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Abstract. This study focuses on differential subordination using arithmetic and geometric approaches when the dom-
inant function is linear. In addition to the results of differential subordination of arithmetic and geometric means in
which a convex function was dominant, one can study such differential subordination for a selected convex function.
We investigate several results of the differential subordinations of analytic functions are associated with an operator

built using arithmetic and geometric means.

1. INTRODUCTION AND PRELIMINARIES

Let K (U) be the class of analytic functions are in the open unit disk U = {z : |z| < 1;z € C}. For
nbeing a positive integerand a € C, welet K[a,1] = {f € K(U) : f(z) = a+anz" +a, 412" +---}
and K[1,n] = K. Let A be the class of all analytic functions in U and usually normalized by

[o¢]

fz) =z+ Z a,12" (ze U). (1.1)

n=1
For functions fi and f, belonging to the class H(U), we say that f; is said to be subordinate
to fo, and write f; < fp, if there exists a Schwarz function ¢ (z), which, by definition, is analytic
in U with (0) =0 and |¢P(z)l <1 (z € U),suchthat fi = fo(¢P(z)) (z € U).Itis known
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that 1 < o (ze U) = f1(0) = f»(0) and f1(U) C fo(U). Furthermore, if the function f, is
univalent in U, then fi < o & f1(0) = f2(0) and f1(U) C fo(U) (see, for details, [20,22]).

We remember that, the generalized Bessel function ¢, x(z) of the first kind of order p was
introduced by Deniz [15] and Deniz et al. [16] (see, also [9-11]) by

)t gt b+1

Pri(z Z T (k=p+ eC\Z,
where Z; ={0,-1,-2,---} and (0)m is the Pochhammer symbol:
() = M) _ L if m=0,
" T(0) 5(5+1)-- (6+m—1), if meN.

Also, according to [12], the definition of the Carlson-Shaffer Operator L(a, B) f(z) is given by

L(a,p)f(2) = 6(a, p;2) * +Z

where 6(a, ;z) is the incomplete beta function

[o0]

6(a, p; ) Z Ju it (B#0,-1,-2,--- € C\ Zy; z€ U).

Now, we defined the operator as follows:

Definition 1.1. [19] For f € A. The operator Z)V : A — Ais defined for each nonnegative integer
n and for any z € U as the Hadamard product between the Carlson-Shaffer Operator L(a, B) and the
generalized Bessel functions @, x(z):

OL nan-i-l Zn+1

DV () = pyu(z)  Lla, = Z , (12)

where p #0,-1,-2,---€ C\Z5;y,a € GGk =p+ 5 e C\Z5;2; = {0,-1,-2,---).
On simple computation of (1.2) the identity relation gives,

( Vk+1f( )) kz))/ﬁf( ) ( ) )/k—l—lf( ) (13)

Presently, we offer the background of widely recognized symbols and definitions utilized in

deriving the primary findings.
Definition 1.2. [3] Let Q be the set of all functions o that are analytic and univalent on U \ E(o) where
E(p) = {C €U : th o(w) = 00},
w—>

and are such that min | ¢/(C) |= p > 0 for C € dU \ E(p). Further, let Q(a) denote the subclass of Q
consisting of functions o for which 9(0) = aand Q(1) = Q; = {o(z) € Q: p(0) = 1}.
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Definition 1.3. [6] Assume that h is univalent in U and ¢ : C° x U —> C. If the analytic function g
fulfills the fourth-order differential subordination

¥ (8(2),28'(2), 28" (2), 28" (2), 2*¢"" (2);z) < h(z) (ze€U), (14)

then the function g is called a solution of the differential subordination (1.4). A univalent function g is called
a dominant of the solutions of the differential subordination if g < o for all g satisfying (1.4). A dominant
0(z) that fulfils § < o for all dominants § of (1.4) is called the best dominant.

Definition 1.4. [6]IfQ C C,p0 € Qand n € N\ {2}. Let ¥;[Q), o] be the family of admissible functions
consisting of functions ¢ : C° X U —> C, which fulfill the admissibility condition:

Y(r, s, t,uv;z) ¢ Q)

whenever

r=o(0), s=mig(Q), ‘R{ +1}2 %{1+CQ"S)}

(
M[2) 2 n (EL19) g o [E210)

wherez € U,C € U\ E(p) and m > n.

