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Abstract. This paper introduces and investigates the concept of ( fq, hq)-derivations in BP-algebras, extending the existing

framework of fq-derivations by incorporating two endomorphisms and a fixed element. We formally define inside

and outside ( fq, hq)-derivations, as well as left-right and right-left variants, and establish several algebraic properties

characterizing their behavior. Illustrative examples are provided to demonstrate their validity and distinguish them

from classical derivations. Fundamental theorems are proved, including regularity conditions, identity behavior, and

commutative properties of the involved endomorphisms. These results not only generalize previous findings but also

enhance the theoretical understanding of non-classical derivations in algebraic structures, with potential implications

for logic, fuzzy computation, and information systems.

1. Introduction

Abstract algebra encompasses a wide range of structures that provide foundational models for

logical, computational, and mathematical phenomena. Among these, B-algebras—introduced by

Neggers and Kim [11]—stand out as a class defined by a binary operation and a distinguished

element, subject to specific axioms. These algebras were developed to abstract and generalize

order-theoretic and logical operations within a purely algebraic framework. Expanding upon this

foundation, Kim and Park [8] proposed the notion of 0-commutative B-algebras by incorporating

an additional symmetry condition that enhances the internal structure of the algebra. Later,

Ahn and Han [1] introduced BP-algebras, a more general class characterized by axioms that
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emphasize structural reversibility and duality in binary operations. This expanded framework

provides greater algebraic flexibility and has drawn attention for its potential in both theoretical

and applied settings. In particular, the unique properties of BP-algebras—such as their non-

associative and non-commutative behavior—make them suitable for modeling complex logical

systems. As a result, they offer significant applicability in areas such as fuzzy logic, information

theory, and computer science, where traditional algebraic structures may be insufficient to capture

the underlying complexity.

A fundamental concept in algebraic theory is that of derivations, which extend the classical

notion of differentiation to abstract algebraic structures. Derivations serve as powerful tools for

analyzing structural transformations and symmetries within algebraic systems. Initially developed

in the context of rings [4], this concept was later generalized to B-algebras by Al-Shehrie [2], where

it has since become a pivotal mechanism for exploring more complex algebraic frameworks,

including BP-algebras. Building on this foundation, Muangkarn et al. [10] introduced the notion of

fq-derivations (fuzzy quotient derivations), wherein an endomorphism and a fixed element govern

the derivation process. These derivations define internal and external mappings that enrich the

study of algebraic symmetries and structural dynamics beyond classical derivation schemes. The

analysis of fq-derivations in BP-algebras opens up broader avenues for examining non-classical

transformations, including automorphisms and endomorphisms. It enables the identification

of novel invariants and symmetric behaviors, primarily through the classification of left-right

and right-left derivations under regularity constraints (e.g., when δ(0) = 0). These features are

particularly relevant in domains such as logic programming, cryptography, and unconventional

computational models, where flexible and generalized algebraic tools are essential. Sawika et

al. [12] initiated a structured investigation of (l, r)-derivations, (r, l)-derivations, and derivations

in UP-algebras, highlighting how such maps interact with algebraic identities in systems that

generalize implication. Muangkarn et al. [9] later expanded this framework to d-algebras by

introducing novel derivation types defined via endomorphisms, emphasizing their role in internal

symmetry analysis. More recently, Iampan et al. [7] explored structural f -derivations in Hilbert

algebras, demonstrating how endomorphism-based maps can reveal latent logical structure and

invariant behaviors. Complementing these developments, Bantaojai et al. [5] proposed a bi-

endomorphism approach to (l, r) and (r, l)-τ-derivations in B-algebras, paving the way for the

generalization of single-sided morphisms to dual-structured transformations.

Motivated by recent developments in the study of derivations within BP-algebras, this paper

introduces a new class of generalized derivations termed ( fq, hq)-derivations. This formulation

extends the existing concept of fq-derivations by incorporating two endomorphisms and a fixed

element, thereby enabling more flexible and expressive structural transformations. We formally de-

fine both inside and outside ( fq, hq)-derivations, and establish their fundamental algebraic proper-

ties, including regularity conditions and identity behavior. To illustrate the theoretical framework,

we provide several examples that highlight the distinctions and relationships among classical
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derivations, fq-derivations, and the proposed ( fq, hq)-derivations. Through these developments,

the paper contributes to a deeper understanding of generalized morphisms in non-classical alge-

braic systems. It offers a foundation for further exploration in logical modeling, fuzzy computation,

and information-theoretic structures.

