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Abstract. We introduce a function class H(&) (& > 0) capturing tail decay and Holder regularity. For h € H(&), its
Fourier transform ¥ [h] inherits Holder continuity of order & and essential boundedness. For & > 1, derivatives of F [h]
up to order |£] are L*-bounded, with fractional Holder continuity arising from h’s decay. Our approach integrates
multiscale analysis and Fourier multiplier theory, extending prior results on Holder-Fourier correspondences. Novel
integral estimates and phase cancellation methods resolve critical gaps in non-integer smoothness characterization.
These results deepen the Fourier regularity analysis for non-integer &, offering tools for harmonic analysis and pseudo-

differential operators.

1. INTRODUCTION

The study of Fourier transforms and their regularity properties has long been a central theme
in harmonic analysis. Among these properties, the Holder continuity of the Fourier transform
provides a natural framework for understanding the interplay between the decay of a function
and the smoothness of its transform. Classical results, such as the Riemann-Lebesgue lemma,
establish fundamental connections between integrability conditions and continuity, but finer re-
lationships involving Holder or Lipschitz classes require more nuanced characterizations. In
foundational works, [1] and [2] systematically established the theoretical links between Fourier
transforms and function spaces, such as Holder and Lipschitz spaces. Subsequent advancements
by [3] extended the analysis of convolution operator mapping properties through wavelet and
operator theory, while [4] deepened the study of multiplier behaviors for non-smooth kernels
within the framework of pseudo-differential operators. Though these studies did not fully resolve

the correspondence between function regularity and the Lipschitz order of Fourier transforms,
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they laid critical groundwork for modern analytical tools. This paper introduces a class of func-
tions, denoted H (&) (£ > 0), which unifies and generalizes prior approaches. The H(&)-class is
defined via integral conditions that quantify the tail behavior of functions in a manner compatible
with Holder regularity. Our primary objective is to demonstrate that the Fourier transform of
any H (&)-function inherits Holder continuity of order &£. Methodologically, this work is inspired
by [5]'s insights into the convergence of multidimensional Fourier series, which emphasize decay-
rate conditions as pivotal determinants of regularity, and aligns with [6]’s modern framework for
Fourier analysis. Key results include sufficient conditions under which membership in H (&) guar-
antees Holder regularity of the Fourier transform, even for non-integer orders & > 1. Specifically, if
h € H(&), its Fourier transform ¥ [h] has Holder continuity of order £ and is essentially bounded,
with derivatives up to order |£] existing and satisfying boundedness conditions. Notably, for
non-integer &, the fractional Holder component of ¥ [h] arises naturally from the decay properties
of h. These findings resonate with [7]’s systematic classification of function spaces and [8]’s theory
of oscillatory integrals. The technical foundation of this work relies on novel integral estimates
and duality arguments, extending [3]’s multiscale analysis methods. By integrating [6]'s modern
Fourier multiplier theory, we bridge gaps between existing results and provide a unified frame-
work for analyzing Holder-Fourier correspondences. Furthermore, [9]'s profound insights into
phase cancellation for high-frequency oscillatory integrals underpin the estimation techniques

employed here.

2. PRELIMINARIES

Definition 2.1. For () C R" open, set
Lioc(Q) = {g: Q> R| g € L(2), YO cc O

where Q) cC Q) means that there exists K compact such that Q) ¢ K C Q. We say that Q) is compactly

contained in Q).

Definition 2.2. Let & > 0, g € Ljoc(R).Define the function:

O(y,s) := fRs_lg (ts_l)e_“s_ly)([lloo)dy(t) (2.1)

Let the family of functions H (&) and Ha (&) be defined as
H, (&) = {g € Lioc(R) | ALy > 0, ¥y € R, [(y,5)| < Lalsl| (2.2)
Hy(E) == {g € Linc(R) | ALy > 0, ¥y € R, [¢p(y, —s)| < Lalsl*} (2.3)

Now we define the collection of functions H (&) as

H(E) :=H1 (&) NH(E) (2.4)
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Definition 2.3. Let y € (0,1]. A function g : QO C R" — R satisfies y-Holder continuous on Q) (or is
the Lipschitz condition of order ) if there exists a constant C > 0 such that for all x,y € Q),

lg(x) = g(y)ll < Cllx -yl (2.5)

where || - || denotes the Euclidean norm. The constant C is called the Holder constant, and y is the Holder

exponent.

