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Abstract. We introduce a function class H(ξ) (ξ > 0) capturing tail decay and Hölder regularity. For h ∈ H(ξ), its

Fourier transform F [h] inherits Hölder continuity of order ξ and essential boundedness. For ξ > 1, derivatives of F [h]

up to order bξc are L∞-bounded, with fractional Hölder continuity arising from h’s decay. Our approach integrates

multiscale analysis and Fourier multiplier theory, extending prior results on Hölder-Fourier correspondences. Novel

integral estimates and phase cancellation methods resolve critical gaps in non-integer smoothness characterization.

These results deepen the Fourier regularity analysis for non-integer ξ, offering tools for harmonic analysis and pseudo-

differential operators.

1. Introduction

The study of Fourier transforms and their regularity properties has long been a central theme

in harmonic analysis. Among these properties, the Hölder continuity of the Fourier transform

provides a natural framework for understanding the interplay between the decay of a function

and the smoothness of its transform. Classical results, such as the Riemann-Lebesgue lemma,

establish fundamental connections between integrability conditions and continuity, but finer re-

lationships involving Hölder or Lipschitz classes require more nuanced characterizations. In

foundational works, [1] and [2] systematically established the theoretical links between Fourier

transforms and function spaces, such as Hölder and Lipschitz spaces. Subsequent advancements

by [3] extended the analysis of convolution operator mapping properties through wavelet and

operator theory, while [4] deepened the study of multiplier behaviors for non-smooth kernels

within the framework of pseudo-differential operators. Though these studies did not fully resolve

the correspondence between function regularity and the Lipschitz order of Fourier transforms,
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they laid critical groundwork for modern analytical tools. This paper introduces a class of func-

tions, denoted H(ξ) (ξ > 0), which unifies and generalizes prior approaches. The H(ξ)-class is

defined via integral conditions that quantify the tail behavior of functions in a manner compatible

with Hölder regularity. Our primary objective is to demonstrate that the Fourier transform of

anyH(ξ)-function inherits Hölder continuity of order ξ. Methodologically, this work is inspired

by [5]’s insights into the convergence of multidimensional Fourier series, which emphasize decay-

rate conditions as pivotal determinants of regularity, and aligns with [6]’s modern framework for

Fourier analysis. Key results include sufficient conditions under which membership inH(ξ) guar-

antees Hölder regularity of the Fourier transform, even for non-integer orders ξ > 1. Specifically, if

h ∈ H(ξ), its Fourier transform F [h] has Hölder continuity of order ξ and is essentially bounded,

with derivatives up to order bξc existing and satisfying boundedness conditions. Notably, for

non-integer ξ, the fractional Holder component of F [h] arises naturally from the decay properties

of h. These findings resonate with [7]’s systematic classification of function spaces and [8]’s theory

of oscillatory integrals. The technical foundation of this work relies on novel integral estimates

and duality arguments, extending [3]’s multiscale analysis methods. By integrating [6]’s modern

Fourier multiplier theory, we bridge gaps between existing results and provide a unified frame-

work for analyzing Hölder-Fourier correspondences. Furthermore, [9]’s profound insights into

phase cancellation for high-frequency oscillatory integrals underpin the estimation techniques

employed here.

2. Preliminaries

Definition 2.1. For Ω ⊂ Rn open, set

Lloc(Ω) =
{
g : Ω→ R | g ∈ L(Ω̃),∀Ω̃ ⊂⊂ Ω

}
where Ω̃ ⊂⊂ Ω means that there exists K compact such that Ω̃ ⊂ K ⊂ Ω. We say that Ω̃ is compactly
contained in Ω.

Definition 2.2. Let ξ > 0, g ∈ Lloc(R).Define the function:

φ(y, s) :=
∫

R
s−1g

(
ts−1

)
e−its−1 yχ[1,∞)dµ(t) (2.1)

Let the family of functionsH1(ξ) andH2(ξ) be defined as

H1(ξ) :=
{
g ∈ Lloc(R) | ∃L1 > 0, ∀y ∈ R, |φ(y, s)| ≤ L1|s|ξ

}
(2.2)

H2(ξ) :=
{
g ∈ Lloc(R) | ∃L2 > 0, ∀y ∈ R, |φ(y,−s)| ≤ L2|s|ξ

}
(2.3)

Now we define the collection of functionsH(ξ) as

H(ξ) := H1(ξ)∩H2(ξ) (2.4)
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Definition 2.3. Let γ ∈ (0, 1]. A function g : Ω ⊆ Rn
→ Rm satisfies γ-Hölder continuous on Ω (or is

the Lipschitz condition of order γ) if there exists a constant C > 0 such that for all x, y ∈ Ω,

‖g(x) − g(y)‖ ≤ C‖x− y‖γ, (2.5)

where ‖ · ‖ denotes the Euclidean norm. The constant C is called the Hölder constant, and γ is the Hölder
exponent.

