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Abstract. In contemporary human resource management, performance evaluations are often influenced by subjectivity
and uncertainty, posing challenges to fairness and accuracy. This study introduces a mathematically grounded approach
to employee performance assessment by integrating L.ukasiewicz logic with intuitionistic fuzzy set theory, framed within
the structure of BM-algebras. We construct and examine Lukasiewicz intuitionistic fuzzy subalgebras (23 F) and ideals
(83F3), developing a set of theoretical results to define their properties and interactions. Through illustrative examples,
we demonstrate the logical consistency and applicability of these constructs. The proposed model employs min-max
normalization and fuzzy reasoning to facilitate equitable, transparent, and adaptable evaluations. Beyond workplace
settings, this framework holds particular promise for research-oriented educational institutions by fostering inclusive
assessment strategies and supporting a more dynamic and responsive learning environment. Moreover, the model’s
potential to be scaled and shared across collaborative networks underscores its relevance to collective capacity-building

and institutional development.

1. INTRODUCTION

An essential part of effective human resource management is employee performance evalua-
tion. Vital decisions regarding the organization, including succession planning, training, pay, and
promotions, are based on it. Employees are evaluated according to several criteria in traditional
performance reviews, including technical proficiency, leadership, communication skills, timeli-

ness, and client interaction. However, because human judgment is qualitative, these assessments
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frequently contain a high degree of subjectivity, ambiguity, and inconsistency. Furthermore, the
involvement of several evaluators or criteria with differing degrees of importance adds to the
complexity. To manage such ambiguity, we utilize mathematical models, such as set theory, to
provide a framework for analysis. A fuzzy set is a type of set theory that deals with inclusive
degrees and was introduced by Professor Zadeh [9]. In 1983, Atanassov [1] broadened the thought
of Zadeh’s fuzzy sets, which are today referred to as intuitionistic fuzzy sets. This collection
consists of elements with an exclusive degree and an inclusive degree, as in a fuzzy set. Chaira [2]
extended the definition and defined the operations on fuzzy sets and intuitionistic fuzzy sets for
applications in decision-making problems. In the core domain of mathematics, algebra employs
the formal manipulation of abstract symbols and arithmetic operations, rather than specific nu-
merical values. Several algebraic structures have been developed in the context of general or
universal algebra. It explains the basis of propositional calculus. As an aspect of that, mathe-
maticians delivered the theory of BCK/BClI-algebras. Apart from these two algebraic structures,
there were various algebraic structures, namely BCC/BCH /B/BE-algebras, etc. In 2007, Kim in-
troduced the theory of BM-algebras [8], which is a specialization of B-algebras. Jan Lukasiewicz
was a Polish logical thinker and theologian who performed many improvements in propositional
logic called Lukasiewicz logic or Lukasz logic. It is a non-traditional and vastly valued logic of
Lukasiewicz t-norm. Making use of the theory of Lukasz t-norm in BCK/BClI-algebras, Jun and
Ahn introduced Lukasiewicz fuzzy sets along with the concept of Lukasiewicz fuzzy subalge-
bras [6]. They subsequently formulated the notion of Lukasiewicz fuzzy ideals within the same
algebraic framework [5], and further advanced this line of inquiry through a foundational study
on Lukasiewicz fuzzy BE-algebras and BE-filters, offering valuable insights into their structural
properties and applications within fuzzy algebraic systems [7]. Additionally, they addressed the
interrelations among these fuzzy constructs. In a related direction, Jana and Pal [4] proposed a
practical algorithm for solving decision-making problems based on bipolar intuitionistic fuzzy soft
sets. Complementing these applied perspectives, Gokila and Jansirani [3] examined the structure
of Lukasiewicz fuzzy BM-algebras and BM-ideals, contributing to the theoretical advancement of
fuzzy algebraic frameworks through rigorous definitions and illustrative examples.

This study introduces Lukasiewicz intuitionistic fuzzy ideals in BM-algebras, with extensions
to subalgebras, and explores several distinctive attributes, operations, and relations among them,
along with specific instances. Finally, we have evaluated an employee performance evaluation
model by integrating Lukasiewicz intuitionistic fuzzy set, using min-max normalization to deliver

an extensive and equitable appraisal system.
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Symbols Representations
IS Fuzzy Set
JFS Intuitionistic Fuzzy Set
L3IFS Lukasiewicz Intuitionistic Fuzzy Set
U Fuzzy Subalgebra
JIFUA Intuitionistic Fuzzy Subalgebra
L3IFA Lukasiewicz Intuitionistic Fuzzy Subalgebra
N Fuzzy Ideal
RN Intuitionistic Fuzzy Ideal
L3IF3 Lukasiewicz Intuitionistic Fuzzy Ideal
JIFP Intuitionistic Fuzzy point
Uy Upper Bound
LB Lower Bound
€T Comparison Table

2. PRELIMINARIES

To establish the foundation for our proposed framework, this section introduces the fundamen-
tal concepts and notations necessary for understanding 23§ Ss within the context of BM-algebras.
We begin by recalling essential definitions related to BM-algebras and 3FSs, which serve as the
structural and logical basis for our study. The properties and operations of these algebraic sys-
tems are critical for formulating Lukasiewicz intuitionistic fuzzy subalgebras (83IFUs) and ideals
(83F3Is), which are investigated in the subsequent sections. Throughout, we adopt standard nota-
tion and terminology to maintain consistency with prior literature and facilitate the development

of our theoretical results.

Definition 2.1. BM-algebra is the set of elements of ®, that meets the given axioms under a binary operator

”,

“~>" and a fixed element “ 0
(BMy) (P~ d) s (pw f)=Fwd, Vdp7yeb.