Remark 2.1. When y = 1, this reduces to standard Lipschitz continuity. For y € (0,1), the term
Holder continuity is standard, though "Lipschitz of order y” appears in some literature. Holder continuity
measures a function’s modulus of smoothness. Smaller 'y permits sharper oscillations, while y — 1 implies

Lipschitz-like behavior.

Definition 2.4. Let Q) C R" be an open domain, k € N, and g € (0,1]. The Holder space C*(Q)) consists
of functions g : (3 — R satisfying:

(i) All O-th order partial derivatives DPg (for multi-indices O with 0| < k) exist and are continuous
on Q).
(ii) For every multi-index O with |0| = k, there exists Cg > 0 such that

ID%(x) - Dg(y)Il < Collx— ylI!, Vx,yeQ,

where || - || denotes the Euclidean norm.

A function g € CM(Q)) is said to have C*P-regularity. For non-integer > 1, let B = j + a where: j =
|B] (integer part), « = B — j € (0,1). The fractional Holder space CF(Q) is defined as CP(Q)) := C/*(Q)).
Functions in CP(Q) satisfy:j-th order derivatives exist and are continuous,DIg is a-Holder continuous.

Definition 2.5. Let (R", A, i) be a measure space. The space L* (R") consists of pointwise a.e.-equivalence
classes of essentially bounded measurable functions g : R"* — R with norm

gl = esssupl|g]
Rn

Definition 2.6. For real bumber p > 1,let B = j+ awhere j = | B] (theinteger part)anda = B—j € (0,1).
A function g : R" — R is said to satisfy the p-Holder continuous property if:

(i) DYf e L*(R"), Y|yl<j.

(ii) DVf € CF(R"), Vyl=j.

Remark 2.2. when B € (0,1],we said that f have the B-Holder continuous property if f satisfies the
definition in Definition 2.3.
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3. PROOF OF LEMMAS
Lemma 3.1. Suppose that ®(u,v) € Lj,(R) forall v € R, and that 0 < m < t are real numbers. We define
w(v,t,s) and p(v,s) as follows:
w(v, t,s) = futCID(u, V) X[o,5) 01 (1)

R

pm@=f¢mwmﬂww

R

(3.1)

Then, there exists a constant ¢1 > 0 such that |w (v, t,s)| < c1ls|™ if and only if there exists a constant c; > 0
such that |p(v,s)| < cals|™.

Proof. (Forward Direction=) By hypothesis, dc; > 0 such that |w(v, ,s)| < ¢15™. Consider the tail

integral via integration by parts:

p@@zﬂ¢mmmﬁww

:fu‘tutcl>(u,v))([sloo}dy(u) (3.2)
R
+tfu_t_lw(v,t,u))([sloo}dy(u)

R

Using |w(v, t,5)| < c1]s|™ and m < t,we obtain the following estimate:

Uu=0o0

[u fw(o,t, u)]

lim u"w(o, t,u)' < lim u™fw(v, t,u)| < lim cpu™" < 5™ (3.3)
U—>00 Uu—>00 U—>00
ls™w(o,t,5)| < s7'eys™ = cy5™! (3.4)

ftu‘t‘ W (0, t, ) X5 c0ydpt ()| < fclu ™ X s o) (1) < fe1_gm-t (3.5)
R R ! t—m

Combining (3.3), (3.4), (3.5) gives |p(v,s)| < cals|/™f where ¢z := 2¢1 + ttC]
(Reverse Direction<) By hypothesis, |p(v, s)| < cals|"!. Rewrite the weighted integral:

w(v,t,s) :fRutq)(u,v))([ols]dy(u)

