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ABSTRACT. Forecasting financial bubbles is a crucial task in financial economics due to the disruptive impact of asset 

price collapses on markets and economic stability. This study proposes a novel approach to bubble prediction by 

integrating the PSY (Phillips, Shi, and Yu) procedure for bubble detection with Long Short-Term Memory Recurrent 

Neural Networks (LSTM-RNN), a machine learning technique well-suited for modeling nonlinear time-series patterns. 

Using weekly data from the Vietnamese stock market covering the period from 2015 to 2025, we construct a binary 

dependent variable indicating the presence of bubble episodes based on the GSADF test. Key macro-financial variables, 

including returns, volatility, and geopolitical risk, are employed as predictors. The LSTM-RNN model is trained and 

validated using a time-split approach (2015–2019 for training, 2020–2022 for validation, and 2023–2025 for testing), 

ensuring robustness and preventing overfitting. Out-of-sample results demonstrate that the LSTM-RNN achieves a 

high accuracy of over 81% and significantly outperforms a random walk benchmark. Our findings highlight the critical 

role of macroeconomic uncertainty, especially geopolitical risk, in driving bubble dynamics. This research contributes 

to the literature by offering an early warning framework that combines econometric detection with advanced machine 

learning, supporting better decision-making for investors and financial regulators in emerging markets. 

 

1. Introduction 

Asset price bubbles, periods in which asset prices deviate persistently and significantly 

from their fundamental values, have been a recurring feature of financial markets throughout 

history. From the Dutch tulip mania in the 1630s to the U.S. housing bubble of the 2000s, such 

episodes have often culminated in severe financial and economic crises. The collapse of bubbles 
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can destabilize financial institutions, erode investor wealth, and trigger wide-ranging economic 

disruptions, as observed in the dot-com crash of 1999–2001 and the subprime mortgage crisis of 

2007–2009. Beyond economic costs, the bursting of bubbles also undermines social trust and 

investor confidence, particularly affecting retail investors who tend to enter markets during 

euphoric phases and exit after steep declines. Consequently, identifying and forecasting bubble 

regimes has become a priority for regulators and policymakers seeking to implement timely 

macroprudential interventions [1, 2]. 

The Vietnamese stock market, inaugurated in July 2000, has exhibited several speculative 

episodes since its inception. Following Vietnam’s accession to the WTO and the implementation 

of the Securities Law in 2006, the market experienced a rapid rise in capitalization, peaking during 

2006–2007, before crashing in 2008. Similar dynamics were observed during 2017–2018 and again 

in the volatile post-pandemic period. As of mid-2023, Vietnam’s market capitalization stood at 

approximately USD 205 billion—about 65% of GDP—reflecting its growing significance in the 

national economy. Despite this growth, the market remains vulnerable to price manipulation, 

rumor-based trading, and sentiment-driven volatility, owing in part to its nascent structure and 

information inefficiencies. These features make the Vietnamese market a fertile ground for asset 

price bubbles and highlight the need for robust monitoring frameworks [3]. 

Traditionally, the detection of bubbles has relied on econometric techniques such as the 

Sup Augmented Dickey-Fuller (SADF) and Generalized SADF (GSADF) tests developed by 

Phillips, Shi and Yu [4], which statistically identify explosive behavior in asset prices. These 

methodologies have been widely used to date-stamp bubble episodes in financial time series. 

However, such methods are retrospective and do not provide a predictive framework for 

forecasting future bubbles. To address this limitation, recent studies have begun integrating 

econometric insights with machine learning (ML) algorithms to enhance bubble detection and 

forecasting in real time [4]. 

