

If we remove our condition d(y, x) ≤ d(Ty2, x) f or all x, y ∈ X, it may be that T does not admit a

fixed point.

Example 3.4. Let X =
[

1
4 , 1

2

]
. Define d : X ×X→ [0,+∞[ by

d(x, y) = max{y− x, 0} f or all x, y ∈ X.

Then (X, d) is a complete quasi-metric space.
Define mapping T : X→ X by

T(x) =
√

x + 4
16

Then, T(x) ∈
[

1
4 , 1

2

]
. Let θ (t) =

√
t + 1, φ (t) = t+1

2 . It obvious that θ ∈ Θ and φ ∈ Φ.

Let x, y ∈
[

1
4 , 1

2

]
, then we have

d(y, x) = max{x− y, 0} and d(T2y, x) = max{x−
1
16


√ √

y + 4
16

+ 4

 , 0}.

If x > y and y = 1
4 . So,

max{x− y, 0} = x−
1
4
> max{x−

1
16


√ √

y + 4
16

+ 4

 , 0}.

which implies that

d(y, x) > d(T2y, x).

On the other hand

d(Tx, Ty) = d
( √

x + 4
16

,
√

y + 4
16

)
= max{

√
y−
√

x
16

, 0},
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and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max
{

max{y− x, 0}, max{
√

x + 4
16

− x, 0}, max{
√

y + 4
16

− y, 0}
}

.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0⇔ y > x. Hence

d(Tx, Ty) =
√

y−
√

x
16

, θ(d(Tx, Ty) =

√
√

y−
√

x
16

+ 1

and

M(x, y) = max
{

y− x,
√

x + 4
16

− x,
√

y + 4
16

− y
}

≥ y− x.

Then, we have

φ [θ(d(x, y))] =
√

y− x
2

+ 1.

On the other hand

θ(d(Tx, Ty) −φ [θ(d(x, y))] =

√
√

y−
√

x
16

+ 1−
√

y− x
16

− 1

=

√
√

y−
√

x
16

−

√
y− x
2

.

Since x, y ∈
[

1
4 , 1

2

]
, then √

√
y−
√

x
16

−

√
y− x
2

≤ 0.

Which implies that

θ(d(Tx, Ty) ≤ φ [θ(d(x, y))]

≤ φ [θ(max
{
d (x, y) , d (x, Tx) , d (y, Ty)

}
, d (y, Tx))]

Hence, T has no fixed point.
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