Lemma 1.1. [6] Let g € H{a, n] with n > 3. Furthermore, let o € Q and fulfill the following conditions:
2 111 2 1
w{ =LA > 0 |25
¢'(0) ¢'(Q)
wherez € U, L€ IU\ E(p) and m > n. If Y is a set in C, ¢ € ¥;[Q), o] and

¥ (8(2),28'(2), 28 (2), 28 (2), 28" (2);2) € Q,

2

—_ 7

then
g(z) <o(z) (zeU).

Definition 1.5. [7] Assume 1 : C°> X U —> C and h be analytic in U. If p(z) and

Y (p(2),2p'(2), 229" (2), 29" (2), 2°p"" (2);2),

are univalent in U and satisfy the following fourth-order differential superordination
h(z) <9 (p(z), 2’ (2), 2" (2), 29" (2), 2P (2);2), (1.5)

then p(z) is called a solution of the differential superordination. The analytic function o(z) is
called a subordinate of the solutions of the differential superordination or more simply a subor-
dinate if o(z) < p(z) for all p(z) satisfying (1.5). A univalent subordinate §(z) that satisfies the
condition g(z) < g(z) for all subordinates g(z) of (1.5) is said to be the best subordinate. We note

that the best subordinate is unique up to a rotation of U.
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Definition 1.6. [7] Assume g € H]a, j|, 0’ (z) # 0 and Q) is a set in C. The class of admissible functions
@/, [Q), o] consists of those functions: 1 : C5 x U —> C, that satisfy the following admissible condition:

Y(r,s,t,u,v,z) ¢ Q

whenever

r=0(0),s = —C@’(C),?%{; + 1} > %9&{1 + CQN(C)}

o' (C)

U 1 CZQ”I (C) v 1 C3QIIN (C)
R e B el rom &
whereze U, e dU and A > n > 3.

and

Lemma 1.2. [7] Assume that € ®,[Q), o] and o(z) € H]a, j]. If
¢ (p(2),20'(2),2°p" (2), 29" (2), 2" (2);2)
is univalent in U and p(z) € Q(a) satisfy the conditions
CZQI” (C) }
% { >0,
¢'(0)
wherez € U, L € oU and k > n > 3, then

0 c{(p(pa) 20 (2), 2" (2), 29" (2), 2" (2);2) 2 € W)
thus, o(z) < p(z) (zeU).

2 1
zg(z)<1

o(0) |~ A

This paper’s investigation utilizes the established principles of differential subordination and
differential superordination. Miller and Mocanu offer a thorough explanation of the theory of
differential subordination in their publication in 2000 [21]. Additionally, they introduced the
concept of differential superordination as a dual concept to that of subordination. This concept was
also unveiled by the authors in 2003 [22]. In 1992, Ponnusamy and Juneja [23] presented the ideas of
third-order differential inequalities within the complex plane, followed by the introduction of third-
order differential subordination theory by Antonino and Miller [3]in 2011. In 2020, Atshan et al. [6]
presented and explored the ideas behind fourth-order differential subordination, which extends the
findings of third-order differential subordination discovered by Antonino and Miller [3]. Within
this area, the number of publications focusing on fourth-order differential subordination issues
is quite limited (see, for examples, [6,7,17]). Through the application of third-order differential
subordination and superordination theories (referenced in [1,2, 8,13, 14, 18, 24, 26,27]), numerous
researchers have discovered a range of intriguing outcomes related to both linear and nonlinear
operators, as well as the sandwich-type results for analytic functions (referenced in [4,5,25]). Their
contributions have spurred and inspired additional progress in this area.

The field of complex analysis has significantly advanced through the study of differential subor-
dination and superordination, particularly in geometric function theory. While second-order cases

have been extensively explored, higher-order cases, such as fourth-order differential subordination
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and superordination, remain relatively uncharted. This paper bridges this gap by investigating
the applications of fourth-order differential subordination and superordination results for analytic
functions associated with a specific operator, focusing on particular admissible functions within
the unit disk U.