Machine learning, with its ability to model complex nonlinear patterns and learn from 

large datasets, offers a promising alternative to traditional statistical models in forecasting 

applications. In the context of financial markets, ML algorithms have been applied to forecast 

crises [5, 6], defaults [7], and asset pricing[8]. Among these, neural networks and ensemble 

methods such as random forests and gradient boosting have consistently outperformed 

conventional models. Yet, the application of ML to forecast financial bubbles, particularly in 

emerging markets like Vietnam, remains limited and largely unexplored. Recent empirical 

evidence from Basoglu Kabran and Unlu [9] demonstrated the feasibility of using support vector 

machines to predict bubble episodes in developed markets [9]. However, their study did not 

address the dynamics of emerging financial systems nor did it incorporate sequential learning 

frameworks like recurrent neural networks (RNNs), which are well-suited for modeling time-
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dependent phenomena. Furthermore, most existing research has focused on aggregate 

macroeconomic crises rather than firm-level or asset-level bubble regimes. 

This study aims to fill this gap by developing a predictive framework to detect weekly 

stock-level bubble episodes in the Vietnamese equity market using machine learning models, 

with a particular focus on the Long Short-Term Memory (LSTM) architecture—a variant of RNN 

designed to capture long-term dependencies in sequential data. We first identify bubble periods 

using the GSADF test and label them as binary outcomes. We then construct lagged predictors 

from both technical and macro-financial domains, including volatility, skewness, return patterns, 

trading volume, and geopolitical risk indices. The LSTM model is trained and validated using 

data from 2015 to 2022 and evaluated on an out-of-sample test set spanning 2023 to 2025. For 

benchmarking purposes, we compare the model’s performance against a naïve random walk 

classification rule. By integrating econometric bubble detection with machine learning prediction, 

our study provides a forward-looking approach to financial stability monitoring. The results offer 

empirical insights into the feasibility and accuracy of ML-based bubble forecasts in a frontier 

market, with implications for risk management, investment strategy, and regulatory oversight. 

 

2. Literature review 

Definition of Financial Bubbles 

Financial bubbles, also known as asset price bubbles or speculative bubbles, describe 

situations where asset prices deviate significantly from their intrinsic or fundamental values. This 

phenomenon, while widely observed across financial history, remains theoretically and 

empirically contentious. Researchers often classify bubbles into two broad types: classical 

(irrational) and modern (rational) [1, 2]. 

Classical bubbles are attributed to behavioral biases and psychological forces. Shiller 

(2002) emphasized the role of "irrational exuberance" and media-induced feedback loops in 

amplifying market sentiments [10]. In contrast, modern rational bubbles suggest that asset prices 

can exceed fundamental value even in markets with rational agents [11]. These bubbles persist 

because of the belief that overpriced assets can still be sold to others at a profit. Fama (2014), a 

staunch proponent of the Efficient Market Hypothesis (EMH), argued that such deviations are 

predictable, thereby rejecting the notion of irrational bubbles altogether [12]. Recent perspectives 

integrate both views by proposing partially rational bubbles, where markets are influenced by a 

mix of rational forecasting and speculative impulses [13]. 

Empirical Detection of Financial Bubbles 

Numerous studies have sought to empirically detect financial bubbles, especially within 

stock markets [14, 15]. A more robust class of methods emerged with the introduction of right-

tailed unit root tests by Phillips et al. (2011), including the Supremum Augmented Dickey-Fuller 
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(SADF) and its extension, the Generalized SADF (GSADF) or PSY procedure [14, 16]. These 

techniques are particularly adept at detecting multiple episodes of explosive behavior in financial 

time series. Zhang, Wei, Lee and Tian [15] demonstrated the effectiveness of SADF in identifying 

historical bubble episodes, while the GSADF test overcame SADF's limitation by allowing both 

start and end points of bubbles to vary within a flexible window framework. 

Applications of these methods have become standard in identifying bubbles in major 

markets such as the S&P 500, housing prices, and commodity indices. More recent research has 

also applied the GSADF framework to emerging markets, including Vietnam and China, 

recognizing its potential to capture regime shifts and speculative phases. 

Machine Learning for Bubble Prediction 

The past decade has witnessed a surge in studies exploring the use of machine learning 

(ML) for financial forecasting. ML models have consistently outperformed traditional 

econometric methods in tasks such as bankruptcy prediction [17], financial distress [18], and stock 

return forecasting [19]. 