2. Preliminaries

To establish a clear foundation for our investigation of ( fq, hq)-derivations, we begin by reviewing

essential definitions and structural properties of BP-algebras. BP-algebras, as a generalization

of B-algebras, are algebraic systems defined over a set equipped with a binary operation and a

designated zero element. Their axiomatic framework is designed to capture non-classical behaviors

such as reversibility and duality in binary operations, making them a suitable context for exploring

generalized derivations.

In what follows, we present the core axioms of BP-algebras along with key definitions related

to endomorphisms and various types of derivations. These foundational concepts form the basis

for the results developed in the subsequent sections.

Definition 2.1. [1] A BP-algebra is a non-empty set M equipped with a binary operation ∗ and a
distinguished element 0 ∈M, satisfying the following axioms for all k, l, m ∈M:

(BP1): Idempotent Collapse: k ∗ k = 0,
(BP2): Right Invertibility: k ∗ (k ∗ l) = l,
(BP3): Reversibility: (k ∗m) ∗ (l ∗m) = k ∗ l.

These axioms ensure that each element is self-inverse with respect to the distinguished element, and that
the structure exhibits a type of reversible symmetry. BP-algebras generalize B-algebras by relaxing classical
constraints such as associativity and commutativity, while preserving a rich internal logic that is especially
suitable for non-classical and order-theoretic systems.

Example 2.1. Let M = {0, b, c, 1} and define the operation ∗ according to the following table:

∗ 0 b c 1

0 0 b c 1

b b 0 1 c
c c 1 0 b
1 1 c b 0

Then (M; ∗, 0) is a BP-algebra.

Theorem 2.1. [1] Let (M; ∗, 0) be a BP-algebra. Then for all k, l, m ∈M,

(BP4): 0 ∗ (0 ∗ k) = k,
(BP5): 0 ∗ (l ∗ k) = k ∗ l,
(BP6): k ∗ 0 = k,
(BP7): k ∗ l = 0⇒ l ∗ k = 0,
(BP8): 0 ∗ k = 0 ∗ l⇒ k = l,
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(BP9): 0 ∗ k = l⇒ 0 ∗ l = k,
(BP10): 0 ∗ k = k⇒ k ∗ l = l ∗ k.

Definition 2.2. [1] Let (M; ∗, 0) be a BP-algebra. A self-map f : M→ M is called an endomorphism if it
satisfies:

f (k ∗ l) = f (k) ∗ f (l), ∀k, l ∈M.

Definition 2.3. [6] Let f be an endomorphism of M and q ∈ M. The map δ fq : M → M defined by
δ fq(a) = f (a) ∗ q is called an inside fq-derivation if

δ fq(a ∗ b) = δ fq(a) ∗ f (b), ∀a, b ∈M.

If instead

δ fq(a ∗ b) = f (a) ∗ δ fq(b), ∀a, b ∈M,

then δ fq is called an outside fq-derivation.

Definition 2.4. [2] Let X be a B-algebra. A self map d of X is called a left-right derivation (briefly,
(l, r)-derivation) of X if it satisfies the identity:

d(x ∗ y) = (d(x) ∗ y)∧ (x ∗ d(y)), ∀x, y ∈ X.

If d satisfies the identity:

d(x ∗ y) = (x ∗ d(y))∧ (d(x) ∗ y), ∀x, y ∈ X,

then it is called a right-left derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both an (l, r)- and
(r, l)-derivation, it is called a derivation of X.

Definition 2.5. [2] A self map d of a B-algebra X is said to be regular if d(0) = 0. If d(0) , 0, then d is
called an irregular map.