(3.6)
[u p(v, u)]u:; —tfut_lp(v,u))([ols}dy(u)
Bound each term:
ls'p(v,5)| < Isleals™™ = cols|™ (3.7)
11mu p(v,u)| < 11m |u p(v, u)| 11m|u|tcz [u™" < cpls|™ (3.8)

_ oot
‘ f “o(v,u )X[0,5)du ()] < ftlult Loy ™t Xos)dp(u) = j;tlulm 162)([0,s]dy(u) = %lslm

(3.9)

Czt

Thus,we have |a)(v, t,s)l < cq1/s|™,where ¢1 := 2c; + 2 O



Int. J. Anal. Appl. (2025), 23:159 5

Remark 3.1. Let @(v,t,s) and p(v,s) be defined as follows:

W(v,t,5) := j}; |l @ (1, ) X (s 07 At (1),
and
p(v,s) == fRCD(u,v))([_oo,_s} du(u).

We can obtain the same result as in Lemma 3.1 for the symmetric negative half-line .
Lemma 3.2. Let & € (0,2) and 1> 0. Suppose @ : R X R — C satisfies the condition

|fR P (zn‘l,v) n‘l)([lloo)dy(z)| <L |17|é for some constant L > 0. Then, for the oscillatory integrals, it
follows that: if 0 < & < 1, we have UR P (zn‘l,v) sin (z) )([Ollm‘ld‘u(z)' < Anl® for some constant A > 0;
and if 0 < & < 2, we obtain UR @ (zn‘l, v) sin’ %X[o,u??_ldu(z)l < «|nl¢ for some constant x > 0.

Proof. By performing a variable substitution ¢ = zn~! in equation (3.10) and applying the Bonnet

mean value theorem in equation (3.12) (which relies on the fact that % is monotonic on the

interval [0, 2]), we obtain the following integral form:

fcb(zn_l,v)-sinz : n_l)([oll}dy(z) (3.10)
R
= fCD(t, v)sintn - )([O,q_l]dy(t)l (3.11)
R
sin th
=] [ 100t0) T ) (312)
R n
1
=1 j;tcb(t,v))qolmdy(t) ,0<p< p (3.13)
By applying a change of variables t = z5;™! to ‘ fR O (zn_l, v) n! X[1,00)d1(2) I, we obtain the following
inequality:
117¢
f@(t,v)x[,]],m]dy(t) <L E‘ (3.14)
R

By applying Lemma 3.1, we can obtain an equivalent expression for equation (3.14),that is:There
exists a constant L; > 0 such that

1|6+
ftqD(t'v>X[0,nl]d”<t> <Lq|-— (3.15)
Combining equations (3.13) and (3.15) gives:
. -&+1 £
(313) < pLalpl™*' <Ly || <Lifn|

Thus, we have shown that

fR @ (27!, 0) sin(z) X107 'du(2)

The same method can be applied to prove the second inequality.

< Alnle.
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Remark 3.2. For ’ fR P (zn‘l,v) nt )((_oo,_”d‘u(z)' < 5, The analogous bounds hold for the negative

interval.

Lemma 3.3. Let £ > 0. If h € H(&), then its Fourier transform F [h fR e~ Vdu(y) exists for
all x € R and satisfies: F [h] € L*(R).

Proof. For fixed xg € R, we have

] (x0) = f h(y)e ™Vdu(y)

- f h(y)e "y (y)
(—oo,—l}U[—l,l]U[],oo)

We will divide it into three parts for estimation.