Proposition 2.1. Every BM-algebra satisfies

(i) @d~~»ada=0

(i) 0~ (0w d) = d
(iii) 0~ (&~ f) =~ d
(i) (&~ §) > (B 7) = & f

W dwp=06pw
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Definition 2.2. A §S U is called FA of & if it meets the criteria

a a

(FW) U@~ f) > min{@(a), UEB)|, Vdfeb.

Definition 2.3. A §S U is called 3 of & if it meets the criteria

JUB)), Vafed.

Definition 2.4. An IFS H in BM-algebra 6 is of the type,

v

i = {(& ¢ (d), P () | € B)
in which ¢y : & — [0,1] and Py : & — [0, 1] refer to inclusive and exclusive degree under the condition
that

0<¢p(d)+Py(d) <1, Yae®.
The set can also be denoted as H = ((p]H, qJH)

Definition 2.5. An IFS H = (¢, Pyy) in 6 be of the kind

pu) =10 SO TP g =00 TR

0 otherwise 1 otherwise

is said to be IFP with support & and membership value & and non-membership value &. It is denoted by
[@/0] and [&/ &), respectively.

Definition 2.6. For an SFSH = (¢yy, Uyy) in 6, we state that an IFP of inclusive @/ 5] and exclusive
[d/ 5] degree is

(i) contained in T, noted by [¢/0) € ¢y and [8/5] € Py, if Ppp(d) = S and Py (&) < 6.
(ii) quasi-coincident withH, if (&) + 6 > 1, then [/ )o@y, and if Py (&) + 6 < 1, then [&/ &) gy

Definition 2.7. An IFSH = (¢, Py;) in a BM-algebra 6 is known as IFA of & if it meets the criteria
(35%) G (6~ ) 2 min g (d), G (F)
(3FW) Py (@ w f) < max (i (d), b (f)}, V@, feb.
Definition 2.8. An IFSH = (¢, Py;) in a BM-algebra 6 is known as IS of & if it meets the criteria
Pri(d) and g (0) < dyy(d)
(33%) 95(4) 2 min n @i (@~ B, Pu ()
max {fig;(d w ), P (F)}, Y d,f e,
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3. Lukasiewicz INTuITIONISTIC FUZZY SUBALGEBRAS IN BM-ALGEBRAS

This section presents a formal development of Lukasiewicz intuitionistic fuzzy subalgebras
(L3IFUs) within the algebraic framework of BM-algebras. Building upon the foundational con-
cepts introduced in the previous section, we aim to extend the theory of 3§ Gs by incorporating
Lukasiewicz logic to capture graded membership and non-membership more expressively. We
provide a precise definition of LIFA and investigate its structural properties through a series
of lemmas and theorems. These results offer insight into the behavior and algebraic coherence
of LIFUs, laying the groundwork for further analysis and practical application in performance

evaluation systems.
Definition 3.1. An ¢3FS of H in 6 with e € [0,1] is defined by,
L, = (@ 95 95) | 6]

where ¢y, & — [0,1], & = max{0, gy (&) + & — 1} refers to the inclusive degree and l,b]‘;_l 6 -
[0,1], & — min{yy; (&) + €, 1} refers to the exclusive degree respectively, and

0< @y +¢p <1

Lemma 3.1. If]H isan IFSin Gand ¢ € (0,1), then its LIFS Lﬁq satisfies

(D) ¢pi(d) 2 gy (F) = e (4) = Pre () (3.1)
(i) Pyg(d) < Py () = Yue (@) < P (F), Vd,feb. (3.2)

Proof. Suppose I is an IFS in 6 and @y (d) > ¢y (f). Then
(p%(o’z) = max{0, Py (d) + ¢ — 1}
> max(0, ¢y (§) + € ~ 1) = G (F).
Thus, ¢re (4) = Pre, (). Similarly, suppose Py (d) < ¥ (f). Then,
ILLE;{ (&) = min{1, Yy (&) + €}
< min(1, $(B) + &} = e (B)-
Thus, &L]eﬁ(o’() < ‘rbhfﬁ (B). mi
Definition 3.2. An £3FG L in & is said to be an LIFA of a BM-algebra G if it meets the criteria
(23FW)  [d/84], [/80) € Pre, = |(d > )/ minlda, &y)] € e (3.3)

(E3FW,)  [d/0d], [B/60] € Yr, = [(d W )/ maxion, ov)| € P, (34)

Va, e ®, 8,0, € (0,1] and 64,65 € [0,1).

Example 3.1. A set in BM-algebra & = (0,1, &, &3) owns the “~»" operation in the following table:
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w0 G G G
010 & & <
a1 0 & &
G| a 0 &
G|¢ ¢ ca 0
Thus, & serves as a BM-algebra. Defining an IFS H = (¢, Uyy) in © as follows:
0.86 ifde€{0,c1} 0.09 ifaef{0,&)
Pr:6-[0,1, da—1065 ifa=25 and Py 60,1, da—1025 ifa=25
031 ifa=2J; 0.65 ifda=:J3

If it is taken that ¢ = 0.62, then the LIFS b of H in G is provided as follows:

048 ifdae€{0,¢1) 0.71 ifae{0,&)
Pre, - ® — [0,1], da~1{0.27 ifa =2 and QDL% % —-[0,1], d+1{0.87 ifd =&
0.00 ifd =23 1.00 ifa=2

Typically, it is verified that L, is an L3IFA of a BM-algebra .