Remark 2.1. When γ = 1, this reduces to standard Lipschitz continuity. For γ ∈ (0, 1), the term
Hölder continuity is standard, though "Lipschitz of order γ" appears in some literature. Hölder continuity
measures a function’s modulus of smoothness. Smaller γ permits sharper oscillations, while γ→ 1 implies
Lipschitz-like behavior.

Definition 2.4. Let Ω ⊆ Rn be an open domain, k ∈ N, and β ∈ (0, 1]. The Hölder space Ck,β(Ω) consists
of functions g : Ω→ R satisfying:

(i) All θ-th order partial derivatives Dθg (for multi-indices θ with |θ| ≤ k) exist and are continuous
on Ω.

(ii) For every multi-index θ with |θ| = k, there exists Cθ > 0 such that

‖Dθg(x) −Dθg(y)‖ ≤ Cθ‖x− y‖β, ∀x, y ∈ Ω,

where ‖ · ‖ denotes the Euclidean norm.

A function g ∈ Ck,β(Ω) is said to have Ck,β-regularity. For non-integer β > 1, let β = j + α where: j =
bβc (integer part), α = β− j ∈ (0, 1). The fractional Hölder space Cβ(Ω) is defined as Cβ(Ω) B C j,α(Ω).

Functions in Cβ(Ω) satisfy: j-th order derivatives exist and are continuous,D jg is α-Hölder continuous.

Definition 2.5. Let (Rn,A,µ) be a measure space. The space L∞(Rn) consists of pointwise a.e.-equivalence
classes of essentially bounded measurable functions g : Rn

→ R with norm

‖g‖L∞ = ess sup
Rn
|g|

Definition 2.6. For real bumber β > 1, let β = j+αwhere j = bβc (the integer part) andα = β− j ∈ (0, 1).
A function g : Rn

→ R is said to satisfy the β-Hölder continuous property if:

(i) Dγ f ∈ L∞(Rn), ∀ |γ| ≤ j.
(ii) Dγ f ∈ Cβ(Rn), ∀ |γ| = j.

Remark 2.2. when β ∈ (0, 1],we said that f have the β-Hölder continuous property if f satisfies the
definition in Definition 2.3.
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3. Proof of lemmas

Lemma 3.1. Suppose that Φ(u, v) ∈ Lloc(R) for all v ∈ R, and that 0 < m < t are real numbers. We define
ω(v, t, s) and ρ(v, s) as follows:

ω(v, t, s) =
∫

R
utΦ(u, v)χ[0,s]dµ(u)

ρ(v, s) =
∫

R
Φ(u, v)χ[s,∞]dµ(u)

(3.1)

Then, there exists a constant c1 > 0 such that |ω(v, t, s)| ≤ c1|s|m if and only if there exists a constant c2 > 0

such that |ρ(v, s)| ≤ c2|s|m−t.

Proof. (Forward Direction⇒) By hypothesis, ∃c1 > 0 such that |ω(v, t, s)| ≤ c1sm. Consider the tail

integral via integration by parts:

ρ(v, s) =
∫

R
Φ(u, v)χ[s,∞]dµ(u)

=

∫
R

u−tutΦ(u, v)χ[s,∞]dµ(u)

=
[
u−tw(v, t, u)

]u=∞

u=s
+ t

∫
R

u−t−1w(v, t, u)χ[s,∞]dµ(u)

(3.2)

Using |ω(v, t, s)| ≤ c1|s|m and m < t,we obtain the following estimate:∣∣∣∣ lim
u→∞

u−tw(v, t, u)
∣∣∣∣ 6 lim

u→∞
u−t
|w(v, t, u)| 6 lim

u→∞
c1um−t

≤ c1sm−t (3.3)∣∣∣s−tw(v, t, s)
∣∣∣ 6 s−tc1sm = c1sm−t (3.4)∣∣∣∣∣∫

R
tu−t−1w(v, t, u)χ[s,∞)dµ(u)

∣∣∣∣∣ 6 ∫
R

c1umtu−t−1χ[s,∞)dµ(u) <
tc1

t−m
sm−t (3.5)

Combining (3.3), (3.4), (3.5) gives |ρ(v, s)| ≤ c2|s|m−t where c2 := 2c1 +
tc1

t−m .