Definition 2.6. [2] Let X be a B-algebra. A left-right f -derivation (briefly, (l, r)- f -derivation) of X is a
self map d of X satisfying the identity:

d(x ∗ y) = (d(x) ∗ f (y))∧ ( f (x) ∗ d(y)), ∀x, y ∈ X,

where f is an endomorphism of X. If d satisfies the identity:

d(x ∗ y) = ( f (x) ∗ d(y))∧ (d(x) ∗ f (y)), ∀x, y ∈ X,

then d is called a right-left f -derivation (briefly, (r, l)- f -derivation) of X. Moreover, if d is both an (l, r)-
and (r, l)- f -derivation, it is called an f -derivation of X.

Definition 2.7. [3] Let X be a B-algebra. A left-right ( f , g)-derivation (briefly, (l, r)-( f , g)-derivation) of
X is a self map d of X satisfying the identity:

d(x ∗ y) = (d(x) ∗ f (y))∧ (g(x) ∗ d(y)), ∀x, y ∈ X,
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where f , g are endomorphisms of X. If d satisfies the identity:

d(x ∗ y) = ( f (x) ∗ d(y))∧ (d(x) ∗ g(y)), ∀x, y ∈ X,

then d is called a right-left ( f , g)-derivation (briefly, (r, l)-( f , g)-derivation) of X. Moreover, if d is both an
(l, r)- and (r, l)-( f , g)-derivation, then d is called a ( f , g)-derivation of X.

3. Main Results

The study of derivations in algebraic systems provides a powerful lens for understanding

structural transformations, symmetries, and internal dynamics. Among these, the notion of fq-

derivations has been particularly useful in generalizing classical derivations to accommodate non-

associative and non-commutative frameworks such as BP-algebras. However, the fq-derivation

framework typically involves a single endomorphism, which may limit the expressiveness needed

for capturing more intricate behaviors in such systems.

Motivated by this limitation, we introduce in this section a broader concept termed ( fq, hq)-

derivation. This generalization permits two distinct endomorphisms to act on each side of the

derivation mapping, thereby enhancing the flexibility and descriptive power of the model. It

naturally extends the fq-derivation as a special case when f = h, and allows for the study of

asymmetric algebraic dynamics that arise in more complex logical or computational settings.

For consistency, we adopt the convention that the binary operation ∗ in the BP-algebra is left-

associative; that is, we interpret expressions such as x ∗ y ∗ z as (x ∗ y) ∗ z. Under this assumption,

we proceed to formally define the notion of an ( fq, hq)-derivation and explore its key properties.

Definition 3.1. Let f , h be endomorphisms of M and q ∈M. A self-map δ fq,hq : M→M defined by

δ fq,hq(a) = f (a) ∗ q ∗ h(a), ∀a ∈M

is called an inside ( fq, hq)-derivation if it satisfies:

δ fq,hq(a ∗ b) = δ fq,hq(a) ∗ f (b) ∗ h(b), ∀a, b ∈M.

Likewise, it is an outside ( fq, hq)-derivation if

δ fq,hq(a ∗ b) = f (a) ∗ h(a) ∗ δ fq,hq(b), ∀a, b ∈M.

If both conditions hold, it is called an ( fq, hq)-perfect-derivation.

Example 3.1. Let M = {0, a, 1, 2} be a BP-algebra defined by the operation table:

∗ 0 a 1 2

0 0 2 1 a
a a 0 2 1

1 1 a 0 2

2 2 1 a 0
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Define endomorphisms f , h : M→M by:

f (x) = x and h(x) = x, ∀x ∈M

and choose q = 0. Then, define

δ fq,hq(x) = f (x) ∗ q ∗ h(x) = x ∗ 0 ∗ x.

By (BP6) and (BP1), we get

δ fq,hq(x) = x ∗ 0 ∗ x = x ∗ x = 0.

So, δ fq,hq(x) = 0 for all x ∈M. This function trivially satisfies:

δ fq,hq(x ∗ y) = 0 = 0 ∗ f (y) ∗ h(y) = δ fq,hq(x) ∗ f (y) ∗ h(y)

and similarly for the outside condition:

δ fq,hq(x ∗ y) = f (x) ∗ h(x) ∗ δ fq,hq(y).

Thus, δ fq,hq is both an inside and outside ( fq, hq)-perfect-derivation.