Theorem 3.1. Every L3IFG Ly, is an LIFUA of a BM-algebra & if and only if it fulfills:
(i) Vo’z,ﬁ S 65, (pL]zH(d 0acd ﬁ) > min {(PLJ{H(O,()’(PLJLH (ﬁ)} (3.5)
(ii) Y, f € 6, e (&~ f) < max | (d), P (F)) (3.6)
Proof. Let H be an 3FS in BM-algebra . Assume that Ll isa L3FU of a BM-algebra ®. Let
&, ﬁ € 6 and it is noted that
|d/¢r (@) € e, and  [B/pre (B)] € e
From (3.3), it is evident that
|(& > B)/ min{gr: (@), prc (B)}] € Prc,
and hence
(poé ((5( > [é) > min {QOLEI (d),(PL]éﬁ (‘3)}, Y O’L,[é € 6.
Similarly note that
[O/C/ILL% (d)] € ELL;L{ and [B/¢LH(B)] € I,'D'L]e];{, Y d,ﬁ, € (;3
From (3.4), it is evident that
[(& ~ B)/ max {gi: (@), P (B)}] € e,
and hence
P (@~ f) <max{ii (d),P1: ()], Vafeb.
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In contrast, let’s state, LEL{ fulfills (3.5) and (3.6). Also, let &, ﬁ e ®and é,, 6 € (0,1] also that
[d/éa] S QDL]&H and [ﬁ,/éb] S (pL]éH
Then
@LI&[;{ (L/K) > 5,1 and th;{ (B) > 51,,
which implies from (3.5) that
(pL}l (d ~ ﬁ) > min {(PLL (d)'(p}“;ﬁ (B)} > min{éa, 5h}
Hence, [(o’z o ﬁ) / min{5a,5b}] € @L;;{. Similarly, let &, ﬁ € G and 6,0, € [0,1) ensures that
(@/60) € Prc and  [B/64) € P .
Then
Pre (@) <oa and P (B) < 0y,
which implies from (3.6) that
I]Z}L{ (é! 00 d ﬁ,) < max {l’bL]{H <d)'l’b{‘i—l (ﬁ,)} < max{c'fa, ('Tb}.
Hence, [(a ~o ,8) / max{d,, dp) ] € rpLe Therefore, L]él;{ is an LIFUA of a BM-algebra .
Theorem 3.2. If F is an IFA of 6, then LIFS Sy & is a LIFA of BM-algebra .
Proof. Let H be an IFA of G. Let 4, ﬁ e & and 6, op € (0, 1] be ensures that
[(5(/(3',1] € (PL]?{ and [ﬁ,/éb] € (pL]éH
Then
qu;q (d) > (Sa and gbLIé‘H (ﬁ,) > 6b.
Similarly, let &, ﬁ € ®and 5, dp € [0,1) ensures that
[d/ég] S I]Z)L]é[‘q and [ﬁ/Ob] S IPL;—I
Then

Pre (@) <oa and P (B) < 0.
Thus

> max {O, min {goH(a Jora (ﬁ)} +e— 1} [(3.3)]

= max {0 min {(p]H(a) +e-1,¢rB) +e- 1}}
= min {max {0, Ppy(d) + e - 1} , max {0, Py (f) +e— 1}}
= min {@s: (@), pic (B))

> min{d,, 8p).
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So, [(0’( ~> ﬁ)/ min{d,, Sb}] € (pLIsH. Similarly,

Pr(f)+e1) (B4
+e, P (f) +e),1)
+

= min {max {ybH

< max{d,, 6p}.
So, [(d ~» B)/ max{a,, db}] € gbIéH Hence, L]%I is an LIFA of a BM-algebra G. O
The reverse portion of the theorem is falsified with the proof of an example below.

Example 3.2. A set in a BM-algebra & = {0, &), &) owns the ~» operation in the following table:
0 & &

010 & &

ci|a 0 &

¢ |c ca 0
Defining an IFS H = (Pyy, Uyy) in © as established

N

076 ifa=0 016 ifa=
$p: 6> 10,1, daw {032 ifa=¢ and Vg0 6> 100,1], 41065 ifa =&
040 ifa=24 059 ifa=24
Provided that ¢ = 041, then the LIFCS Ly, = (fph}{, I]Z;L;é) of H in & is formed in the way
017 ifa=0 057 ifa=0
qu];;{ L ® - 0,1], d+10.00 ifd=¢; and lj)L]eé 6 - 0,1, a+11.00 ifd=7
0.00 ifa=2& 1.00 ifa=24

Typically, it is verified that L... is an LIFN of a BM-algebra ®. But I is not an IFA of & because of

Prr(0w &) = Py (1) = 032 # 040 = min {4 (0), Py ()],
Py (0w &) = Py (&) = 0.65 £ 0.59 = max {1 (0), P (&2)}-
Lemma 3.2. IfH is an IFW of O, then its SIFALE, satisfies
Pre (0) > Pre (@) and  Pre (d) <re (0), Vde ®. (3.7)

Proof. Let H is an IFUA of &. Consider,

P11(0) = Py (d > &) > min Py (@), Py (@)} = Py (@), Va e 6.
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It is inferred from (3.1) that
(ﬁL%I (0) > (P,‘;};qI (@), Yae G.
Similarly, consider the degree of non-membership:

P (0) = Py (@ ~ ) < max (P (d), Py ()} = P (@), Ve b,
It is inferred from (3.2) that
Pre (0) <y (4), Ve .
Thus, the L3IFA L]‘}{ satisfies the condition (3.7). ]

4. Lukasiewicz INTurTioNisTiC Fuzzy IDEALS IN BM-ALGEBRAS

In this section, we extend the theoretical framework by introducing the concept of Lukasiewicz
intuitionistic fuzzy ideals (¥3F3Js) in BM-algebras. While subalgebras capture internal consistency
under specific operations, ideals serve as critical structures for analyzing the behavior of algebraic
systems under approximation and filtering processes. By integrating the principles of Lukasiewicz
logic and IFS theory, we define L3FIs and examine their algebraic properties. The proposed
framework allows for a more nuanced treatment of uncertainty and partial belonging in ideal-
related contexts. Several theorems and illustrative examples are provided to clarify the conditions
under which a fuzzy set qualifies as a £IF3I and to demonstrate the interplay between £3F3Is and
L3I FUs in the broader algebraic structure.