(Reverse Direction⇐) By hypothesis, |ρ(v, s)| ≤ c2|s|m−t. Rewrite the weighted integral:

w(v, t, s) =
∫

R
utΦ(u, v)χ[0,s]dµ(u)

=
[
utρ(v, u)

]u=s

u=0
− t

∫
ut−1ρ(v, u)χ[0,s]dµ(u)

(3.6)

Bound each term:∣∣∣stρ(v, s)
∣∣∣ 6 |s|tc2|s|m−t = c2|s|m (3.7)∣∣∣∣∣limu→0

utρ(v, u)
∣∣∣∣∣ 6 lim

u→0

∣∣∣utρ(v, u)
∣∣∣ 6 lim

u→0
|u|t c2 |u|m−t 6 c2|s|m (3.8)∣∣∣∣∣t ∫

R
ut−1ρ(v, u)χ[0,s]dµ(u)

∣∣∣∣∣ ≤ ∫
R

t |u|t−1 c2 |u|m−t χ[0,s]dµ(u) =
∫

R
t |u|m−1 c2χ[0,s]dµ(u) =

c2t
m
|s|m

(3.9)

Thus,we have
∣∣∣ω(v, t, s)

∣∣∣ 6 c1|s|m,where c1 := 2c2 +
c2t
m . �
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Remark 3.1. Let ŵ(v, t, s) and ρ̂(v, s) be defined as follows:

ŵ(v, t, s) :=
∫

R
|u|tΦ(u, v)χ[−s,0] dµ(u),

and
ρ̂(v, s) :=

∫
R

Φ(u, v)χ[−∞,−s] dµ(u).

We can obtain the same result as in Lemma 3.1 for the symmetric negative half-line .

Lemma 3.2. Let ξ ∈ (0, 2) and η > 0. Suppose Φ : R×R→ C satisfies the condition∣∣∣∣∫R Φ
(
zη−1, v

)
η−1χ[1,∞)dµ(z)

∣∣∣∣ 6 L
∣∣∣η∣∣∣ξ for some constant L > 0. Then, for the oscillatory integrals, it

follows that: if 0 < ξ < 1, we have
∣∣∣∣∫R Φ

(
zη−1, v

)
sin (z)χ[0,1]η

−1dµ(z)
∣∣∣∣ 6 λ|η|ξ for some constant λ > 0;

and if 0 < ξ < 2, we obtain
∣∣∣∣∫R Φ

(
zη−1, v

)
sin2 z

2χ[0,1]η
−1dµ(z)

∣∣∣∣ 6 κ|η|ξ for some constant κ > 0.

Proof. By performing a variable substitution t = zη−1 in equation (3.10) and applying the Bonnet

mean value theorem in equation (3.12) (which relies on the fact that sin x
x is monotonic on the

interval [0, 2]), we obtain the following integral form:∣∣∣∣∣∫
R

Φ
(
zη−1, v

)
· sin z · η−1χ[0,1]dµ(z)

∣∣∣∣∣ (3.10)

=

∣∣∣∣∣∫
R

Φ(t, v) sin tη · χ[0,η−1]dµ(t)
∣∣∣∣∣ (3.11)

=η

∣∣∣∣∣∫
R

tΦ(t, v)
sin th

tη
χ[0,η−1]dµ(t)

∣∣∣∣∣ (3.12)

=η

∣∣∣∣∣∫
R

tΦ(t, v)χ[0,p]dµ(t)
∣∣∣∣∣ , 0 < p <

1
η

(3.13)

By applying a change of variables t = zη−1 to
∣∣∣∣∫R Φ

(
zη−1, v

)
η−1χ[1,∞)dµ(z)

∣∣∣∣, we obtain the following

inequality: ∣∣∣∣∣∫
R

Φ(t, v)χ[η−1,∞]dµ(t)
∣∣∣∣∣ ≤ L

∣∣∣∣∣1η
∣∣∣∣∣−ξ (3.14)

By applying Lemma 3.1, we can obtain an equivalent expression for equation (3.14),that is:There

exists a constant L1 > 0 such that∣∣∣∣∣∫ tΦ(t, v)χ[0,η−1]dµ(t)
∣∣∣∣∣ 6 L1

∣∣∣∣∣1η
∣∣∣∣∣−ξ+1

(3.15)

Combining equations (3.13) and (3.15) gives:

(3.13) ≤ ηL1|p|−ξ+1
≤ ηL1

∣∣∣∣∣1η
∣∣∣∣∣−ξ+1

≤ L1

∣∣∣η∣∣∣ξ
Thus, we have shown that∣∣∣∣∣∫

R
Φ

(
zη−1, v

)
sin(z)χ[0,1]η

−1dµ(z)
∣∣∣∣∣ 6 λ|η|ξ.

The same method can be applied to prove the second inequality.

�



6 Int. J. Anal. Appl. (2025), 23:159

Remark 3.2. For
∣∣∣∣∫R Φ

(
zη−1, v

)
η−1χ(−∞,−1]dµ(z)

∣∣∣∣ 6 L
∣∣∣η∣∣∣ξ, The analogous bounds hold for the negative

interval.

Lemma 3.3. Let ξ > 0. If h ∈ H(ξ), then its Fourier transform F [h](x) =:
∫

R h(y)e−ixydµ(y) exists for
all x ∈ R and satisfies: F [h] ∈ L∞(R).