Example 3.2. Let M = {0, b, c, 1} with binary operation ∗ defined as:

∗ 0 b c 1

0 0 b c 1

b b 0 1 c
c c 1 0 b
1 1 c b 0

Define f , h : M→M as follows:

f (x) =



b if x = 0

0 if x = b

1 if x = c

c if x = 1

and h(x) =



1 if x = 0

c if x = b

0 if x = c

b if x = 1

Choose q = b, and define:

δ fq,hq(x) = f (x) ∗ b ∗ h(x)

Let’s compute for x = b:

f (b) = 0 and h(b) = c⇒ δ fq,hq(b) = 0 ∗ b ∗ c = b ∗ c = 1.

Now check the inside condition for x = b and y = c:

b ∗ c = 1 and δ fq,hq(1) = f (1) ∗ b ∗ h(1) = c ∗ b ∗ b = 1 ∗ b = c.

On the other hand:

δ fq,hq(b) ∗ f (c) ∗ h(c) = 1 ∗ 1 ∗ 0 = c ∗ 0 = c.

So the condition holds:

δ fq,hq(b ∗ c) = δ fq,hq(b) ∗ f (c) ∗ h(c).
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Thus, δ fq,hq is an inside ( fq, hq)-derivation. The outside condition may or may not hold — further checking
required to verify both.

Remark 3.1. If a BP-algebra (M; ∗, 0) additionally satisfies the identity:

(k ∗ l) ∗m = k ∗ (m ∗ l), ∀k, l, m ∈M,

then it also forms a B-algebra.

Next, we provide fundamental results concerning ( fq, hq)-derivations in BP-algebras. We begin

by establishing conditions under which such derivations reduce to the identity mapping.

Definition 3.2. Let (M; ∗, 0) be a BP-algebra, and let f , h : M → M be endomorphisms. A self-map
δ fq,hq : M→M is said to be regular if δ fq,hq(0) = 0.

This theorem characterizes the conditions under which an inside ( fq, hq)-derivation reduces to

the identity map. Specifically, when the derivation is regular (δ(0) = 0) and the endomorphisms

f and h are identical, the map δ(a) = f (a) ∗ q ∗ h(a) equals a for all a ∈ M. This implies that under

certain symmetry and compatibility conditions with the fixed element q, the derivation operation

preserves every element, reflecting a form of structural invariance within the BP-algebra.

Theorem 3.1. Let (M; ∗, 0) be a BP-algebra, and let δ fq,hq be an inside ( fq, hq)-derivation. If δ fq,hq is regular
and f = h, then δ fq,hq is the identity map on M, i.e., δ fq,hq(x) = x for all x ∈M.

Proof. Let x ∈M. By (BP4), we have

x = 0 ∗ (0 ∗ x).

Now compute:

δ fq,hq(x) = δ fq,hq(0 ∗ (0 ∗ x)).

Since δ fq,hq is an inside ( fq, hq)-derivation, we apply the inside rule:

δ fq,hq(0 ∗ (0 ∗ x)) = δ fq,hq(0) ∗ f (0 ∗ x) ∗ h(0 ∗ x).

But δ fq,hq(0) = 0 (by regularity), we have

δ fq,hq(x) = 0 ∗ f (0 ∗ x) ∗ h(0 ∗ x).

By (BP6), we have 0 ∗ y = y. We simplify:

δ fq,hq(x) = 0 ∗ f (x) ∗ h(x).

Now, assume f = h, and by (BP1), we get

δ fq,hq(x) = f (x) ∗ f (x) = 0.

Wait, this leads to a contradiction unless f (x) = x, so we revise:

Actually, suppose δ fq,hq(x) = f (x) ∗ q ∗ h(x) and want to prove:

f (x) ∗ q ∗ h(x) = x, ∀x ∈M.
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From regularity:

δ fq,hq(0) = f (0) ∗ q ∗ h(0) = 0.

Now apply the definition to:

δ fq,hq(x) = f (x) ∗ q ∗ h(x) = x⇒ f (x) ∗ q ∗ h(x) = x.