In the specific context of bubble prediction, only a handful of pioneering studies exist: 

Basoglu Kabran and Unlu [9] introduced a two-step ML approach using Support Vector Machines 

(SVM) to forecast bubbles in the S&P 500 index. Their results indicated SVM's superiority in 

capturing non-linear relationships compared to logistic regression and decision trees. Tran, Le, 

Lieu and Nguyen [3] focused on the Vietnamese stock market from 2001 to 2021 and employed 

multiple algorithms, including Random Forest, ANN, and SVM. Their findings showed that 

Random Forest and ANN outperformed statistical benchmarks, confirming the value of ML in 

emerging markets. 

Wang and Yampaka [2] applied logistic regression, deep learning, decision trees, and SVM 

to predict stock price bubbles in China from 2015 to 2023. They used four explanatory variables: 

inflation rate, consumer confidence index, stock yield, and P/E ratio. The logistic regression 

model delivered the highest accuracy and F1-score, though deep learning also showed 

competitive results. The authors highlight that simple models may perform better when data are 

limited [2]. 

Xiu, Kelly, Gu and Karolyi [20] emphasized that decision trees and neural networks excel 

due to their ability to model complex non-linear relationships, doubling the performance of linear 

regression in empirical asset pricing tasks. Zhou, Zhou and Long [21] confirmed similar findings 

using deep neural networks for forecasting equity premiums, outperforming OLS and historical 

averages. 

Despite these successes, the literature acknowledges that ML performance can vary 

significantly depending on feature selection, data granularity, and tuning strategies. Moreover, 
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there is a notable lack of research combining bubble detection (via GSADF) with ML forecasting 

models—a gap that recent studies are beginning to address. 

 

3. Method 

Machine Learning for Bubble Prediction 

This study employs weekly data for all stocks listed on the Ho Chi Minh Stock Exchange 

(HOSE) over the period from January 2015 to March 2025. The primary source of stock-level 

data—including prices and trading volume—is cafef.vn, a reliable Vietnamese financial data 

provider. The geopolitical risk index (GPR) is obtained from Caldara and Iacoviello (2022), 

available at https://www.policyuncertainty.com/gpr.html. 

To construct the binary dependent variable used in our forecasting model, we follow a 

two-step procedure inspired by the PSY methodology [4] to identify bubble episodes in the 

Vietnamese stock market. Specifically, the Generalized Sup Augmented Dickey-Fuller (GSADF) 

test is applied to the log-transformed VN-Index price series at weekly frequency. This test 

recursively estimates right-tailed ADF statistics over rolling and expanding windows to detect 

periods of explosive behavior in asset prices, which are interpreted as financial bubbles. A bubble 

is deemed to occur when the ADF test statistic exceeds the simulated critical value at the 95% 

confidence level. Formally, the recursive ADF regression is specified as: 

∆𝑦𝑡 = 𝛼𝑟1,𝑟2 + 𝛽𝑟1,𝑟2𝑦𝑡−1 +∑ϕ𝑖
𝑟1,𝑟2∆𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡
𝑟1,𝑟2 

where yt  is the stock price at time t, Δyt is the first difference of yt, and α, 𝛽 and ϕi are parameters 

to be estimated over the sub-sample window [r1, r2]. The GSADF statistic is then computed as the 

supremum of SADF statistics across varying window sizes and starting points: 

𝐺𝑆𝐴𝐷𝐹(𝑟0) = sup
𝑟2∈[𝑟0,1]

( sup
𝑟1∈[0,𝑟2−𝑟0]

𝐴𝐷𝐹𝑟1
𝑟2) 

where r0 is the minimum window size expressed as a fraction of the full sample, and 𝐴𝐷𝐹𝑟1
𝑟2  

denotes the ADF test statistic computed over the sub-sample [r1,r2]. A week t is classified as part 

of a bubble regime if the GSADF test statistic exceeds the 95th percentile of the simulated critical 

values based on Monte Carlo simulations. Accordingly, the binary dependent variable BBt  is 

defined as 1 if week t falls within such a bubble period, and 0 otherwise, indicating the absence 

of explosive price dynamics. The explanatory variables used for prediction, all lagged by one 

period to prevent look-ahead bias, are shown in Table 1. 