Proof. For fixed x0 ∈ R, we have

F [h] (x0) =

∫
R

h(y)e−ix0 ydµ(y)

=

∫
(−∞,−1]∪[−1,1]∪[1,∞)

h(y)e−ix0 ydµ(y)
(3.16)

We will divide it into three parts for estimation.

(i) in the interval [1,∞), By substituting g with h in formula (2.1), setting y = x0 and s = 1,

and combining with formula (2.2), we obtain the following estimate:∣∣∣∣∣∫
R

h(y)e−iyx0χ[1,∞]dµ(y)
∣∣∣∣∣ = ∣∣∣φ (x0, 1)

∣∣∣ ≤ L1

(ii) in the interval [−1, 1], we have∫
[−1,1]

∣∣∣h(y)e−ix0 y
∣∣∣ dµ(y) =

∫
[−1,1]

|h(y)|dµ(y) < ∞ ,since h ∈ H(ξ)∩ Lloc (R)

(iii) in the interval (−∞,−1].Combining with formula (2.3) ,we apply the same argument as in

(i).we get: ∣∣∣∣∣∫
R

h(y)e−iyx0χ[−∞,−1]dµ(y)
∣∣∣∣∣ = ∣∣∣φ (x0,−1)

∣∣∣ ≤ L2

Noticing that the estimates in (i), (ii), and (iii) are independent of the choice of x0, we deduce

the existence of a constant Q such that:∣∣∣F [h](x0)
∣∣∣ = ∣∣∣∣∣∫

R
h(y)e−ix0 y dµ(y)

∣∣∣∣∣ ≤ Q, ∀ x0 ∈ R. (3.17)

Thus, we have established the required estimate, as desired. �

Lemma 3.4. For ξ ∈ (0, 1), let h ∈ H(ξ). Then, its Fourier transform F [h] is both bounded and Hölder
continuous of order ξ.

Proof. In Lemma 3.3, we have already shown that the Fourier transform of h exists and is bounded

for all x ∈ R. Next, we only need to prove that it possesses the Hölder continuity property of order

ξ.

For any x, y ∈ R with x , y, we have:∣∣∣F [h](x) −F [h](y)
∣∣∣ = ∣∣∣∣∣∫

R
h(t)

(
e−itx
− e−ity

)
dµ(t)

∣∣∣∣∣
=

∫
(−∞,−|x−y|−1)∪(−|x−y|−1,|x−y|−1)∪(|x−y|−1,∞)

h(t)
(
e−itx
− e−ity

)
dµ(t) (3.18)



Int. J. Anal. Appl. (2025), 23:159 7

We will break down the estimation of equation (3.18) into three parts. For t ∈ (|y − x|−1,∞), we

have the following estimate: ∣∣∣∣∣∣
∫
(|y−x|−1,∞)

h(t)
(
e−itx
− e−ity

)
dµ(t)

∣∣∣∣∣∣
≤2

∣∣∣∣∣∣
∫
(|y−x|−1,∞)

h(t)e−itydµ(t)

∣∣∣∣∣∣
=2

∣∣∣∣∣∫
R

h
(
t|y− x|−1

)
e−ity|y−x|−1

χ(1,∞) dµ(t)
∣∣∣∣∣

=2|φ(y, |y− x|)| ≤ 2L1|y− x|ξ

(3.19)

since h ∈ H(ξ) ⊆ H1(ξ).

For t ∈ (−∞,−|y − x|−1), We can apply the same estimation technique from (3.19) to obtain the

integral estimate on the symmetric interval since h ∈ H(ξ) ⊆ H2(ξ).That is:∣∣∣∣∣∣
∫
(−∞,−|y−x|−1)

h(t)
(
e−itx
− e−ity

)
dµ(t)

∣∣∣∣∣∣ ≤ 2|φ(y,−|y− x|)| ≤ 2L2|y− x|ξ (3.20)

For t ∈
(
−|y− x|−1, |y− x|−1

)
, define Φ(u, v) = h(u)e−iuv, first, observe that h ∈ H(ξ) ⊂ H1(ξ) implies

the following constraints: ∣∣∣∣∣∫
R

Φ
(
ts−1, y

)
s−1χ[1,∞)(t) dµ(t)

∣∣∣∣∣ 6 L1|s|ξ

On the other hand, due to symmetry, and without loss of generality, we only need to consider the

case t ∈
[
0, |y− x|−1

]
. The treatment for t ∈

[
−(y− x)−1, 0

]
follows in a similar manner. Additionally,

we assume that y > x.∣∣∣∣∣∣
∫
(0,(y−x)−1)

h(t)e−itx
(
1− e−it(y−x)

)
dµ(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∫
(0,(y−x)−1)

e−itxih(t) sin(t(y− x))dµ(t)︸                                            ︷︷                                            ︸
I

+

∫
(0,(y−x)−1)

2h(t)e−itx sin2(
t(y− x)