Definition 4.1. Let H be an IS in 6. Then its LIFS Ly in & is called an LIS of a BM-algebra G if
it satisfies

(LFL) i, (0) is an U of {(ph% (@) | d e 6 (4.1)
(LFL) e (0) is an €% of {iis: (d) | d € 6} (4.2)
(LFL) [ (&~ f) /84, [B/8] € e, = @/ minfd,, )] € P | (4.3)
(LFLy) [ (&~ f) /64, [/ 0] € P, = &/ maxiay, o)) € P | (4.4)

Va, f € & with 8,6y € (0,1] and 64,3, € [0,1).

Example 4.1. A set in a BM-algebra & = {0, 1, &, &5, &4} owns the “ ~" operation in the following table:

1 & ¢
0 & ¢ & &
Gla 0 ¢ & o
Gl a 0 & c
GGl &2 a 0 <&

Ca|cs ¢3 2 a0

z:Oé

I I

I
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Defining an IFS H = ((pﬂq, EBIH) in & as provided

091 ifda=0 0.02 ifd=0
P 6 - [0,1, @063 ifac(d, &l Pr:6-[01, d4-3036 ifdeld, )
079 ifd e S, 021 ifdeid,

If we take ¢ = 0.58, then the LIFS by = (gbL]aé, gZ}L%I) of H in & is given by the way

049 ifa=20 0.60 ifa=0
Pre, 6= [01], dm 021 ifaeld, &) iy 6-[01), @094 ifdeld, )
0.37 if d € {3, ca} 0.79 ifd e (S, )

and it is essential to make sure that L, isan L3IFJ of a BM-algebra .

Theorem 4.1. Every 83FS Ly isan LIFS of G if and only if it fulfills the conditions:

(i) [@/8a] € pre, = [0/8] € e, (45)
(ii) [d/6,) € EDL;;{ = [0/d,] € gBL]eﬁ (4.6)
(ifi) Pre (&) = min{@ee (&~ ), ¢re (B)] (4.7)
(iv) P (d) < max{dy: (@~ f), Pr: (f)] (4.8)

Va,p e ®,5, € (0,1 and 6, € [0,1).
Proof. Forinstance, LI‘IL{ isa ¥3FJ of a BM-algebra ®. Letd € Gandd, € (0,1] also that [o’z / 5,1] € (PLEH-
Utilizing (4.1), leads to
Pre (0) > re (d) > 6,
andso [0/6,] € (PLISH' Similarly, let d € ®and ¢, € [0,1) also that [d¢/d,] € gﬁL]s[;{. Utilizing (4.2), leads

to
i (0) < P (d) <60,

and so [0/d,] € &L;é. Note that

(@~ B)/pr (@~ f)| € pre and  [B/¢n: (B) € pre, Vi feb.
From (4.3), it clear,

|&/ min{pr: (&~ ), pre (B)]] € 1,
and hence
Prs (@) = min{pee (6w f),¢ic ()}, V&, feb.

Similarly, let

(@~ B) /s (6w f)| € e and B/ (B)] €y, VY feb.
From (4.4), it clear

[a’c/ max{‘ﬁt];l(o’c > ﬁ),gZ}LIsH (5’)}] € 1#%,
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and hence
QBL}{ (O’t) < max {I’DLTH ((5( ~ 6),1])}“%1 (ﬁ,)}, Y éé,ﬁ, S 63
Conversely, let us consider L]"i;{ satisfies (4.5), (4.6), (4.7) and (4.8). Since
[0"/@;{ (0'4)] €Pre, Ve,
we have
|0/¢1c (d)] € pre, andso gre (0) 2 gre (), Ve by (45).
Hence, ¢r.c (0) is an UB of {(PL;‘H(O?) | & e (33} Similarly, since
|d/9ee (@) €de, Vae,
we have
|0/¢: (@)] € Yue, andso i (0) < ¢re (@), V@€ G by (46).
Hence, Y (0) is an £B of {RZ}LI% (@) de 53} Also, let &, f €  and &, &, € (0,1] ensures that
(@~ B)/8] € Pre,  [B/00] € P -
Then @ (&~ f) = 6, and Pr, (B) = 6y, which imply from (4.7) that
Pre (¢) 2 min {(PL;‘H (@~ ), Pre, (ﬁ)} > min{d,, op}.
So, [o’z / min{d,, éb}] € (ph;{. Similarly, let &, fe ® and 6,0 € [0,1) ensures that
(@~ f)/0a) € r; and  [B/5y] € P .
Then
Pre (@~ f) <oa and g (B) <0y,
which implies from (4.8) that
lﬁL]eH(éz) < max{gbLIeH (& ~> ,é),ybLIeH (ﬁ)} < max{dg, dp}.
So, [@/ max{d,, dp}] € 1}5%. Therefore, L}% is an ¢3IFJ of a BM-algebra ®. O
Lemma 4.1. Every L3IF3 L of & satisfies the condition if & < f and f ~> & = 0, then
(i) [B/8] € Pre = [d/8d) € Pre, Vd,fe ®, Vb, € (0,1] (4.9)
(ii) [f/6a) € Pre, = [a/0a) € Yre, Va,fe ®, Vo, €l0,1). (4.10)
Proof. Letd,p € ® and 6, € (0,1] also that & < §,f ~ & = 0and [$/4,] € Prs, Then (& ~ f) =0
and e (B) = 8, s0,
Pre, (d) 2 min {gre (@ w B), @i ()] = min{pee (0),¢re, ()] = Pre, (B) = ba.
Hence, [d/6,] € Pre - Similarly, let &, f e Gand g, €[0,1) besothatd < f,f ~ ¢ = 0 and