This document aims to explore various outcomes related to fourth-order differential subordina-
tion and superordination, focusing on particular acceptable types of admissible functions linked
to a new operator introduced in (1.2) of an analytic functions within U.

The main body of the paper is organized as follows. In Section 2, we devoted to providing
some preliminaries related to notations and lemmas that will be used in this paper. In Section
3, we discuss the main results of fourth-order differential subordination associated with the new
operator by employing a suitable admissible class. Also, we investigated the results of fourth-order
differential superordination associated with the new operator and combined them with the results
of Section 3 to get sandwich-type results in Section 4. Finally, Section 5 provides the conclusion of

the work along with the future study to do in this field.

2. FOURTH-ORDER SUBORDINATION RESULTS

We need the class of admissible functions to prove the differential subordination theorems using
the operator DZ’; f(z) defined by (1.2).

Definition 2.1. If Q C C and 9o € @ N K,,. Let 1[Q), o] be the family of admissible functions which
consists of functions ¢ : C° x U —> C that satisfy the condition of admissibility:

¢(a b x,y,wz)¢Q,

mCo' (Q)+(k+2)o(2)
(k+3) ’

%{(k+3)[b+(k+2)x] —(k+2)%a _2(k+2)} Zm%{“r CQ"(C)}/

whenever a = p(C), b=

(k+3)b—(k+2)a 7(0)
(k+2)(k+3)[(k+1)y-3(k+2)x+2(k+1)a]
‘R{ kT 3)b-(ki2)a +3(k+2)(k+3)}
m2 CZQ///(C) o
2 {0 } ?

sR{k(lmL 1) (k+2)(k+3)w—4(k+1)(k+2)*(k+3)y + 6(k+2)*(k +3)%x
(k+3)b—(k+2)a
3(k+1)(k+2)(k+3)(k+4)a
(k+3)b—(k+2)a
wherez € U, € OU \ E(p) and m > 3.

4(k+2)(k+3)(k+4)} > m%{%}

Theorem 2.1. Suppose that Q) € C and ¢ € O1[Q), 0]. Let f € A and p € Q satisfy the following

conditions: a
CZQ/// (C) ) Z)Z:ﬁ (Z) )
R———=|>0, — < 2.1
( 7@ o0 | =" )
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and
O (D472, D50, D), D 1 2), D 2)iz) < @2
then
D f(2) <0(z) (zeU),

Proof. Let ¢(z) be the function in U defined by
D" f2) =8(2) (zeU). 23)

Differentiating (2.3) on both sides with respect to z and by using the recurrence relation (1.3), we
get
k3 _ W)+ (4 2)36)
ap (k+3)
Again, differentiating (2.4) on both sides with respect to z and using the relation (1.3), we have

229" (z) +2(k+2)z¢'(z) + (k+ 1) (k + 2)g(z)

(2.4)

yk+2 25
D, flz) = (k+2)(k+3) 25)
Similarly, further computations we obtain
Vk+1f( ) = 2°g""(z) +3(k +2)2%¢" (z) + 3(k + 1) (k +2)z¢’(z) + k(k + 1)(k +2)g(2) 2.6)
(k+1)(k+2)(k+3) '
and
Dk f(z) = 28E) T AkE DZg () 6k + (k422" ()
ap k(k+1)(k+2)(k+3)
4k(k+1)(k+2)zg' (z) + k(k* = 1) (k+2)g(z) @7
k(k+1)(k+2)(k+3) B
. _ s+ (k+2)r _ t+(k+2)[2s+(k+1)r] _ut(k+2)[3t+3(k+1)s+k(k+1)r]
Leta=r b= "5~ x= "1 553 V= kD) (k+2)(k13) :
q v+ (k+2)[4u+6(k+ 1)t + k(k+1)s + k(k* - 1)x]
and w = .
k(k+1)(k+2)(k+3)
Let us define the transformation ¢/(r, s, t,u,v;z) : C° X U — Cby ¢(r,s, t,u,v;z) =
b, y,wz) = o r s+ (k+2)r t+ (k+2)[2s+ (k+1)r] u+3(k+2)t
e N k+2)(k+3) ' (k+1)(k+2)(k+3)
(k+2)(k+1)[3s+kr| v+ (k+2)[4u+ (k+ 1){6t + ks + k(k—1)r}] , 2.8)
(k+1)(k+2)(k+3)’ k(k+1)(k+2)(k+3) ) '