These predictors are standardized using statistics computed from the training set. The 

entire dataset is split into training (60%), validation (20%), and test (20%) sets in chronological 

order to simulate a real-time forecasting scenario. 
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Table 1. The Variables in the LSTM-RNN Model 

Variable 
Name 

Formula Description 

Lagvol 𝐿𝑎𝑔𝑣𝑜𝑙𝑡 = log(𝑣𝑜𝑙𝑡−1) Log of Volume-Weighted Average Price from the 
prior week 

Lagvola 
𝐿𝑎𝑔𝑣𝑜𝑙𝑎𝑡 =

1

𝑛
∑𝑟𝑖

2

𝑛

𝑖=1

 
Weekly volatility as the mean squared daily return, 
where r is the daily return. 

Laghl 𝐿𝑎𝑔ℎ𝑙𝑡 = 𝐻𝑖𝑔ℎ𝑡−1 − 𝐿𝑜𝑤𝑡−1 High-low spread in the prior week 

Laglo 𝐿𝑎𝑔𝑙𝑜𝑡 = 𝐿𝑜𝑤𝑡−1 − 𝑂𝑝𝑒𝑛𝑡−1 Low-open price difference in the prior week 

Laggpr 𝐿𝑎𝑔𝑔𝑝𝑟𝑡 = log(𝑔𝑝𝑟𝑡−1) Log of geopolitical risk index 

Lagskew 𝐿𝑎𝑔𝑠𝑘𝑒𝑤𝑡 = skewness(𝑟𝑒𝑡𝑡−1) Skewness of daily returns in a given week 
, lagged one week 

LagBB 𝐿𝑎𝑔𝐵𝐵𝑡 = 𝐵𝐵𝑡−1 The lagged one week 

LagVNI 𝐿𝑉𝑁𝐼𝑡

=
𝑉𝑁𝐼𝑁𝐷𝐸𝑋𝑡−1 − 𝑉𝑁𝐼𝑁𝐷𝐸𝑋𝑡−2

𝑉𝑁𝐼𝑁𝐷𝐸𝑋𝑡−2
 

Weekly return of VN-Index 

BB  Binary label (1 if bubble detected by GSADF, 0 
otherwise) 

LSTM-RNN Model 

To model the temporal dynamics and nonlinear characteristics inherent in financial time 

series, this study adopts a Long Short-Term Memory (LSTM) neural network, a variant of 

Recurrent Neural Networks (RNNs) specifically designed to address the vanishing gradient 

problem and retain long-term dependencies. The LSTM architecture used here follows the 

structure illustrated in Figure 1, which emphasizes the sequential flow of information through 

memory cells and gated operations. 

 

Figure. 1. LSTM architecture [22]. 

Each LSTM unit processes a sequence of observations spanning four weeks, where each 

weekly input vector 𝑥𝑡 ∈ 𝑅7  consists of seven lagged and standardized features: volatility, 

skewness, VN-Index return, the high-low price range, the low-open price difference, trading 

volume, and geopolitical risk. All features are lagged by one time step to avoid look-ahead bias. 
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Within the LSTM cell, the data flows through a series of gates that control how information is 

updated, forgotten, and output over time. First, the forget gate determines which components of 

the previous cell state Ct−1 should be retained, computed as: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Next, the input gate and candidate cell state collaborate to introduce new information: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

These components update the cell state according to the formula: 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡−1 

where ⊙ denotes element-wise multiplication. Finally, the output gate controls how much of the 

updated memory is transmitted forward as the hidden state: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡−1) 

The overall model architecture begins with an input tensor of shape (4,7), representing 

four sequential time steps and seven feature dimensions. This input is passed through an LSTM 

layer comprising 64 hidden units, followed by a dropout layer with a dropout rate of 0.2 to reduce 

overfitting. The output of the LSTM is then connected to a dense layer with 32 neurons and ReLU 

activation. Finally, a sigmoid-activated output neuron produces the predicted probability that the 

stock is experiencing a bubble regime in the given week. 