(/6] € "DLE:I' Then (& ~ ) = 0 and EELI?{ (B) < 6450,

P, (@) < max (e (@ w ), P, ()} = max{ig, (0), Y, (B)] = Vg, (B) < 6.
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Hence, [d/d,] € I;DLE{. Thus, (4.9) and (4.10) are verified. m]

Lemma4.2. Every ¢3§3 L. ofa BM-algebra & fulfills the condition if & ~» f < yandy ~» (& ~» f) =0,
then

(1) [,B’/(Sa] € (phﬁq’ []?/6;,] € (poﬁ = [é(/ min{éa, 6b}] S (pL%l (411)
(ii) |f/64] € Yre, [7/ 0] € e = [a/ max{Ga, 6p)] € Pre, (4.12)
Va, B,y €6, 8,6, € (0,1) and V¥ 6,65 € [0,1).

Proof. Letd,f,7 € ® and &,,6; € (0,1] also that & ~» f <7, Y ~» (4 > f) =0,
[B/8d] € prz and  [y/6p] € r,.

Then, (d& ~» f) ~» 7 =0, Pre. (B) = 6, and Pre, (y) > 6. Hence,

\%

Pre (@) = min (@ (@~ f), Grc (F))
min {min {@ee (&~ f) ~ ), Gic ()], e, (B)]
) Gie (7)), g (B))

v (B))

\%

I
3

 (
min {(PL;I(
Pre (7). ¢

min {6;,, 5a}

I
3

m

in{
in{

\%

and so [@/ min {3,, &}] € ¢r . Similarly, let &, §,7 € & and 6,6, € [0, 1) also that y w (&~ f) =
0, [B/64) € Yr, and [/6p] € re . Then, (@ w> f) ~ Y = 0, re () < 6, and e (¥) < 6. Hence,
Pre (@) < max (e (@ f), drc (F))
< max {max {iic ((& > f) w 7), §uz (7)}, §re, (B)]
max {EDL;;{(O)/ Pre, (7)}/%;[ (b))
Y (V) ey, )

< max {7y, 6,4}

= maxX

= maxX

—— ——

and so [d@/ max{d,, p}] € gbhe Thus, (4.11) and (4.12) are verified. O

Remark 4.1. If Ly isa LIIF of a BM-algebra , then it meets the following inequalities:

(i) d@<pandf~>d=0= @ (&) 2 gre (B) and Prc () < Pre () (4.13)
(i) d~p<yandy~f=0= Pre (d (@) > min{(pts (ﬁ),(pLIaH(y)} and
Pr (@) < max {eg, (B), Pre, (7)) (4.14)

Va,p,y € 6.

Theorem 4.2. Every LIFS b in & is an LIFI of G if H is an IFI of 6.
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Proof. For instance, L, is an ¢3IFS of an IFI H in 6. Let d,f € & and &, 6, € (0,1] also that
[(0’4 s ﬁ)/éa] € Pre, [B/Sb] € Prg - Then gre. (&~ f) > 9, and Pre, (B) = Op. Thus,
Pr: (@) = max{0, gy (@) + e~ 1)
> max{0, min{@y; (@ w f), gy (F)} +e -1} [(4.7)]
= max{O,min{(p]H(o’z wB)+e—1,¢58) +e— 1}}
= min {max{O, Ppp(d ~ B) + & =1}, max{0, Py () + € — 1}}
= min {(PL;I(O? ~ B), P B))
> min{,, 53).
Salﬁ/nﬁnwwéﬁ]e¢%h Similarly, let 4,6 € ® and d,,0; € [0,1) also that [(& ~ f) /d,] €
P ,|B/6s] € P . Then gire (@~ f) < 64 and e () < 6. Thus,
%BL;I (&) = min{0, Y (d) + & — 1}
< min{0, max{¢y (& ~ f), Py (B)) +e -1} [(48)]
= min {0 max {4’]1{(0‘ ~ f)+e=1,9g () + 1}}
{06 1] im0 -1
= max {{r: (&~ B), P (B))
< max{d,, 6p}.
Sq[d/nmxwwéﬁ]edi%jHamQ{%{EanES%SofaBkﬁdgdna@. 0

The reverse portion of the theorem is falsified with the proof of an example below.

Example 4.2. A set in a BM-algebra & = (0,1, &, &3) owns the “~»" operation in the following table:

~ |0 & & &
010 & & &
Gla 0 & &
HlH 4 0 &
B33 @ &G o

Provided & is a BM-algebra. Defining an IFS H in G as follows

011 ifd=0
0.80 ifd=0
) L B 052 ifa=¢&
Prr: © = [0,1], 61039 ifae(d, ) and Py 6 —[0,1], d -
] 039 ifd =5
025 ifd =2
045 ifd =2

Then H is not an IFSI of & because of

Ppp(1) = 0.25 2 0.39 = min{Pp (&~ &), Py (S1)),
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P (&) = 0.52 £ 0.39 = max{yp (&1 w &), ¥ (E))

Given that ¢ = 0.61, then the L3IFS b of F in G is provided as below:

) 041 ifa=0
(pL{ 6 - [0,1], a—

H 0 otherwise
. 072 ifa=0
Ppe 1 O — [O,l], a -

H 1 otherwise

Thus, L, isan L3IFJ of a BM-algebra .

Theorem 4.3. Every ¢33 of a BM-algebra G is an LIFA of a BM-algebra 6.