Using the above equations (2.3) to (2.7), we get from (2.8) that

¥ (3,28 (), 28" (2), 28" (2), 2" (2):2)
— o (Dl " £(2), Dl (), Dy ), D ), Dl )iz) . 29)

Consequently, (2.2) convert into

w(g(z)/zg/( ) Zg//( ) Bgm( ) 4g////( ) )EQ.
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We notice that

SRECL L R e
§= (k+2)(k+3)[((]i<i—;))gr_—(3k(lj_z)22x+2(k+1)a] P34 D) (E43)
and
v _ k(k+1)(k+2)(k+3)w—4(k+1)(k+2)*(k+3)y
s (k+3)b— (k+2)a

N 6(k+2)%(k+3)%x—3(k+1)(k+2)(k+3)(k+4)a
(k+3)b—(k+2)a

As the admissibility condition for the function ¢ € ®1[(), g] of Definition 2.1 and the admissibility

—a(k+2)(k+3)(k+4).

condition for the function ¢ € ¥;[(), g] are equivalent, hence by using Lemma 1.1, we get g(z) < 0(z)

D f(2) <0(z) (zeU),

O

If the behavior of the function g(w) on dU is unknown, then the extension of Theorem 2.1 can

be obtained by the following result.

Corollary 2.1. If Q) C C and g is univalent in U with ¢ € Q. Let ¢ € ®1[Q, g, for some p € (0,1),where
0p(z) = 0(pz). If f € Aand g, (z) satisfy the following conditions:

R oy (©) >0 and ﬂ <m? (zeA) (2.10)
ACH B ACHE |
and
O(DLE F ) DU F (), DU £ (), DT £ (2), DU f(2)iz) < ©
then

D () <0(z) (zeU),

Proof. From Theorem 2.1, we notice that Z)y v f(z) < 0p(z) (z € U).The conclusion assumed by
Corollary 2.1 is now implied from the followmg subordination relationship:

0(2) <o(z) (zeU).

O

Suppose () is a simply connected domain such that () # C, then for some conformal mapping
h from U into the domain ), we have Q) = h(U). We give the notation for the class ®[h(A), o] by

®[h, g]. The following two outcomes are the actual consequences of Theorem 2.1 and Corollary 2.1.
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Theorem 2.2. Let ¢ € ®[h, g]. If f € Aand p € Q satisfies (2.1) and

qb( yk+4f( ), D yk+3f( ), D yk+2f( ), D yk+1f( ), Z:Zf(z);z)<h(z)’ (2.11)
then
D () <0(z) (zeU),

Corollary 2.2. If ¢ is univalent function in U with o € Q and ¢ € P®[h, g,] for some o € (0,1), where
op(w) = o(pw). If f € A and g, satisfies (2.11) and

¢(Dyk+4f( ), Z)Vk+3f( 2), Z)Vk“f( ), Dyk“f( z), Z:Zf(z);z)<h(2),
then

D () <0(z) (zeU),

Now, the next theorem given below will give the best dominant of the differential subordination
(2.11).

Theorem 2.3. Assume that h is univalent in U. Again let ¢ : C° X U —> C and the differential equation

z0'(z) + (k+2)o(z) Z%0"(z) +2(k+2)z¢'(z) + (k+1)(k+2)o(z)

(o) (k+3) ’ (k+2)(k+3) ’
220" (2) + (k+2)[32%¢" (2) + (k + 1){320' (2) + ko(2)}] z*0""(z) +4(k+2)z°0" (2)
(k+1)(k+2)(k+3) " k(k+ 1D (k+2)(k+3)
(k+2)[6(k+1)z220" (z) + 4k(k + 1)z¢'(z) + k(K = 1)o(z)] | _
+ k(k+1)(k+2)(k+3) ’Z)_h(z)’ @12

has a solution o(z) with p(0) = 1 and o(z) satisfies the condition (2.1). If f € A, ¢ € ®|h, 9, and
k4 K+3 K2 k1 ¥k
O (DL F (2, DL F(2), DL £ (), DL £ (2), D f (2):2)
is analytic in U, then (2.11) implies that
D (@) <0lz) (zeU)
and o(z) is the best dominant.