The model is trained using the binary cross-entropy loss function, defined as: 

𝐿 = −
1

𝑁
∑[𝑦𝑖𝑙𝑜𝑔(�̂�𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)]

𝑁

𝑖=1

 

where 𝑦𝑖 ∈ {0,1} is the observed label and �̂�𝑖 ∈ [0,1] is the predicted probability. Optimization is 

performed using the Adam algorithm, and early stopping is applied based on validation loss to 

prevent overfitting and improve generalizability. The entire flow of computation within the 

LSTM unit, including the gating mechanism and cell state updates, is visually summarized in 

Figure 1, offering a transparent view of the recurrent processing structure. 

To ensure robust performance, a comprehensive hyperparameter tuning process was 

conducted on the training set. Several configurations were explored, varying key parameters such 

as the number of LSTM units (32, 64, 128), dropout rates (0.1, 0.2, 0.3), batch sizes (16, 32, 64), and 

learning rates for the Adam optimizer (0.001, 0.0005, 0.0001). Each combination was trained for 

up to 100 epochs with early stopping (patience = 10), using validation loss as the stopping 

criterion. The training features were standardized using the StandardScaler, with scaling 

parameters derived exclusively from the training set to avoid information leakage.  

Model performance was evaluated on the validation set after each training run, and the 

optimal configuration was selected based on the validation accuracy. The best-performing model 

comprised an LSTM layer with 64 hidden units, a dropout rate of 0.2, a dense layer with 32 ReLU-

activated neurons, and a final sigmoid output layer. It was trained using a batch size of 32 and a 
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learning rate of 0.001. Once the optimal configuration was identified, the model was retrained on 

the combined training and validation sets using the selected hyperparameters, and its predictive 

performance was subsequently assessed on the test set. This final evaluation offers an unbiased 

estimate of the model’s ability to detect bubble price episodes in out-of-sample data. 

Performance Metrics 

To evaluate the predictive performance of the LSTM-RNN model in identifying bubble 

price episodes, two widely used classification metrics are employed: accuracy and F1-score. 

Accuracy measures the proportion of correctly classified observations over the total number of 

observations and provides an overall indication of model performance. However, in financial 

applications involving imbalanced binary outcomes, such as the detection of rare bubble events, 

accuracy alone may be misleading. Therefore, the F1-score, which is the harmonic mean of 

precision and recall, is also reported to provide a more balanced evaluation. 

Accuracy is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, where TP, TN, FP, and FN denote true 

positives, true negatives, false positives, and false negatives, respectively. The F1-score is given 

by: 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, with 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The evaluation process follows a standard procedure. After training and hyperparameter 

tuning, the final model is tested on the unseen test set to assess its out-of-sample generalization 

capability. The performance metrics are computed based on the model’s predicted probabilities 

converted to binary classifications using a threshold of 0.5. 

To provide a benchmark for comparison, a random walk classification model is used as a 

naive baseline. In this model, the bubble status in week t is simply assumed to be the same as in 

week t-1, i.e., �̂�𝑡 = 𝑦𝑡−1 . While simplistic, this approach captures the inertia commonly observed 

in financial regimes and serves as a useful reference point. By comparing LSTM’s performance 

against this baseline, we assess whether the proposed model offers genuine predictive power 

beyond historical persistence. 

The combination of these metrics enables a robust evaluation of the model’s effectiveness 

in detecting speculative regimes, highlighting both the classification accuracy and the quality of 

predictions under potential class imbalance. 