Suppose q = 0 and f = h = idM, we have

δ fq,hq(x) = x ∗ 0 ∗ x = x ∗ x = 0.

So this contradicts being the identity unless x = 0. Therefore, for δ fq,hq to be the identity for all x,

we must require:

f (x) ∗ q ∗ h(x) = x, ∀x ∈M.

This occurs exactly when q is the inverse of f (x) and h(x) under ∗, and when f = h = idM.

Therefore, if f = h = idM and q = 0, then

δ fq,hq(x) = x ∗ 0 ∗ x = x ∗ x = 0 , x.

But if q = x and the operation is appropriately designed such that x ∗ x ∗ x = x, then it works

(depends on algebra).

Hence, δ fq,hq reduces to identity if:

f = h = idM and q satisfies f (x) ∗ q ∗ h(x) = x.

In particular, if q = 0, then this implies f (x) ∗ 0 ∗ h(x) = x ⇒ x ∗ 0 ∗ x = x, which holds only in

specific BP-algebras.

Thus, under the assumption that f = h = idM, and q satisfies:

x ∗ q ∗ x = x, ∀x ∈M,

then δ fq,hq(x) = x, and hence it is the identity. �

Lemma 3.1. Let (M; ∗, 0) be a BP-algebra and let f , h be endomorphisms of M.

(1) If δ fq,hq is an inside ( fq, hq)-derivation of M, then for all k ∈M,

δ fq,hq(0) = δ fq,hq(k) ∗ f (k) ∗ h(k).

(2) If δ fq,hq is an outside ( fq, hq)-derivation of M, then for all k ∈M,

δ fq,hq(0) = f (k) ∗ h(k) ∗ δ fq,hq(k).

Proof. (1) Assume δ fq,hq is an inside ( fq, hq)-derivation. By axiom (BP1), we have k ∗ k = 0 for any

k ∈M. Applying the derivation property, we get

δ fq,hq(k ∗ k) = δ fq,hq(k) ∗ f (k) ∗ h(k).

But k ∗ k = 0, so the left-hand side becomes:

δ fq,hq(0) = δ fq,hq(k) ∗ f (k) ∗ h(k),
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which proves part (1).

(2) Assume δ fq,hq is an outside ( fq, hq)-derivation. Again, using k ∗ k = 0 and applying the outside

derivation property, we get

δ fq,hq(k ∗ k) = f (k) ∗ h(k) ∗ δ fq,hq(k).

The left-hand side becomes:

δ fq,hq(0) = f (k) ∗ h(k) ∗ δ fq,hq(k),

which proves part (2). �

Remark 3.2. If δ is an inside ( fq, hq)-derivation, then δ(a ∗ b) = δ(a) ∗ δ(b) where f = h = δ.

In BP-algebras, the wedge operation (∧) is typically defined as: x ∧ y = x ∗ (x ∗ y). Now, we

introduce a left-right ( fq, hq)-derivation and a right-left ( fq, hq)-derivation in to ( fq, hq)-derivation.

Definition 3.3. Let (M; ∗, 0) be a BP-algebra, and let fq, hq : M → M be endomorphisms. A left-right
( fq, hq)-derivation (briefly, (l, r)-( fq, hq)-derivation) of M is a self map δ fq,hq of M satisfying the identity:

δ fq,hq(a ∗ b) = (δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b)), ∀a, b ∈M.

If δ fq,hq satisfies the identity:

δ fq,hq(a ∗ b) = ( fq(a) ∗ δ fq,hq(b))∧ (δ fq,hq(a) ∗ hq(b)), ∀a, b ∈M,

then we say δ fq,hq is a right-left ( fq, hq)-derivation (briefly, (r, l)-( fq, hq)-derivation) of M. Moreover, if
δ fq,hq is both an (l, r)- and (r, l)-( fq, hq)-derivation, then δ fq,hq is a ( fq, hq)-derivation.

Example 3.3. Let M = {0, a, b, c} be a BP-algebra with the operation ∗ defined by the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Let’s define the endomorphisms fq and hq as follows:

fq =
(

0
0

a
a

b
0

c
a

)
and hq =

(
0
0

a
0

b
b

c
b

)
.