Proof. Since, we know that o(z) is a solution of (2.11) so, o(z) satisfies (2.12). Now, it can be
prove that o(z) is a dominant of equation (2.11) by applying Theorem 2.2 and hence g(z) will be
dominated by all dominants. Therefore p(z) is the best dominant. O

Now, putting o(z) = Mz, M > 0, and using the Definition 2.1, we denote the class of admissible
function ¢[Q), g], by ¢[Q), M], is decorated below.
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Definition 2.2. Let Q) € C and M > 0. The family of admissible functions ®[Q), M consists of the functions
¢ : C° x U —> C, which satisfy the following admissibility condition

¢(Mei9 n+ (k+2)] o L+ (k+2)2n+4 (k+1)]M® N+ (k+2){3L + (k+1)[3n+ k]) Me!

k+3) ' (k+2)(k +3) ’ (k+1)(k+2)(k+3) ’
X+4(k+2)N+6(k+1)(k+2)L+k(k+1)(k+2)[4n+ (k—1)]M" ) ‘0
k(k+1)(k+2)(k+3)

whenever w € U, R {Le‘ie] > (n—1)nM, R {Ne‘ie} >0and R {Xe‘ig} > 0 for every 6 € Rand n > 3.

The following results are obtained by applying the definition of the family of admissible func-

tions and from the outcomes in Theorem 2.1.
Theorem 2.4. Suppose that ¢ € ®[Q), M. Let f € A satisfy the conditions:
|Z)VkJr4 (z )| <n’Mn>3,M>0,

and

O (DA (), DL F(2), DL P F(2), DA (), D4 f()iz) e ©
then
Ol | < e,

Now, by assuming Q) = o(U) = {w : [w| < M}, the class P[(}, Y] is directly denoted by ®[M].

Corollary 2.3. Suppose ¢ € ®[M]. Let f € A verifies |DZ’Z+4f(z)| <n*®M (n>3; ¥>0)and

6 (D17 121, D7 £(2), D12, DL ), D2z < m

then
DA f ()| <1 (zew).

Corollary 2.4. Let n > 3 and M> 0 If f € A satisfies IDZ’ZJF?’ f (z)l < M, then

DA f ()| <1 (zew).

Proof. This follows from Corollary 2.3 by taking ¢(a,b,x,y,w;z) =b = n?k(jg)z ) yeif O

Theorem 2.5. Let usassume thatn > 3, M > 0. Suppose f € A satisfies the conditions ’ Z)Z:ZH f(z)' <n’M

and
K(k+ 1) (k4 2) (k- 3)DLA£(2) - (R = 1) (k +2) (k+3)D)5 7 ()] < h(2),
then
D f ()| < w0 (zew).
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Proof. Let us take ¢(a,b,x,y,w;z) = k(k+1)(k+2)(k+3)w— (k* —=1)(k+2)(k+3)y, Q = h(U)
such that

h(z) = (16 + 11k + 6k* + k| + 3|(6 + 5k + k*)) 3Mz.
Now, by applying the Theorem 2.4, we able to show that ¢ € ®[(), M|. Because
& (Meie [n+ (k+2)] o L+ (k+2)[2n+ (k+1)]Me’® N+ (k+2){3L + (k + 1)[3n + k] }Me’®
" (k+3) ’ (k+2)(k+3) ’ (k+1)(k+2)(k+3) ’

X+ 4(k+2)N+6(k+1)(k+2)L+k(k+1)(k+2)[4n+ (k—1)]Me’ )
k(k+ 1) (k +2)(k+3) &

= |p(a,b,x,y,w;z)|.
Subsequently,

lp(a,b,x,y,w;2)| = k(k+1)(k+2)(k+3)w— (kK = 1) (k +2)(k + 3)y

= [X + (9 + 3k)N + (3K* 4 15k + 18)L + (K> + 6k* + 11k + 6)nMe™|

= [xe™ + (9 + 3k)Ne™™ + (3K* + 15k + 18)Le™™ + (k® + 6k + 11k + 6)n|

> R(Xe ) +1(9 + 3k)|R (Ne ™) + |(3k> + 15k + 18)|R (Le ™) + |(K® + 6k* + 11k + 6)[nM
> |(K® 4 6k* + 11k + 6)[nM + |(3k* + 15k + 18)|n(n — 1)M