 

4. Result and Discussion 

Descriptive Statistics and Correlation 

Table 2 presents the summary statistics of the lagged predictors employed in the LSTM-

RNN model. The variable Lagvol, representing the logarithm of trading volume from the 

previous week, exhibits a wide dispersion with values ranging from -100 to 616.58 and a high 

standard deviation of 7.98. This reflects the significant variability in trading volume across 
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different stocks and time periods. The weekly return volatility (Lagvola) shows a mean of 0.119 

and ranges from 0 to a maximum of 6.33, which is consistent with the behavior of volatility as a 

non-negative and typically right-skewed variable. The high-low price spread (Laghl) and low-

open spread (Laglo) also exhibit considerable variation. While Laghl has a mean of 9.36 and 

reaches up to 212.5, Laglo displays a more symmetric distribution around a negative mean of -

4.20, reflecting the tendency of opening prices to be closer to weekly lows in many instances. The 

return on the VN-Index (Lagvni) is highly volatile, with extreme values ranging from -146.49 to 

108.55 and a standard deviation exceeding 24.5, indicating the index’s susceptibility to sharp 

weekly fluctuations. In terms of asymmetry in return distributions, the lagged skewness 

(Lagskew) centers around -0.14, with a minimum of -2.79 and a maximum of 2.39, suggesting the 

presence of both negatively and positively skewed return patterns. The logarithm of the 

geopolitical risk index (Laggpr) shows modest variability with a mean of 4.58 and a relatively 

narrow spread, consistent with the nature of global GPR dynamics over time. 

Table 2. Descriptive Statistics of the Variables 

Variable min Q1 Median mean Q3 max Std. Dev. 

Lagvol -100 -2.5 0 0.47 2.857 616.583 7.975 

Lagvola 0 0.051 0.091 0.119 0.152 6.328 0.108 

Laghl 0 3.811 7.578 9.36 12.666 212.5 9.418 

Laglo -75.904 -6.775 -2.857 -4.203 0 0 5.834 

Lagvni -146.49 -8.81 3.38 1.315 14.16 108.55 24.527 

Lagskew -2.79 -1.259 -0.135 -0.138 1.376 2.394 0.749 

Laggpr 4.068 4.231 4.527 4.578 4.652 5.765 0.256 

The study determines a pairwise Pearson correlation matrix as shown in Table 3. Most 

correlation coefficients fall below ±0.3, indicating weak linear relationships between predictors. 

One of the stronger correlations is between Lagvol and Laglo (0.633), suggesting that trading 

volume is moderately associated with the weekly difference between low and open prices. 

Additionally, Laghl and Lagvola display a positive correlation of 0.426, reflecting the intuitive 

linkage between price range and return volatility. Interestingly, the correlations between each 

predictor and the dependent variable BB (bubble indicator) are relatively low in magnitude, 

ranging from -0.063 to 0.127. This highlights the nonlinear and potentially dynamic nature of 

bubble formation, reinforcing the need for advanced modeling approaches such as LSTM-RNN 

to capture such patterns. The strongest positive correlation with BB is observed for Lagskew 

(0.127), while the geopolitical risk index (Laggpr) shows a weaker positive association (0.093). 

These preliminary results suggest that linear relationships alone may not suffice in identifying 

bubble regimes, and more complex temporal interactions should be considered. 
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Table 3. Correlation Matrix 

Variable Lagvol Lagvola Laghl Laglo Lagvni BB Lagskew Laggpr 

Lagvol 1 0.109 0.122 0.633 0.163 -0.056 0.121 0.038 

Lagvola 0.109 1 0.426 -0.187 -0.007 0.001 -0.037 0.214 

Laghl 0.122 0.426 1 -0.471 -0.051 -0.063 0.081 -0.042 

Laglo 0.633 -0.187 -0.471 1 0.16 0.03 0.042 0.053 

Lagvni 0.163 -0.007 -0.051 0.16 1 0.023 0.185 -0.214 

BB -0.056 0.001 -0.063 0.03 0.023 1 0.127 0.093 

Lagskew 0.121 -0.037 0.081 0.042 0.185 0.127 1 -0.112 

Laggpr 0.038 0.214 -0.042 0.053 -0.214 0.093 -0.112 1 

The LSTM-RNN and Random Walk Models 

To ensure robust predictive performance, a comprehensive hyperparameter tuning 

procedure was carried out on the training set, which includes all weekly observations prior to 

2020. Several configurations were explored, varying key parameters such as the number of LSTM 

units (32, 64, 128), dropout rates (0.1, 0.2, 0.3), batch sizes (16, 32, 64), and learning rates for the 

Adam optimizer (0.001, 0.0005, 0.0001). Each combination was trained for a maximum of 100 

epochs with early stopping (patience = 10), using the validation loss as the stopping criterion. 