(3.16)

(i) in the interval [1, o), By substituting g with h in formula (2.1), setting y = xp and s = 1,

and combining with formula (2.2), we obtain the following estimate:

[ me x| = o (0, 1) < 1

(i) in the interval [-1,1], we have

j[‘l ; |h(y)e_ix0y|dy(y) = ‘[[1 ; [h(y)ldu(y) < co since h € H(E) N Lioe (R)

(iii) in the interval (—oo, —1].Combining with formula (2.3) ,we apply the same argument as in

fR h(y)e™ X (oo 1141 (Y)

Noticing that the estimates in (i), (ii), and (iii) are independent of the choice of xy, we deduce

(i).we get:

= |¢ (xo0,-1)| < Lo

the existence of a constant Q such that:

f h(y)e ™™ du(y)
R

Thus, we have established the required estimate, as desired. m]

|F 1] (x0)| = <Q, VxeR (3.17)

Lemma 3.4. For & € (0,1), let h € H(E). Then, its Fourier transform F [h] is both bounded and Holder

continuous of order &.

Proof. In Lemma 3.3, we have already shown that the Fourier transform of / exists and is bounded
for all x € R. Next, we only need to prove that it possesses the Holder continuity property of order
&

For any x, y € R with x # y, we have:

|7 ] (x) = F (] (y)| =

t) (e—z'tx _ e—ity) d‘u(t)‘

h(t) (e — e ) du(t) (3.18)

f(—w,—lx—yl1)U(—|x—y|1,Ix—y|1)U(|x—yI1,°°)
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We will break down the estimation of equation (3.18) into three parts. For t € (Jy —x[™!, o), we

have the following estimate:

l f h(t) (e — e ) du(t)
(ly={-1,00)

f (e (1
(ly—x|~1,00)
=2|¢h( y,ly x|)| < 2Ly|y — XI‘5

<2

(3.19)

since h € H(&) € Hy(&).
For t € (—oo,—|y — x|™!), We can apply the same estimation technique from (3.19) to obtain the
integral estimate on the symmetric interval since h € H(&) € Hy(&).That is:

‘ f h(t) (e — ™) du(t)
(oo, ly=xi1)

Fort € (—Iy ™, ly - xl‘l), define ®(u,v) = h(u)e ™7, first, observe that h € H(&) C Hy (&) implies

the following constraints:

< 2p(y, —ly = x|)| < 2Loly — xI° (3.20)

fq) (ts‘l,y) s X(1,00) (1) dy(t)‘ < Lylsf®

R

On the other hand, due to symmetry, and without loss of generality, we only need to consider the
caset € [O, ly — xl‘l]. The treatment for t € [—(y -x)71, 0] follows in a similar manner. Additionally,

we assume that y > x.

f h(t)e ™ (1 - 7)) dy(t)‘
(0,(y-2)")

(3.21)
. , ty —
_ f e~in(t) sin(t(y — x))du(t) + f (e sin? (Y2 gur)
Oy Oy 2
I il
According to Lemma 3.2, we have the following estimates for I and II:
I = zf (y—x)71,x)-sins X) du(
: (s(y-2)7x) (y 0.11(s) 62
< Aly - ¢
11| = fCID s(y—x)71, x)sin? = (y — x) du(s)
R ( ) % (3.23)
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Combining formulas (3.19),(3.20),(3.22) and (3.23), we can conclude that there exists a constant
B > 0 such that the following holds:

7 (1] (x) = F (1) ()] < Bly -«
which thus proves that # [h] exhibits the Holder continuity property of order &. o

Lemma 3.5. Let h be a locally integrable function, and suppose there exists a constant C(y) > 0 ,where
C depends on y,such that for all y € R, we have: | fR uh(u)e=™y X[0,00) Api (1t | < C(y). Then, the following
limit holds pointwise for each y:

lim,,_,o+ fR h (uv‘l) e—iyuo! (Sin2 5 +isin u) 02 X o) du(u) = fR iuh(u)e‘i”y;qoloo) du(u).