Proof. For instance, LIEFI is an L33 of a BM-algebra G. Let d, ﬁ € ¢ and 6,, 6, € (0,1] be so that
[@/6,4) € Pre and [B/6] € Prs, -

Since & w» f < d and & w (& ~ f) = 0, we have [(& ~w f)/d,] € @i, by (4.9).
Hence, [d¢/ min{d,, )] € Pre, by (4.3),and so[(d ~> f)/ min{d,, )] € Pre, by (4.9). Similarly,
let 4, € ® and &,,6;, € [0,1) also that [¢/d,] € tﬁh}{, [B/6y)] € ELL}{' Since & w» f < & and
d& ~> (&~ f) =0, we have [(& ~ f)/d,] € "LLEI by (4.10). Hence, [¢/ min{d,, 6p}] € gZ}LIeﬁ by (4.4),
and so [(d ~ f)/ min{a,, 5;}] € QDL}{ by (4.10). Therefore, L;, is an ¢3FU of a BM-algebra ®. o

The reverse portion of the theorem is falsified with the proof of an example below.

Example 4.3. A set in a BM-algebra & = {0, ¢1, Co) owns the “s" operation in the following table:

w0 &1 &
010 & &
¢i1 (¢ 0 &
¢ ¢ ¢ 0
Defining an IFS H in 6 as after
0.80 ifd =0 0.80 ifd =0
P 6> 1[0,1,d-4039 ifa=¢ and Pp: 6 —>[0,1,d—3039 ifd=2¢
025 ifd =2 025 ifd=2¢

Given that ¢ = 0.58, the L3FS b of H in 6 is provided as below
049 ifa=20 0.60 ifa =0
Pre ® —>[0,1],d {021 ifd=¢ and gb% 16— [0,1],d— 094 ifd=2¢
037 ifda =2 079 ifa =2
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Typically, it is verified that £ is an L3IFA of a BM-algebra ®. But L, is not an LIFI of a BM-algebra
& because of

Pre (¢2) = 0.09 £ 0.3 = min {@L;H(Cz o Cl),(PL;ﬁ(Cl)},

Pre (22) = 0.09 £ 03 = min {fi: (22~ 1), e (21}

5. OrerAaTIONS ON LUukasiEwicz INTuITIONISTIC FUZZY SETS

Definition 5.1. If P and Q are two IFSs of ®, then
) R CReVEED, o(d) < fiold) and Y3 (@) 2 (@)
(ii) ? Qe Vie®, gp(d) = P () and Py (d) = Pg(d)
(i) B ={(d Py(@), py(@)|ae 63}
) )

(iv) PNQ= {(a, min{ ( , P ()}, max{y (oc),ybg(o’z)}) | ae€ (Vﬁ}
(v PUQ= {(ac max{@g (d), P (d)}, minfiy, (a),lp'b(o’z)})’ S (v,}
(

(94
(vi) %+D:W¢M>+%a> 5(@) (@), Pa(@) Pa(@)
(vi) ®ﬁ=%@ﬂwmdhww)ﬁam Pq(d) - Ja(a))|a
Theorem 5.1. If L% and L are two L3IFSs of a BM-algebra 6, then
(i) by by @ Vae ®, i (d) < Prg (@) and 1;}% (@) > e (4)
(i) LY, =1L & Ve ®, Pr: (d) = Pr (@) and 1;% (@) = g (4)
(i) T = {(a P (@), g (')) de (5}.

Proof. It’s obvious that (i), (ii), and (iii) are true. m|

Theorem 5.2. If L‘EB and L are two L3I Ss of a BM-algebra 6, then
(i B, o = {(comin{r (@), g1 ()} max{ i (@), G ()))
(i) 1, o {(a’z,max {(ph%(a’z),qu%(d)},min{gl}L;(o’z),&Lg(d)})

S

}

o’ze(ﬁ}.

a e

Proof. (i) Let L:f = {(a (pL ( ), Uge

T

(o’z)) de (5} and L = {(oc Pre (o’c),yZ)L;(o’z)) de 63} be two

23FCs of 6. Consider, £ { & @re (@), P (d))'c’v € 55} Thus,

PNQ 2nd S 7 T Ming

¢re (&) = max Ofgb*imb(a) +e— 1}

$nQ
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Similarly,
¢L}mn mm{l Vgna(d) + 8}
= min {1 max {1{&13 (&) (0’1)} + s}
:rrun{l max{ (@) + & Ua(d )—i—e}}
= max {mln{l I]DQB &) } mln{l, lﬁg(d) + 8}},
T
Therefore,

0’:6(5}.

B = { (6 min {geg (@, oo (@} max{dieg (@), i (@)})

ae @} be two L3IFSs

(i) Let £, = {(a,@f (&), i (a)) de ciﬁ}andLg = {(a (phé(a),%%(o’c))

of . Consider, LfB { a, (pLeB . yZJLeB ﬁ(a)) ‘ de (Vﬁ}. Thus,
goL}un a :max{O (p\BLJD +€—1}

ax{O max{ (&) (d)}+€—1]

m
max {0 max {qogJj (&) -1, ¢g(d) +e- 1}}
max{m {0 (P‘B a)+¢e— 1} max{O,(pQ(o’z) + 5—1}},

go ¢ @) = max {goLf (PU & }

BUQ
Similarly,
"DL\%ug (&) = mm{l Pgua(d) + 8}
= mm{l mm{ (@), Pa(d )} }
= mln{l rrun{l‘bgJj (@) + &, Pa(d) + }}
= mln{mm{l l,bgB (@) + ¢ } mm{l e (d )+e}},
= min {I]DL I#La (0( }
Therefore,
Eyua = { (6 max | (@), drg (@), min (e (), i (@)}) |4 € 6}
O
Theorem 5.3. If L% and Lgﬁ are two LIFSs of a BM-algebra ®, then
) B o ={(60, @) + P (6) = g (@) e (@), P (@) - G (6):) | € 6
(i) 1 o = {69, (@) Gy (@, P (@ + e (@) = g (6) - (@) 6 < 6,
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Proof. (i) Let £ = {(d,(ph%(d),lp%(d)) de (93} and £ {((x Pre (d 1/%& ')) de (5} be two