> (I(& + 6K* + 11k + 6)| + 3|(3K* + 15k + 18)[) 3,

such that R (a¢79) > 0, R(Ne™) > 0 and R (Le ) > (n—1)nMforall 6 € R,z € U and n > 3. The

proof is complete. o

Definition 2.3. If Q C C and p € Q NHy. Let ®1[Q), 0] be the family of admissible functions which
consists of functions ¢ : C° x U —> C that satisfy the condition of admissibility:

¢(a b x,y,wz)¢Q,

whenever a = 0(C), b= %,

b—a
(k+2)[(k+1)y=3(k+3)x+2(k +4)a] 20" (0)
%{ b-a /0 }
%{(k+2)[k(k+1)W—4(k+1)(k—|—3)Y+6(k+3)(k+4)X—3(k+4)(k—|—5)a]
b—a

—Ak+3)(k+4)(k+5)(b-a)| 5y [C0"(C)
b-a }Z %{ @ }

9{{(k+2)x+b—(k+3)a

—2(k + 3)} > mR {1 + CQN(C)},

' (C)
+3(k+3)(k+4)} > mZ‘R{

wherez € U,C € U\ E(p) and m > 3.
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Theorem 2.6. Let us consider QO € C and ¢ € P1[Q), ). Let f € A and o € Qy fulfil the following

conditions:

‘R(CQ—(C))ZO

2
o0 <m (2.13)

z0'(2)

Dy >J

and
Dyk”f() @V"“ﬂ) ﬂ”“zf() D”“f() D)f ()

z zZ Z Z z

¢ cQ, (2.14)

;z

then
Z))/ k+4f< )

z

<o(z) (zeU).
Proof. Suppose the function g(z) is defined in U by

@y k+4f( )
—z =¢(z) (zeU). (2.15)

Differentiating the equation (2.15) with respect to z and making use of the recurrence relation (1.3),

we get

D fE) zg()+ (k+3)8(2)
z B (k+3)

(2.16)

Again, differentiating (2.16) on both sides with respect to z and using the identity relation (1.3), we

have

D fE)  297(2) 4 2(k+3)2g () + (k+2)(k+3)3(2)

z (k+2)(k+3) 217)
Similarly, Further computations, we have
D f@) _ 2g7(2) +3(k+3)2%" ()
z (k1) (k+2)(k+3)
3(k+2)(k+3)zg'(z) + (k+1)(k+2)(k+3)g(z)
+ (k+1)(k+2)(k+3) - (219)
and
DpfE)  Agm(z) 4 (k+3) 422" (2) + 6(k+ )78 (2)
z k(k+1)(k+2)(k+3)
4(k+1)(k+2)zg'(z) + k(k+1)(k+2)g(z) (@19

k(k+1)(k+2)
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Let
\ b_s+(k+3)r X_t+2(k+3)s+(k~|—2)(k+3)r
7 (k+3) T T (k+2)(k+3) ’
_u+3(k+3)t+3(k+2)(k+3)s+ (k+1)(k+2)(k+3)r
y= (k+1)(k+2)(k+3) an
W_v+4(k—|—3)u+6(k+2)(k+3)t+4(k+1)(k+2)(k—|—3)s+r
k(k+1)(k+2)(k+3) '

Now, let us consider the transformation ¢(r, s, t,u, v;z) : CoxU—C by

k+3 2(k+3
Y(r,s,t,u,v;z) = ¢(a,b,x,y,wz) = (r, > —{EI((+_Z) )r/ (tk—:_ 2() (]_(:_)35) T, (2.20)
u+3(k+3)[t+ (k+2)s] LY + (k+3)[4u+ (k+2){6t +4(k+1)}|s r~z)
(k+1)(k+2)(k+3) ’ k(k+1)(k+2)(k+3) ’
Using the equations (2.15) to (2.19), we get from (2.20) that
¥ (8(2),2¢'(2), 228" (2), 28 (2),2'¢""(2); %)
D =) DUz J D f(z J D f(z) DS (2)
= - . , . . . , | (2.21)

Consequently, the equation (2.14) convert into

P(8(2),28(2), 228" (2),2°¢"" (2), ¢ (2);2) € .