Proof. We divide the integral fR h (uv‘l) e~y (sm2 5 +isin u) 0% X[o,1] dp(u) into two parts, (a)
and (b), and estimate them separately. In the following proof, the limit of (a) tends to 0, and it is
mainly part (b) that contributes.

fh (uv‘l)e_"y”z’fl (sin2 2 +isin u) v_z)([o 1 du(u)
R 2 '

-1\ —iyuot (s 2 U 2
:Lh(uv )e tyuo (sm E)v X0, dp(u) (a)
(a)
—I—‘fh(uv_l)e_iy””_1 (isinu) 0= x(o 1) dp(u) (b)
R

(b)

For part (a),by taking some constant v, L > 0, we have:
(@) = fl;h (uv_l) e~y (sin2 g)v_Z)([O,UL] du(u)
(a.1)
+ j}; h (uv'l) eyt (sin2 g) 0 X or,1) dp (1)

(a.2)

. sin?(x) . . . . . _
For part (a.2), since —~ is monotonically increasing and non-negative near x = 0, we apply the

Bonnet mean value theorem and take L sufficiently large and v sufficiently small, we have:

a2)] = [ 3n(ue 1) o I )
% — —zyuvl. -1, -1 d
m U™ -0 Xy (1)
2 =1 R 2
( ) ™l gy dp (i)

(3.24)

< fSl’l(S)e_iys)([pv—l,v—l]dH(S) <é&

R
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for some constat p satisfying L < g < 1. We obtain (3.24) arbitrarily small as long as v is sufficiently
small because | fR uh(u)e=™y dy(u)| is pointwise bounded for fixed y.
For part (a.1), we have:

f h (uv_l) iy (sin2 g) o2 Xo,0r) A (1)

R

Zivs (. 2 SU\ _
h(s)e s (sm2 E)v 1)([O,L]dy(s) .

L sin® 7” N
fﬁ Xpo,du(s) — 0asv — 0 (3.25)

Asv — 07, (3.25) tends to zero by the Dominated Convergence Theorem, given that i € Ljoc(R).
By combining (3.24) and (3.25), we obtain that (a) tends to 0 as v — 07, That is:

lim [ h (uv_l) gy (sin2 g)v_z)( o) du(u) =0 (3.26)

v—0* JR

From (3.26), we know that to prove the conclusion of the lemma, it suffices to show that the

estimate in part (b) converges to the desired value. Now we estimate part (b).

fiuh(u)e_i”y)([olm) dy(u)—fh(uv‘l)e_iy””_l (isinu) 0_2)([0,” du(u)

R R

| [ty s [t pdutn) [ e g duto
—]‘h(uv_l)e_iy'“’1 (sinu) 072 X(0,04] dy(u)—]‘h(uv_l)e_iym’1 (sinu) 07> a1 dp (1)

R R

< | [ w0 g ) = [ (i) 00 ()
R R

(v.1)
+ fRuh(u)e_i“y)([O,A) dy(u)—th(uv_l)e_iy””_l (sinu) v_ZX[O,UA} du(u)
(b2)
+ \[Rh(uv—l)e_iym’_1 (sinu) U2 x (a1 dp (1) (3.27)

b3

Subsequently, we estimate (b.1), (b.2), and (b.3) respectively.
For (b.1), since the pointwise bound of expression fR uh(u)e~™y X[0,00) (1) holds, there exists
Ay such that for any A > Ay, expression (b.1) is less than ¢,i.e.,

<e VA3 A (3.28)

) g dpta) = [ ) 01 i)
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For (b.2), since his locally integrable, applying the Dominated Convergence Theorem, we obtain

the following estimate:

1sinu

fRuh(u)e_i”y)([O,A) dy(u)—ﬂuv_lh(uv_l)e_iy”v > v X [o0n) (1)

sin uv

[ a1 = T e

< fR )

For (b.3), the approach is analogous to that of (a.2).We can obtain that expression (b.3) becomes

(b.2) =

sin uv

Ah(u)(1- =2

X[o,4)du(u) — 0asv — 0F (3.29)

arbitrarily small as long as v is sufficiently small, that is, there exists vg such that for any 0 < v < vy,

we have

<e (3.30)

f h (uv_l) e (sin u) 0 X pa ) dp (1)
R

By combining (3.26), (3.28), (3.29), and (3.30), we obtain the following;:

lim h(uv_l)e_iy'”1 (sin2 ; +isin u) U_ZX[O,l] du(u) = j;i”h(”)e_iuy)([o,oo) dp(u).

v—=0" JR

which completes our proof.