1~ y ‘ . ) P y
L3IFSs of ®. Consider, L‘i3+£2 {(a (pL ﬁ( )'I’Z}LMD (a)) de (5}. Thus,
(paDm @) = max |0, P, & (d —I—e—l}

{
{ [ d) + Pald) - (Pis(d)-%(o’z)]Jre—l}
max {0, ¢y (@) + ¢ = 1} + max {0, G (@) + ¢ —1)
‘max{of%s(a) Pa(d) +e-1f,
Prg (@) = Pre (@) + Pug (&) = Prg (@) - Pre (d)-

Similarly,

i, (@) = min{1, Yy, o(@) + ¢}

= min 1, §i (6) - (@) + ],
B4, @ = i (@) (@)

Therefore, L% & {(a (pLz (& )+(p£§5(‘5‘) —<pL§3 (4) pre (@ (4), IPL* (&) - Pre (d ()) ac€ 65}.
(i LetES = {(az,@% (@), g (a’c)) de Gs} and L, = {(@,@Lg (a),lp%(a))

of . Consider, L;}'Q = {( a,¢re (a), ¢Le ( ))‘a € (5} Thus,

B-Q

b e (é}be two 935 Ss

(PUM (&) = max {O, (P*B-b(‘i) +e— 1}
—max{O Py(d) - pald) + —1},
Pre () = Prg (d) - Prg ().

Similarly,
#}Lfng (0?) = min{1, w‘BQ(d) + ¢}
= min{l,{‘psi;(é‘) +Pa(d) - Eb (@) - Pa(d)} + el
= min{1, g (&) + &} + min{1, P (d) + e} = min{1, P (&) - P (&) +
P (@) = P4,(0) + P4 (@) - 95, (@) - 2 (6).

P2
Therefore, £ . = {(a Pre (@) pu (@), 4 (6) + P2 (@) — 9 (&) - (o’c)) de @}. g
Example 5.1. Let & = (0,1, &, &5, ¢y, &5) be a BM-algebra and let

(0,0.7,0.03),  (&1,0.5,0.2), (0,0.76,0.01),  (&,0.47,0.32),

P ={ (&,0550.23), (&5,043,02), ¢, Q=1 (&,061,0.1), (5,055,0.18),
(&1,0.48,0.1), (&,0.61,0.11) (¢1,0.41,0.31), (&5,0.4,0.4)
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be two IFSs of 6. Tuking e = 0.6, we get the LIFS of P and Q respectively as follows:

(0,0.3,0.63),  (¢,0.1,0.8), (0,0.36,0.61), (¢,0.07,0.92),
£y =4 (&015,083), (&5,003,08), v, k=1 (&021,07), (&,015078),
(¢1,0.08,0.7),  (&,0.21,071) (€3,0.01,091), (&,0,1)

Now, let us find some operations on the set Lfb and Lg .

(z) Lé = {(0,0.63,0.3), (¢1,0.8,0.1), (¢3,0.83,0.15), (¢3,0.8,0.03), (&3,0.7,0.08), (&5,0.71,0.21) )
={(0,0.61,0.36), (&,0.92,0.07), (&,0.7,0.21), (&3,0.78,0.15), (&1,0.91,0.01), (&5,1,0)}
(ii) Laj o = 1(0,03,0.63), (¢1,0.07,0.92), (&,0.15,0.83), (&3,0.03,0.8), (¢4,0.01,091), (&, 0, 1)}
(iii) L& {(0,0.36,0.61), (&,0.1,0.8), (&,0.21,0.7), (&3,0.15,0.78), (&4, 0.08,0.7), (&,0.21,0.71)}
{(0,0.55,0.38), (&1,0.16,0.74), (¢2,0.33,0.58), (&3,0.18,0.62), (¢4, 0.09,0.64), (¢5,0.21,0.71)}
(

Pud
(iv) ]Eé
(v) LfBD {(0,0.11,0.86), (¢1,0.01,0.98), (&2, 0.03,0.95), (5,0.005,0.96), (¢4, 0.001,0.97), (¢5,0,1) 1.

6. A UrtiLizaTioN oF Lukasiewicz INTurtioNistic Fuzzy SETS IN EvALUATING EMPLOYEE

PERFORMANCE

The L3IFES offers a wide variety of demands for managing uncertainty in our daily lives. This
illustration demonstrates how to utilize such an application to address a typical decision-making
dilemma. We employ the idea of L3IFS to explain a dominant decision-making dilemma and
then present a list of guidelines for finding the most suitable item from the provided study (see
Algorithm).

Definition 6.1. €T has n X n ubiquitous object names, such as fi1, {12, {13, . . ., {1, and the opportunities p;j
is the cardinality of components for which the quantity being specified by p; > p; in membership and p; < p;
in non-membership.

Algorithm:

(1) The set 9 be the attributes for performing the evaluation.

(2) Get a dataset to accomplish the evaluation.

(38) Using the standard normalization method, convert the given dataset to IFS.

(4) Convert the IFS to LIFCS.

(5) Create a €I Table 2-8 for the inclusive function & and exclusive function f of LIFSs.
(6) Calculate the score for both the inclusive and exclusive functions.

(7) To determine the final result, take the difference of inclusive and exclusive score.

(8) Find the maximum result.