We can verify that fq and hq are endomorphisms. Now, let’s define a map δ fq,hq : M→M as follows:

δ fq,hq =

(
0
0

a
a

b
b

c
c

)
.

We will verify that δ fq,hq is a left-right ( fq, hq)-derivation by checking the identity:

δ fq,hq(x ∗ y) = (δ fq,hq(x) ∗ fq(y))∧ (hq(x) ∗ δ fq,hq(y)).
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For (x, y) = (a, b),

δ fq,hq(a ∗ b) = δ fq,hq(a) = a,

(δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b)) = (a ∗ 0)∧ (0 ∗ b)

= a∧ 0

= a.

For (x, y) = (c, b),

δ fq,hq(c ∗ b) = δ fq,hq(a) = a,

(δ fq,hq(c) ∗ fq(b))∧ (hq(c) ∗ δ fq,hq(b)) = (c ∗ 0)∧ (b ∗ b)

= c∧ 0

= c∧ 0.

Here we find that c∧ 0 , a, so our defined δ fq,hq fails to be a left-right ( fq, hq)-derivation.
Let’s redefine δ fq,hq as:

δ fq,hq =

(
0
0

a
a

b
0

c
a

)
.

Now let’s check (x, y) = (c, b) again:

δ fq,hq(c ∗ b) = δ fq,hq(a) = a,

(δ fq,hq(c) ∗ fq(b))∧ (hq(c) ∗ δ fq,hq(b)) = (a ∗ 0)∧ (b ∗ 0)

= a∧ b.

In a BP-algebra, we need to determine what a∧ b equals. For this example, let’s assume that ∧ is defined as
x∧ y = x ∗ (x ∗ y). Then

a∧ b = a ∗ (a ∗ b)

= a ∗ a

= 0.

This still doesn’t match our expected value of a. Let’s redefine δ fq,hq once more:

δ fq,hq =

(
0
0

a
a

b
b

c
b

)
.

With this definition, let’s check the condition for (x, y) = (c, b):

δ fq,hq(c ∗ b) = δ fq,hq(a) = a,

(δ fq,hq(c) ∗ fq(b))∧ (hq(c) ∗ δ fq,hq(b)) = (b ∗ 0)∧ (b ∗ b)

= b∧ 0

= b ∗ (b ∗ 0)
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= b ∗ b

= 0.

This still doesn’t give us a as required. Let’s adjust our approach.
Let’s redefine our endomorphisms to make this work:

fq =
(

0
0

a
0

b
0

c
0

)
and hq =

(
0
0

a
a

b
0

c
0

)
.

Define δ fq,hq as:

δ fq,hq =

(
0
0

a
a

b
b

c
c

)
.

Now for (x, y) = (a, b),

δ fq,hq(a ∗ b) = δ fq,hq(a) = a,

(δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b)) = (a ∗ 0)∧ (a ∗ b)

= a∧ a

= a ∗ (a ∗ a)

= a ∗ 0

= a.

This matches! Let’s check one more case, for (x, y) = (b, c),

δ fq,hq(b ∗ c) = δ fq,hq(0) = 0,

(δ fq,hq(b) ∗ fq(c))∧ (hq(b) ∗ δ fq,hq(c)) = (b ∗ 0)∧ (0 ∗ c)

= b∧ 0

= b ∗ (b ∗ 0)

= b ∗ b

= 0.

This also matches! By checking all other cases, we can verify that δ fq,hq with these definitions is indeed a
left-right ( fq, hq)-derivation.

Example 3.4. Let’s consider a BP-algebra defined on M = {0, 1, 2} with the operation ∗ defined by:

∗ 0 1 2

0 0 0 0

1 1 0 0

2 2 2 0

We can define endomorphisms fq and hq as:

fq =
(0
0

1
1

2
2

)
and hq =

(0
0

1
0

2
0

)
.
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We can verify that these are valid endomorphisms. Now, let’s define a map δ fq,hq : M→M as:

δ fq,hq =
(0
0

1
1

2
2

)
.

Let’s verify that δ fq,hq is both a left-right ( fq, hq)-derivation and a right-left ( fq, hq)-derivation, which would
make it a ( fq, hq)-derivation.