4. MAIN THEOREMS AND THEIR PROOFS

Theorem 4.1. Let & > 1 and define nmax = [&]. For any function h € H(E), the following results
hold: For every integer n € N* with 1 < n < nmax, the n-th derivative of F [h] satisfies: ;%T[h] €
L*(R). The n-th derivative of h admits the following Fourier transform representation: gn?—" h(y) =

fR(—i)”s”h(s)e‘iSydy(s).
Proof. since h € H(E), we have dL; > 0,Yy € R, |p(y,s)| < Lils|*,where ¢(y,s) :=
fR s~th (ts‘l) eitsy X[1,00)di(t). By performing the variable substitution z = ts™!, we obtain:

f sh (ts_l) e‘its_ly)([lloo)dy(t)'

R

fh(z)e_iyz)([sl,oo}d#(z)

R

(4.1)

< L]|S|5 = L1 |S_1|_(E

It follows from Lemma 3.1 that there exists a constant C > 0 such that:

fR 2 (z)e ¥ x g sy dp(2) <cls (4.2)

For any n (1 < n < nmay), by applying recursion to equation (4.2), we obtain:

f 25 h(2)e W x g o du(z)| < Cls7!" (4.3)
R
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By applying Lemma 3.1 once again, we have that there exists a constant C > 0 such that:

[ e n)
R

(4.4)
N fR(”S_l)nh(”S_l)e_iws15_1%[1,00151#(“) <Cls| = Cpr
(4.4) implies that s"h(s) € H(& —n).
Define R, ( fR eisy du(s). Since s"h(s) € H(& —n), by Lemma 3.3, we conclude

that R, (y) ex1sts for every y € R and R, (y) € L*(R).

Next, we will prove that R, (y) = %T [h](y), and we will use induction to establish the result.
Firstly, notice that h € H(&). From Lemma 3.3, we have that 7 [h](y) is well-defined for every
y € R.Without loss of generality, let Ay > 0. We will first estimate the following difference quotient
limit:

Fn(y + Ay) - 7 h] ()
Ay

:Aiy(th(s)e‘iS(HAy)dy(s)—th(s)e_isydy(s))

:Aiy (j; h(s)e ™Y (e'iSAy - 1) d#(s))

1
AY J(—oo~(ay)"1)U(~(Ay)",0)0(0,(Ay) ) U((Ay)1,0)

(4.5)

h(s)e Y (e‘iSAy - 1)dy(s)

We will separately estimate the integrals over the four intervals: (—co, —(Ay)™!), (=(Ay)71,0),

(0, (Ay)™), and ((Ay)™", o0).
For the interval ((Ay)~!, ), since h € H;(&) and & > 1, we have:

1
AY J((ay)y1m)

1 _ » _
_ Ay (Ay) 1h(u(Ay) 1)6 iu(Ay) 1(y+Ay)X[l,oo)d[J(u)

h(s)e SWHAY) du(s)

(4.6)

= A—y’ lo(y + Ay, Ay)| < Li|AylS™ — 0as Ay — 0"

For the interval (—co, —(Ay)™!), since h € H>(&) and & > 1, we have a similar result as in (4.6).
For the interval (0, (Ay)~!),We first note that | fR uh(u)e™™y X[0,00) Api (1t | < C(y). This is because, in
(4.4), by setting n = 1, we obtain:

[ e )
R

which implies that the remainder term of the integral tends to zero as s — 0, thereby indicating

< Cls|t 4.7)

that the integral converges.On the other hand, we only need to estimate Aly f( 0,(Ap)1) h(s)e =Y
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(e—isﬁy - 1) dpi(s); the estimate for Aly f(_ ( Ay) 1) h(s) ~isy ( —isAy — )dy(s) is obtained using the same

background and techniques as that for -~ Ay f (by)- Ye sy ( —isAy _ 1) du(s).