Employee performance evaluation is an organized approach done by higher officials in various
organizations to measure how efficiently an employee is executing their job responsibilities. It
entails evaluating numerous performance standards. This evaluation cannot be done easily be-
cause of its Subjective judgment, Inconsistencies, Uncertainty, and hesitation. To overcome these

challenges, we applied the theory of L3IFS to perform the evaluation.
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Let ¥ = (& = Joseph,®; = Ria,¢3 = Kavin, &4 = Arya,®s = Jehira} be the set of all Em-
ployees in a company. The manager of the company needs to evaluate these employees
for the the promotion based on their performance, which are defined by certain attributes,
Y = {1y = Team work, fiy = Leadership, [i3 = technical skill, iy = Punctuality, fis = Client Feedback).
Table 1 presents the scores achieved by employees based on their performance in each criterion,

as evaluated by their managers.

TaBLE 1. Scores of each employee based on their performance

i fi2 i3 fla fis
) 9.5 10 7.9 8 8.5
& 8.8 9.1 10 7.3 7.1
% 8.2 7.9 9.3 7.9 9.7
& 7.3 8.8 8.4 8.5 10
e 10 7.9 8.3 8.5 7.6

To construct the IFSs for the above data, let us use the standard min-max normalization

ay = l”lz_—urf“n, wherei =1,2,3,4,5.

1 v
“max - “min

Thus, the 3FSs of each Employee based on their Performance are defined as

éi = {(ﬂ],aél,ﬁél) | l,] - 1,2/3/4/5}

{(fi1,0.83,0.15), (fin, 1,0), (fi3,0.28,0.68), (fis,0.31,0.62), (fis,0.48,0.47)}
{(fi1,0.59,0.39), (fi2,0.69,0.29), (fi3,1,0), (fis,0.07,0.87), (fi5,0,1)}
{(fi1,0.38,0.54), (fin,0.28,0.67), (ji3,0.76,0.21), (fis,0.28,0.65), (fis, 0.9,0.07)}
{(f

(

(a/

(a/
||

,0.07,0.87), (fin,0.59,0.36), (fi3,0.45,0.51), (fis, 0.48,0.45), (ji5,1,0)}
{(fi1,1,0), (fi2,0.28,0.65), (ji3,0.41,0.55), (fis,0.48,0.42), ({is,0.17,0.76)}

m/
||

Let us convert the 3FGs to LIFSs by taking ¢ = 0.5 and the set is defined by

L = {(ﬁj,aLgi,ﬁLgi) |i=1,2,3,4,5}
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= {( ,0.33,0.65), (;iQ, 0.5,0.5), (ﬁg, 0,1), (fl4, 0,1), (/ft5, 0,0.97)}
= {( ,0.09,0.89), (‘Liz, 0.19,0.79), (ﬁ3,0.5, 0.5), (ﬁ4, 0,1), (ﬁl5, 0,1)}
= {(j11,0,1), ({12, 0,1), (f13,0.26,0.71), (f14,0,1), (f15,0.4,0.57)}
= {([ft 0,1), (y2,0.09, 0.86), (yg, 0,1), (y4, 0,0.95), (ﬁ5, 0.5,0.5)}
i = {( ,0.5,0.5), ([Jz,O,l),(pg,O,l) ({ig 0,0.92),([fl5,0,1)}
TaBLE 2. Tabular representation of a: , ape , ape , ape and age
Ql 92 93 94 65
i i i3 14 i
1 0.33 0.5 0 0 0
¢ 0.09 0.19 0.5 0 0
3 0 0 0.26 0 04
4 0 0.09 0 0 0.5
es5 0.5 0 0 0 0
TaBLE 3. Comparison table for the above table
&1 ¢ ¢3 84 ¢5
1 5 4 3 4 4
¢ 3 5 4 4 4
3 3 2 5 3 4
¢4 3 2 4 5 4
es5 4 3 3 3 5
TaBLE 4. « score
Row Total (+%") Column Total (c*") a Score (r*" — ")
&1 20 18 2
¢ 20 16 4
3 17 19 -2
4 18 19 -1
es5 18 21 -3
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TasLE 5. Tabular representation of fi: , fre , Pre , Pre and Pe
¢ ) 3 ¢4 5

v i~ i~

i i e il fis
¢ 0.65 0.5 1 0.97
¢ 0.89 0.79 0.5 1 1
¢3 1 1 0.71 1 0.57
&y 1 0.86 1 0.95 0.5
¢ 0.5 1 1 0.92 1
TasLE 6. Comparison table for the above table
él (4] é3 €4 é5
¢ 5 4 3 3 3
¢ 2 5 4 3 3
¢3 3 2 5 2 2
&y 3 2 4 5 3
es5 3 3 3 3 5
TABLE 7. [ score
Row Total (") Column Total (cf") B Score (B —cP")
¢ 18 16 2
¢ 17 16 1
e3 14 19 -5
¢4 17 16
¢ 17 16
TaBLE 8. Table for Final result.
a score (&) B score () Final Result (&' — f)
¢ 2 2 0
¢ 4 1 3
e3 -2 -5 3
¢4 -1 -2
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Decision: Employee Ria (¢;) and Kavin (¢3) are the best choices for the promotion.

7. CONCLUSION

This paper introduced a comprehensive framework for evaluating employee performance
through the integration of L3FSs within BM-algebras. By formalizing the concepts of L3IFUs
and 23FJs and establishing their foundational properties through rigorous theorems and ex-
amples, we have shown that this algebraic structure effectively models uncertainty in human
resource evaluation processes. The proposed model enhances traditional assessment techniques
by incorporating degrees of membership and non-membership, enabling nuanced and flexible
decision-making. The min-max normalization applied within this context ensures a balanced
comparison across multiple performance indicators. Overall, this approach provides a mathe-
matically robust, logically consistent, and practically applicable tool for organizations seeking to
enhance fairness and precision in employee evaluations. Future work may focus on real-world
deployment and comparative analysis with existing fuzzy-based methods to further validate its

utility.
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