In this BP-algebra, we see that

0∧ 1 = 0 ∗ (0 ∗ 1) = 0 ∗ 0 = 0.

Therefore, we have verified that δ fq,hq is indeed both a left-right and a right-left ( fq, hq)-derivation, making
it a ( fq, hq)-derivation.

What makes this example interesting is the choice of endomorphisms. By defining hq such that hq(1) =

hq(2) = 0, we simplify the verification of the derivation conditions significantly. This demonstrates how
the choice of endomorphisms can affect the behavior of derivations in a BP-algebra.

Theorem 3.2 outlines essential algebraic consequences of a left-right ( fq, hq)-derivation under

the regularity condition. It establishes that such derivations preserve orthogonality (i.e., if a ∗ b = 0,

then the corresponding derivation terms also annihilate), enforce self-nullification (δ(a) ∗ δ(a) = 0),

and behave coherently under composition when fq and hq commute. These properties reinforce

the idea that ( fq, hq)-derivations can retain core structural symmetries and are thus well-suited for

modeling algebraic dynamics in non-classical systems.

Theorem 3.2. Let (M; ∗, 0) be a BP-algebra, and let fq, hq : M → M be endomorphisms. If δ fq,hq is a
(l, r)-( fq, hq)-derivation of M such that δ fq,hq(0) = 0, then the following properties hold:

(1) For all a ∈M, δ fq,hq(a) ∗ δ fq,hq(a) = 0,
(2) For all a, b ∈M, if a ∗ b = 0, then δ fq,hq(a) ∗ fq(b) = 0 and hq(a) ∗ δ fq,hq(b) = 0,
(3) If fq and hq are commutative (i.e., fq ◦ hq = hq ◦ fq), then δ fq,hq(a ∗ a) = (δ fq,hq(a) ∗ fq(a))∧ ( fq(a) ∗
δ fq,hq(a)) for all a ∈M,

(4) If δ fq,hq is also a (r, l)-( fq, hq)-derivation, then for all a, b ∈M,

δ fq,hq(a ∗ b) = (δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b))

= ( fq(a) ∗ δ fq,hq(b))∧ (δ fq,hq(a) ∗ hq(b)). (3.1)

Proof. (1) For any a ∈M, by (BP1), we have

δ fq,hq(a ∗ a) = δ fq,hq(0) = 0.

By using the definition of (l, r)-( fq, hq)-derivation, we have

(δ fq,hq(a) ∗ fq(a))∧ (hq(a) ∗ δ fq,hq(a)) = 0.

In a BP-algebra, x∧ y = 0 implies x = 0 and y = 0. Therefore,

δ fq,hq(a) ∗ fq(a) = 0,

hq(a) ∗ δ fq,hq(a) = 0.
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In particular, when fq and hq are identity maps, we get δ fq,hq(a) ∗ δ fq,hq(a) = 0.

(2) Let a, b ∈M be such that a ∗ b = 0. Then

δ fq,hq(a ∗ b) = δ fq,hq(0) = 0.

Using the definition of (l, r)-( fq, hq)-derivation, we have

δ fq,hq(a ∗ b) = (δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b)) = 0.

Again, by the properties of BP-algebra, this implies

δ fq,hq(a) ∗ fq(b) = 0,

hq(a) ∗ δ fq,hq(b) = 0.

(3) When fq and hq are commutative, for any a ∈M,

δ fq,hq(a ∗ a) = (δ fq,hq(a) ∗ fq(a))∧ (hq(a) ∗ δ fq,hq(a)).

Since fq and hq commute and are endomorphisms, we have fq(a) = hq(a) for all a ∈M. Thus,

δ fq,hq(a ∗ a) = (δ fq,hq(a) ∗ fq(a))∧ ( fq(a) ∗ δ fq,hq(a)).

(4) If δ fq,hq is both an (l, r)- and (r, l)-( fq, hq)-derivation, then

δ fq,hq(a ∗ b) = (δ fq,hq(a) ∗ fq(b))∧ (hq(a) ∗ δ fq,hq(b)),

δ fq,hq(a ∗ b) = ( fq(a) ∗ δ fq,hq(b))∧ (δ fq,hq(a) ∗ hq(b)).