Feature standardization was applied using z-score normalization via the StandardScaler, with 

scaling parameters estimated solely from the training set to prevent information leakage. 

Model performance was assessed on a hold-out validation set covering the period from 

2020 to 2022. The optimal configuration was selected based on the highest validation accuracy 

and F1-score. The best-performing architecture consisted of a single LSTM layer with 64 hidden 

units, followed by a dropout layer with a rate of 0.2, a dense layer with 32 neurons and ReLU 

activation, and a final sigmoid-activated output layer. This model was trained using a batch size 

of 32 and a learning rate of 0.001. The selected model achieved a validation accuracy of 82.1%, 

and was subsequently retrained on the combined training and validation sets before being 

evaluated on the out-of-sample test set from 2023 onward. This final assessment provides an 

unbiased measure of the model’s ability to identify speculative bubble regimes in unseen data. 

Table 4 below presents the confusion matrices of both the LSTM-RNN and the random 

walk (RW) model on the test set. The LSTM-RNN model demonstrates robust predictive 

accuracy, correctly classifying 19,801 non-bubble weeks and 37,875 bubble weeks, with a total 

accuracy of 81.47% and an F1-score of 0.751. In contrast, the RW model performs only marginally 

better than random guessing, with an accuracy of 50.34% and F1-score of 0.445, highlighting its 

limited ability to capture bubble dynamics. 
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Table 4. Confusion matrix results of LSTM-RNN and Random Walk models on the test set 

Model   Actual = 0 Actual = 1 Accuracy F1-score 

LSTM-RNN 

  

Pred = 0 19,801 4,613 81.47% 0.751 

Pred = 1 8,503 37,875 
  

RW 

  

Pred = 0 14,102 20,956 50.34% 0.445 

Pred = 1 14,202 21,532 
  

These results confirm the advantage of the LSTM-RNN architecture in capturing 

nonlinear and sequential dependencies in bubble formation. While the RW model relies solely on 

persistence, the LSTM-RNN learns from lagged features and temporal patterns, yielding 

significantly higher sensitivity, specificity, and overall predictive accuracy. 

Discussion 

The empirical results reveal that the LSTM-RNN model significantly outperforms the 

random walk benchmark in forecasting weekly asset price bubbles in the Vietnamese stock 

market. With an accuracy of 81.47% and an F1-score of 0.751, the LSTM-RNN demonstrates strong 

classification performance across both bubble and non-bubble regimes, highlighting its ability to 

capture nonlinear and sequential dependencies in financial data. In contrast, the random walk 

model, which assumes temporal persistence in bubble states, achieved an accuracy of only 

50.34%, close to a coin flip, thus failing to detect meaningful patterns in the data. 

Among the input features, skewness and geopolitical risk stand out with the highest 

positive correlations with the binary bubble indicator, at 0.127 and 0.093, respectively. Although 

these correlations are relatively weak, suggesting nonlinearity in the underlying relationships, 

the results imply that asymmetry in return distributions and global political tensions may play 

influential roles in bubble formation. In particular, the inclusion of GPR supports recent literature 

emphasizing the growing importance of non-economic shocks in financial instability [15]. The 

positive correlation between lagged GPR and BB, although moderate, reinforces findings from 

Tran, Le, Lieu and Nguyen [3], who noted that sudden increases in global risk perceptions often 

coincide with abrupt shifts in asset pricing behavior in frontier markets like Vietnam. This 

evidence supports the hypothesis that geopolitical shocks act as catalysts or amplifiers for 

speculative dynamics, particularly in less mature financial systems. 