2
) dµ(t)︸                                               ︷︷                                               ︸

II

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.21)

According to Lemma 3.2, we have the following estimates for I and II:

|I| =
∣∣∣∣∣i ∫

R
Φ

(
s(y− x)−1, x

)
· sin s · (y− x)−1χ[0,1]dµ(s)

∣∣∣∣∣
6 λ|y− x|ξ

(3.22)

|II| = 2
∣∣∣∣∣∫

R
Φ

(
s(y− x)−1, x

)
sin2 s

2
(y− x)−1χ[0,1]dµ(s)

∣∣∣∣∣
6 2κ|y− x|ξ

(3.23)
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Combining formulas (3.19),(3.20),(3.22) and (3.23), we can conclude that there exists a constant

B > 0 such that the following holds:

|F [h](x) −F [h](y)| ≤ B|y− x|ξ

which thus proves that F [h] exhibits the Hölder continuity property of order ξ. �

Lemma 3.5. Let h be a locally integrable function, and suppose there exists a constant C(y) > 0 ,where
C depends on y,such that for all y ∈ R, we have:

∣∣∣∫
R uh(u)e−iuyχ[0,∞) dµ(u)

∣∣∣ ≤ C(y). Then, the following
limit holds pointwise for each y:
limv→0+

∫
R h

(
uv−1

)
e−iyuv−1

(
sin2 u

2 + i sin u
)

v−2χ[0,1] dµ(u) =
∫

R iuh(u)e−iuyχ[0,∞) dµ(u).

Proof. We divide the integral
∫

R h
(
uv−1

)
e−iyuv−1

(
sin2 u

2 + i sin u
)

v−2χ[0,1] dµ(u) into two parts, (a)
and (b), and estimate them separately. In the following proof, the limit of (a) tends to 0, and it is

mainly part (b) that contributes.∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2
+ i sin u

)
v−2χ[0,1] dµ(u)

=

∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2

)
v−2χ[0,1] dµ(u)︸                                                 ︷︷                                                 ︸

(a)

(a)

+

∫
R

h
(
uv−1

)
e−iyuv−1

(i sin u) v−2χ[0,1] dµ(u)︸                                                 ︷︷                                                 ︸
(b)

(b)

For part (a),by taking some constant v, L > 0, we have:

(a) =
∫

R
h
(
uv−1

)
e−iyuv−1

(
sin2 u

2

)
v−2χ[0,vL] dµ(u)︸                                                  ︷︷                                                  ︸

(a.1)

+

∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2

)
v−2χ[vL,1] dµ(u)︸                                                  ︷︷                                                  ︸

(a.2)

For part (a.2), since sin2(x)
x is monotonically increasing and non-negative near x = 0, we apply the

Bonnet mean value theorem and take L sufficiently large and v sufficiently small, we have:∣∣∣(a.2)
∣∣∣ = ∣∣∣∣∣∣

∫
R

1
2

h
(
uv−1

)
e−iyuv−1

·
sin2 u

2
u
2
· uv−1

· v−1χ[vL,1]dµ(u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ sin2 u
2

u
2

∣∣∣∣∣∣
u=1

∫
R

1
2

h
(
uv−1

)
e−iyuv−1

· uv−1
· v−1χ[p,1]dµ(u)

∣∣∣∣∣∣
≤

∣∣∣∣∣∫
R

h
(
uv−1

)
e−iyuv−1

uv−1
· v−1χ[p,1]dµ(u)

∣∣∣∣∣
≤

∣∣∣∣∣∫
R

sh(s)e−iysχ[pv−1,v−1]dµ(s)
∣∣∣∣∣ < ε (3.24)
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for some constat p satisfying L < p
v <

1
v . We obtain (3.24) arbitrarily small as long as v is sufficiently

small because
∣∣∣∫

R uh(u)e−iuy dµ(u)
∣∣∣ is pointwise bounded for fixed y.

For part (a.1), we have: ∣∣∣∣∣∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2

)
v−2χ[0,vL] dµ(u)

∣∣∣∣∣
=

∣∣∣∣∣∫
R

h(s)e−iys
(
sin2 sv

2

)
v−1χ[0,L]dµ(s)

∣∣∣∣∣ .
≤

∫
R

L
2

∣∣∣h(s)∣∣∣ sin2 sv
2

sv
2

χ[0,L]dµ(s) −→ 0 as v→ 0+ (3.25)

As v→ 0+, (3.25) tends to zero by the Dominated Convergence Theorem, given that h ∈ Lloc(R).
By combining (3.24) and (3.25), we obtain that (a) tends to 0 as v→ 0+,That is:

lim
v→0+

∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2

)
v−2χ[0,1] dµ(u) = 0 (3.26)