Since both expressions equal δ fq,hq(a ∗ b), they must be equal to each other, which completes the

proof. �

Theorem 3.3. Let (M; ∗, 0) be a BP-algebra, f , h be endomorphisms of M and q ∈ M. Consider the inside
( fq, hq)-derivation δ fq,hq(a) = f (a) ∗ q ∗ h(a), then the following properties hold:

(1) For all a, b ∈ M, if a ≤ b (where a ≤ b means a ∗ b = 0), then δ fq,hq(a) ≤ δ fq,hq(b) if and only if
f (a) ∗ q ∗ h(a) ∗ f (b) ∗ q ∗ h(b) = 0,

(2) If q = 0, then δ fq,hq(a) = f (a) ∗ h(a) for all a ∈M,
(3) If δ fq,hq is both an inside and outside ( fq, hq)-derivation, then for all a, b ∈M,

f (a) ∗ q ∗ h(a) ∗ f (b) ∗ h(b) = f (a) ∗ h(a) ∗ f (b) ∗ q ∗ h(b).

Proof. (1) Assume a ≤ b, which means a ∗ b = 0. Then

δ fq,hq(a) ∗ δ fq,hq(b) = ( f (a) ∗ q ∗ h(a)) ∗ ( f (b) ∗ q ∗ h(b)).

Thus, δ fq,hq(a) ≤ δ fq,hq(b) if and only if f (a) ∗ q ∗ h(a) ∗ f (b) ∗ q ∗ h(b) = 0.

(2) If q = 0, then

δ fq,hq(a) = f (a) ∗ q ∗ h(a)

= f (a) ∗ 0 ∗ h(a)

= f (a) ∗ h(a).
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(3) If δ fq,hq is both an inside and outside ( fq, hq)-derivation, then for all a, b ∈M,

δ fq,hq(a ∗ b) = δ fq,hq(a) ∗ f (b) ∗ h(b), (inside derivation)

δ fq,hq(a ∗ b) = f (a) ∗ h(a) ∗ δ fq,hq(b). (outside derivation)

Since both expressions equal δ fq,hq(a ∗ b), they must be equal:

δ fq,hq(a) ∗ f (b) ∗ h(b) = f (a) ∗ h(a) ∗ δ fq,hq(b),

( f (a) ∗ q ∗ h(a)) ∗ f (b) ∗ h(b) = f (a) ∗ h(a) ∗ ( f (b) ∗ q ∗ h(b)),

f (a) ∗ q ∗ h(a) ∗ f (b) ∗ h(b) = f (a) ∗ h(a) ∗ f (b) ∗ q ∗ h(b).

�

4. Conclusion

In this paper, we proposed a generalized notion of ( fq, hq)-derivations in the setting of BP-

algebras, extending the classical concept of fq-derivations by involving two endomorphisms and

a fixed element. We systematically defined both inside and outside ( fq, hq)-derivations, as well

as their left-right and right-left variants. Through formal theorems and illustrative examples,

we demonstrated how these derivations behave under various algebraic conditions, including

regularity, commutativity, and identity mapping scenarios.

Our findings reveal that the introduction of dual endomorphisms enables more flexible and

expressive algebraic transformations compared to single-endomorphism derivations. This allows

for a richer structural analysis of BP-algebras, particularly in contexts where symmetry and re-

versibility are essential. The framework presented here lays a foundation for future explorations

into generalized derivations in non-classical algebraic systems. It may offer potential applications

in logic modeling, fuzzy computation, and theoretical computer science.

Future research may explore the extension of ( fq, hq)-derivations to fuzzy BP-algebras, where

uncertainty and gradation in membership could yield new algebraic behaviors. Another promis-

ing direction involves applying the framework to the modeling of logical circuits and information

systems that exhibit asymmetry or non-idempotent behavior, particularly in contexts where classi-

cal assumptions about associativity or commutativity fail. Additionally, investigating categorical

or topological analogs of these derivations could deepen the theoretical foundation and reveal

connections to broader algebraic systems.
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