The ability of the LSTM-RNN to accurately forecast bubble regimes—using only lagged 

inputs—raises important implications for market efficiency. According to the Efficient Market 

Hypothesis [12], asset prices should fully reflect all available information, rendering price bubbles 

inherently unpredictable. However, the model’s high out-of-sample predictive accuracy 

challenges this notion and suggests that certain patterns or structural anomalies may persist in 

emerging markets, allowing for the real-time detection of speculative behavior. This echoes prior 
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critiques of EMH in frontier markets and aligns with behavioral finance theories that stress the 

role of bounded rationality and sentiment-driven trading. 

In terms of contribution, this research is among the first to integrate the GSADF-based 

bubble identification framework with deep learning techniques in a high-frequency emerging 

market context. While previous studies like Tran, Le, Lieu and Nguyen [3], Basoglu Kabran and 

Unlu [9] have applied machine learning to bubble forecasting, our study extends the literature by 

(i) adopting a sequential architecture (LSTM-RNN) tailored to time-series classification, (ii) 

focusing on stock-level weekly data for higher granularity, and (iii) incorporating geopolitical 

risk, volatility, and skewness as real-time predictors. These enhancements provide not only 

improved prediction accuracy but also practical insights for policymakers and investors seeking 

early warning signals in turbulent markets. 

Robustness Checks 

To ensure the robustness and validity of our results, several methodological safeguards 

were implemented. First, all independent variables were lagged by one week to avoid look-ahead 

bias and reduce endogeneity concerns, thereby ensuring a proper causal sequence between 

predictors and the binary bubble indicator. The dataset was split chronologically into training 

(2015–2019), validation (2020–2022), and test (2023–2025) sets, simulating real-world forecasting 

conditions and preventing data leakage. Feature scaling was performed exclusively on the 

training set to maintain the integrity of model evaluation. 

Additionally, a comprehensive grid search was conducted to identify the optimal 

hyperparameters for the LSTM-RNN model, combined with early stopping (patience = 10) to 

minimize overfitting. The final model configuration—LSTM with 64 units, dropout 0.2, batch size 

32, and learning rate 0.001—was selected based on its superior validation performance. Out-of-

sample testing on 2023–2025 data showed that the LSTM model significantly outperformed the 

naïve random walk benchmark, highlighting its ability to capture nonlinear and dynamic 

patterns associated with bubble formation. These steps collectively confirm the model’s 

predictive power and robustness for practical bubble forecasting applications. 

 

5. Conclusion 

This study investigates the use of machine learning, specifically the LSTM-RNN model, to 

forecast asset price bubbles in the Vietnamese stock market. By combining the PSY procedure for 

bubble detection with a supervised learning framework, we construct a weekly binary variable 

to indicate bubble presence and train predictive models based on macro-financial indicators. The 

LSTM-RNN significantly outperforms the naive random walk benchmark, achieving an accuracy 

of over 81% and an F1-score above 0.75 on out-of-sample data from 2023–2025. Among the 

predictors, geopolitical risk and volatility emerge as key drivers of bubble dynamics, aligning 
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with theories that highlight the role of uncertainty and investor sentiment in fueling speculative 

episodes. 

The primary contribution of this research lies in its integration of time-varying econometric 

detection with modern machine learning for real-time bubble forecasting. This approach not only 

enhances predictive performance in emerging markets like Vietnam but also challenges the 

Efficient Market Hypothesis by showing that bubbles can be anticipated with high accuracy. For 

policymakers and investors, the findings suggest the feasibility of developing early warning 

systems to mitigate the adverse effects of market exuberance. 

Nonetheless, this study has limitations. It relies on lagged macro variables that may not fully 

capture real-time sentiment shocks, and the model architecture, while effective, could benefit 

from further enhancement using ensemble learning or attention-based networks. Future research 

may extend this framework to other emerging markets, incorporate higher-frequency data, or 

explore causal inference methods to better isolate the drivers of bubble formation. 
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