1

A_y 0,(Ay)™)
1

“ Ay Jon
_1
Ay Jo,ay))

h(s)e Y (e —1)du(s)

h(s)e™Y(cos(—sAy) + isin(—sAy) — 1)du(s)
sin? (SATy)

~h(s)e™Y [T +isin sAy} du(s)

2u

, sin
:—j;h(u(Ay)_l)e_W”(AV) 1( > +zsmu] (Ay)_z)([g,l]dy(u)

— - fiuh(u)e_i”y)([olm) du(u) asAy— 0" since (4.7) and Lemma 3.5
R

Thus we have:

. T[h] (]/ + Ay) B f[h] (y) _ : —iuy —
iy - - f k(e da(ut) = Ra(y)],_,
We have already established that equation d y fR e"®¥du(s) holds forn = 1.
Now, suppose that equation dy fR lsydy( ) also holds for n = k—1; that

is, dﬁk L Fh)(y) = Rn(y)|n:k_1,We w111 Now prove that thls also holds for n = k.

k-1 k-1
35 (A B+ 89) = S )

1
= Ay (Re-1(y + Ay) — Re-1(y)) (4.8)

_ Aiy(fR(_i)k—lsk—lh(S)e—is(y+Ay)dy(s) —fR(—z’)k_lsk_lh(s)g—isyd‘u(s))

According to equation (4.8), to calculate the value of %7’ [h](y) , it is sufficient to compute
(=) EF I h(s)] ().

From (4.4), we know that s~ (s) € H (& —k + 1). Moreover, we also know the following fact:
if a function h € H(&) and & > 1, then i7”[%1](3/) € L*(R), and

yﬂ I(y) = f (=)' (s)e™ dy(s).

Thus, we have:

~ %f{sk-1h<s>1 )

(k-1 _i) k1 —is

= (i) fR( )'s's h(s)e™du(s)
_ (_n\k k —is

= (i) fRS h(s)e™*du(s)
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= Ry <]/) |n:k

This completes the proof of the theorem. m]

Theorem 4.2. Suppose a real number & > 0. If the function h belongs to the class H (&), then its Fourier
transform F [h| satisfies the following properties: F [h] € L®(R)and F [h] have the property of Holder
continuous of order &. In other words, when the asymptotic decay rate of h is controlled by the H (&) class,
its Fourier transform is not only globally bounded, but also possesses Holder-type smoothness of order & .

Proof. For a positive real number ¢, the set of all integers not exceeding & is given by:
ng={nezZt|n<ég

The integer part of & is [£], and the fractional part of & is {&} := £ —[&]. Based on Definition
2.6, to prove that the Fourier transform of € H (&) possesses the E-Holder continuous property
property, we need to establish two things:
M) &Fh(y) eL°(R) Ykeng.
(I) There exists a constant C > 0 such that
dk dk

——= ()

(&
iy - d_yl<7:[h] (x)|<C |x - y| ,

where k = max{n € Z* | n < &}.

We will prove this in two cases: one where & > 1, and the other where 0 < £ < 1. For the case
0 < £ < 1, we have already proven it in Lemma 3.4. Therefore, we only need to prove the case
& > 1. Note that F[h](y) is well defined for every y € R since Lemma 3.3. At the same time,
Theorem 4.1 tells us that for any k € n¢, the existence of &[] (y) and %T [h] € L*(R) satisfy the

ay
requirement of condition (I). Next, we only need to prove whether ddyL—féJT [h](y) satisfies condition
(IT). From (4.4), we know that s"h(s) € H (& — k) for k € ng.Specifically, we have sl¢h(s) € H({&}).
From Lemma 3.4,we obtain that ¥ [s!¢/i(s)](y) have the property of Holder continuous of order

{&h

‘fsmh(s)e_isydlu(s)—st'SJh(s)e_isxdy(s)
R R

ALE] ALe]

= e x) — dymf[h](y)‘ (since Theorem 4.1)
<C 'x _ y|{§}
This completes the requirement of condition (II). m]
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