From (3.26), we know that to prove the conclusion of the lemma, it suffices to show that the

estimate in part (b) converges to the desired value. Now we estimate part (b).∣∣∣∣∣∫
R

iuh(u)e−iuyχ[0,∞) dµ(u) −
∫

R
h
(
uv−1

)
e−iyuv−1

(i sin u) v−2χ[0,1] dµ(u)
∣∣∣∣∣

=

∣∣∣∣∣∫
R

uh(u)e−iuyχ[0,∞) dµ(u) −
∫

R
uh(u)e−iuyχ[0,A) dµ(u) +

∫
R

uh(u)e−iuyχ[0,A) dµ(u)

−

∫
R

h
(
uv−1

)
e−iyuv−1

(sin u) v−2χ[0,vA] dµ(u) −
∫

R
h
(
uv−1

)
e−iyuv−1

(sin u) v−2χ[vA,1] dµ(u)
∣∣∣∣∣

≤

∣∣∣∣∣∫
R

uh(u)e−iuyχ[0,∞) dµ(u) −
∫

R
uh(u)e−iuyχ[0,A) dµ(u)

∣∣∣∣∣︸                                                                  ︷︷                                                                  ︸
(b.1)

+

∣∣∣∣∣∫
R

uh(u)e−iuyχ[0,A) dµ(u) −
∫

R
h
(
uv−1

)
e−iyuv−1

(sin u) v−2χ[0,vA] dµ(u)
∣∣∣∣∣︸                                                                                        ︷︷                                                                                        ︸

(b.2)

+

∣∣∣∣∣∫
R

h
(
uv−1

)
e−iyuv−1

(sin u) v−2χ[vA,1] dµ(u)
∣∣∣∣∣︸                                                  ︷︷                                                  ︸

b.3

(3.27)

Subsequently, we estimate (b.1), (b.2), and (b.3) respectively.

For (b.1), since the pointwise bound of expression
∫

R uh(u)e−iuyχ[0,∞) dµ(u) holds, there exists

A0 such that for any A ≥ A0, expression (b.1) is less than ε,i.e.,∣∣∣∣∣∫
R

uh(u)e−iuyχ[0,∞) dµ(u) −
∫

R
uh(u)e−iuyχ[0,A) dµ(u)

∣∣∣∣∣ < ε ∀A ≥ A0 (3.28)
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For (b.2), since h is locally integrable, applying the Dominated Convergence Theorem, we obtain

the following estimate:

(b.2) =
∣∣∣∣∣∫

R
uh(u)e−iuyχ[0,A) dµ(u) −

∫
R

uv−1h
(
uv−1

)
e−iyuv−1 sin u

u
v−1χ[0,vA]dµ(u)

∣∣∣∣∣
=

∣∣∣∣∣∫
R

uh(u)e−iuy(1−
sin uv

uv
)χ[0,A) dµ(u)

∣∣∣∣∣
≤

∫
R

∣∣∣∣∣Ah(u)(1−
sin uv

uv
)

∣∣∣∣∣χ[0,A) dµ(u) −→ 0 as v −→ 0+ (3.29)

For (b.3), the approach is analogous to that of (a.2).We can obtain that expression (b.3) becomes

arbitrarily small as long as v is sufficiently small, that is, there exists v0 such that for any 0 < v < v0,

we have ∣∣∣∣∣∫
R

h
(
uv−1

)
e−iyuv−1

(sin u) v−2χ[vA,1] dµ(u)
∣∣∣∣∣ ≤ ε (3.30)

By combining (3.26), (3.28), (3.29), and (3.30), we obtain the following:

lim
v→0+

∫
R

h
(
uv−1

)
e−iyuv−1

(
sin2 u

2
+ i sin u

)
v−2χ[0,1] dµ(u) =

∫
R

iuh(u)e−iuyχ[0,∞) dµ(u).

which completes our proof.

�

4. Main theorems and their proofs

Theorem 4.1. Let ξ > 1 and define nmax = bξc. For any function h ∈ H(ξ), the following results
hold: For every integer n ∈ N+ with 1 ≤ n ≤ nmax, the n-th derivative of F [h] satisfies: dn

dynF [h] ∈

L∞(R). The n-th derivative of h admits the following Fourier transform representation: dn

dynF [h](y) =∫
R(−i)nsnh(s)e−isydµ(s).

Proof. since h ∈ H(ξ), we have ∃L1 > 0, ∀y ∈ R, |φ(y, s)| ≤ L1|s|ξ,where φ(y, s) :=∫
R s−1h

(
ts−1

)
e−its−1 yχ[1,∞)dµ(t). By performing the variable substitution z = ts−1, we obtain:∣∣∣∣∣∫

R
s−1h

(
ts−1

)
e−its−1 yχ[1,∞)dµ(t)

∣∣∣∣∣
=

∣∣∣∣∣∫
R

h(z)e−iyzχ[s−1,∞]dµ(z)
∣∣∣∣∣

≤ L1|s|ξ = L1

∣∣∣s−1
∣∣∣−ξ

(4.1)

It follows from Lemma 3.1 that there exists a constant C > 0 such that:∣∣∣∣∣∫
R

zξ+1h(z)e−iyzχ[0,s−1]dµ(z)
∣∣∣∣∣ ≤ C

∣∣∣s−1
∣∣∣1 (4.2)

For any n (1 ≤ n ≤ nmax), by applying recursion to equation (4.2), we obtain:∣∣∣∣∣∫
R

zξ+nh(z)e−iyzχ[0,s−1]dµ(z)
∣∣∣∣∣ ≤ C

∣∣∣s−1
∣∣∣n (4.3)
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By applying Lemma 3.1 once again, we have that there exists a constant Ĉ > 0 such that:∣∣∣∣∣∫
R

znh(z)e−iyzχ[s−1,∞]dµ(z)
∣∣∣∣∣

=

∣∣∣∣∣∫
R

(
us−1

)n
h
(
us−1

)
e−iyus−1

s−1χ[1,∞]dµ(u)
∣∣∣∣∣ ≤ Ĉ

∣∣∣s−1
∣∣∣n−ξ = Ĉ |s|ξ−n

(4.4)

(4.4) implies that snh(s) ∈ H(ξ− n).

Define Rn(y) =
∫

R(−i)nsnh(s)e−isy dµ(s). Since snh(s) ∈ H(ξ − n), by Lemma 3.3, we conclude

that Rn(y) exists for every y ∈ R and Rn(y) ∈ L∞(R).
Next, we will prove that Rn(y) = dn

dynF [h](y), and we will use induction to establish the result.

Firstly, notice that h ∈ H(ξ). From Lemma 3.3, we have that F [h](y) is well-defined for every

y ∈ R.Without loss of generality, let ∆y > 0. We will first estimate the following difference quotient

limit:

F [h](y + ∆y) −F [h](y)
∆y

=
1

∆y

(∫
R

h(s)e−is(y+∆y)dµ(s) −
∫

R
h(s)e−isydµ(s)

)
=

1
∆y

(∫
R

h(s)e−isy
(
e−is∆y

− 1
)

dµ(s)
)

=
1

∆y

∫
(−∞,−(∆y)−1)∪(−(∆y)−1,0)∪(0,(∆y)−1)∪((∆y)−1,∞)

h(s)e−isy
(
e−is∆y

− 1
)

dµ(s)

(4.5)

We will separately estimate the integrals over the four intervals: (−∞,−(∆y)−1), (−(∆y)−1, 0),

(0, (∆y)−1), and ((∆y)−1,∞).

For the interval ((∆y)−1,∞), since h ∈ H1(ξ) and ξ > 1, we have:∣∣∣∣∣∣ 1
∆y

∫
((∆y)−1,∞)

h(s)e−is(y+∆y) dµ(s)

∣∣∣∣∣∣
=

∣∣∣∣∣ 1
∆y

∫
R
(∆y)−1h

(
u(∆y)−1

)
e−iu(∆y)−1(y+∆y)χ[1,∞)dµ(u)

∣∣∣∣∣
=

∣∣∣∣∣ 1
∆y

∣∣∣∣∣ ∣∣∣φ(y + ∆y, ∆y)
∣∣∣ 6 L1|∆y|ξ−1

−→ 0 as ∆y→ 0+

(4.6)

For the interval (−∞,−(∆y)−1), since h ∈ H2(ξ) and ξ > 1, we have a similar result as in (4.6).

For the interval (0, (∆y)−1),We first note that
∣∣∣∫

R uh(u)e−iuyχ[0,∞) dµ(u)
∣∣∣ ≤ C(y). This is because, in

(4.4), by setting n = 1, we obtain:∣∣∣∣∣∫
R

z1h(z)e−iyzχ[s−1,∞] dµ(z)
∣∣∣∣∣ ≤ Ĉ |s|ξ−1 (4.7)

which implies that the remainder term of the integral tends to zero as s → 0, thereby indicating

that the integral converges.On the other hand, we only need to estimate 1
∆y

∫
(0,(∆y)−1)

h(s)e−isy
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e−is∆y

− 1
)

dµ(s); the estimate for 1
∆y

∫
(−(∆y)−1,0) h(s)e−isy

(
e−is∆y

− 1
)

dµ(s) is obtained using the same

background and techniques as that for 1
∆y

∫
(0,(∆y)−1)

h(s)e−isy
(
e−is∆y

− 1
)

dµ(s).

1
∆y

∫
(0,(∆y)−1)

h(s)e−isy(e−is∆y
− 1)dµ(s)

=
1

∆y

∫
(0,(∆y)−1)

h(s)e−isy(cos(−s∆y) + i sin(−s∆y) − 1)dµ(s)

=
1

∆y

∫
(0,(∆y)−1)

−h(s)e−isy

sin2
( s∆y

2

)
2

+ i sin s∆y

 dµ(s)

= −

∫
R

h
(
u(∆y)−1

)
e−iyu(∆y)−1

sin2 u
2

2
+ i sin u

 (∆y)−2χ[0,1]dµ(u)

−→−

∫
R

iuh(u)e−iuyχ[0,∞) dµ(u) as ∆y→ 0+ since (4.7) and Lemma 3.5

Thus we have:

lim
∆y→0

F [h](y + ∆y) −F [h](y)
∆y

= −

∫
R

iuh(u)e−iuy dµ(u) = Rn(y)
∣∣∣
n=1

We have already established that equation dn

dynF [h](y) =
∫

R(−i)nsnh(s)e−isydµ(s) holds for n = 1.

Now, suppose that equation dn

dynF [h](y) =
∫

R(−i)nsnh(s)e−isydµ(s) also holds for n = k − 1; that

is, dk−1

dyk−1F [h](y) = Rn(y)
∣∣∣
n=k−1,We will now prove that this also holds for n = k.

1
∆y

(
dk−1

dyk−1
F [h](y + ∆y) −

dk−1

dyk−1
F [h](y)

)
=

1
∆y

(Rk−1(y + ∆y) −Rk−1(y))

=
1

∆y

(∫
R
(−i)k−1sk−1h(s)e−is(y+∆y)dµ(s) −

∫
R
(−i)k−1sk−1h(s)e−isydµ(s)

) (4.8)

According to equation (4.8), to calculate the value of dk

dykF [h](y) , it is sufficient to compute

(−i)k−1
·

d
dyF [sk−1h(s)](y).

From (4.4), we know that sk−1h(s) ∈ H(ξ − k + 1). Moreover, we also know the following fact:

if a function h ∈ H(ξ) and ξ > 1, then d
dyF [h](y) ∈ L∞(R), and

d
dy
F [h](y) =

∫
R
(−i)1s1h(s)e−isy dµ(s).

Thus, we have:

dk

dyk
F [h](y) = (−i)k−1

·
d

dy
F [sk−1h(s)](y)

= (−i)k−1
∫

R
(−i)1s1sk−1h(s)e−isydµ(s)

= (−i)k
∫

R
skh(s)e−isydµ(s)
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= Rn(y)
∣∣∣
n=k

This completes the proof of the theorem. �

Theorem 4.2. Suppose a real number ξ > 0 . If the function h belongs to the classH(ξ), then its Fourier
transform F [h] satisfies the following properties: F [h] ∈ L∞(R)and F [h] have the property of Hölder
continuous of order ξ. In other words, when the asymptotic decay rate of h is controlled by theH(ξ) class,
its Fourier transform is not only globally bounded, but also possesses Hölder-type smoothness of order ξ .

Proof. For a positive real number ξ, the set of all integers not exceeding ξ is given by:

nξ = {n ∈ Z+
| n ≤ ξ}

The integer part of ξ is bξc, and the fractional part of ξ is {ξ} := ξ − bξc. Based on Definition

2.6, to prove that the Fourier transform of h ∈ H(ξ) possesses the ξ-Hölder continuous property

property, we need to establish two things:

(I) dk

dykF [h](y) ∈ L∞(R) ∀ k ∈ nξ.

(II) There exists a constant C > 0 such that∣∣∣∣∣∣ dk

dyk
F [h](y) −

dk

dyk
F [h](x)

∣∣∣∣∣∣ ≤ C
∣∣∣x− y

∣∣∣{ξ} ,
where k = max

{
n ∈ Z+

| n ≤ ξ
}
.

We will prove this in two cases: one where ξ > 1, and the other where 0 < ξ < 1. For the case

0 < ξ < 1, we have already proven it in Lemma 3.4. Therefore, we only need to prove the case

ξ > 1. Note that F [h](y) is well defined for every y ∈ R since Lemma 3.3. At the same time,

Theorem 4.1 tells us that for any k ∈ nξ, the existence of dk

dykF [h](y) and dk

dykF [h] ∈ L∞(R) satisfy the

requirement of condition (I). Next, we only need to prove whether dbξc
dybξcF [h](y) satisfies condition

(II). From (4.4), we know that skh(s) ∈ H(ξ− k) for k ∈ nξ.Specifically, we have sbξch(s) ∈ H({ξ}).

From Lemma 3.4,we obtain that F [sbξch(s)](y) have the property of Hölder continuous of order

{ξ}. ∣∣∣∣∣∫
R

sbξch(s)e−isydµ(s) −
∫

R
sbξch(s)e−isxdµ(s)

∣∣∣∣∣
=

∣∣∣∣∣∣ dbξc

dybξc
F [h](x) −

dbξc

dybξc
F [h](y)

∣∣∣∣∣∣ (since Theorem 4.1)

≤C
∣∣∣x− y

∣∣∣{ξ}
This completes the requirement of condition (II). �
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