We notice that
k+2 b-—(k+3
tyq o kE2xdbokdd)a )y o
s b-a
k+2)(k+1)y-3(k+3 2(k+4
u_ (2 Dy -3k Hx 2kt da]
s b—a
and

v_ (k+2)[k(k+1)w—4(k+1)(k+3)y+6(k+3)(k+4)x—3(k+4)(k+5)a]
b—-a

—4(k+3) (k+4) (k +5).

Therefore, the admissibility condition for the function ¢ € ®1[Q), g] is equivalent to the admissibility
condition for the function i € ¥ j[Q, o] of Definition 2.3 . Thus, using the above Lemma 1.1, we

write -
D f(2)
g(z) = —t——

which is the complete proof of Theorem 2.6. m]

<o(z) (zeU)

Let Q) be a simply connected domain such that Q) # C, then Q) = h(A) for some conformal
mapping & from U into the domain Q). Now, suppose the class ®[h(U), o] is denoted by P[h, o],

then the next result is an immediate consequences of Theorem 2.6.
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Theorem 2.7. Let ¢ € ®[h, o]. If f € Aand p € Q satisfies (2.13) and

¥(8(2),28' (2), 728" (2), 8" (2), 28" (2);2)
D f( J D f(z J D f(z J D f () DZ";f(Z>
=¢ ’z sz < h(z),

z Z z z

then

Dyk+4f( )
f < Q(Z) (Z € q/{)

If we take the case o(z) = 1+ Mz, M > 0, then the class of admissible functions ®[(), g] becomes
d[Q, M].

Definition 2.4. Let Q) C C and M > 0. The family of admissible functions ®[Q), M] consists of the functions
¢ : C° x U —> C, which satisfy the following admissibility condition

k+3)+[n+ (k+3)] o L+ (k+2)(k+3)+ (k+3)[2n+ (k+2)] e
(P(HMEIQ,( >(k[+3)< ) o L+ (k+2)( (k>+2<)(k+>3[> (k +2)) e
N+3(k+3)L+ (k+1)(k+2)(k+3)+ (k+2)(k+3)[3n+ (k + 1)]¥e'
(k+1)(k+2)(k+3) ’
X+ (k+3)[4N+6(k+2)L+k(k+1)(k+2)] [4n+ k]Me?
Kkt 1)(k+2)(k 1 3) L "Z)¢Q

whenever w € U, R {Le‘ie} > (n—-1)nM, R {Ne‘ie} > 0and R {Xe‘ie} > 0 for every 6 € Rand n > 3.

Corollary 2.5. Suppose ¢ € ®[M]. If f € A satisfies

yk+4
%() <w’M (n=3; ¥>0)
and
[@V i ) IC ) D) f(z ) D f(z ) D) (2)
¢ z z z z z iz e
then
[0 k+4f( )
f -1|<M (zeU).

3. FOURTH-ORDER SUPERORDINATION AND SANDWICH-TYPE RESULTS

In proving the differential superordination theorems using the operator DZ’; f(z) defined by
(1.2) the plays a key role. Hence, first of all we provide the class of admissible functions and then

we prove our fourth-order superordination and Sandwich-type results.
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Definition 3.1. If Q C C and g € @ NH,,. Let $1[Q), 0] be the family of admissible functions which
consists of functions ¢ : C° x U —> C that satisfy the condition of admissibility:

¢(a b x,y,wz)¢Q,

whenever
2= o), b=2O ;(r:f;f)@@),
(B2 ) 2y 210}
sR{(k+2)(k+3)[((::;))Z:S;szix+2(k+ 1)a] +3(k+2)(k+3)}
=)
and

%{k(kju 1) (k+2)(k+3)w—4(k+1)(k+2)%(k+3)y + 6(k + 2)?(k + 3)?x
(k+3)b—(k+2)a
B(k+1)(k+2)(k+3)(k+4)a
(k+3)b—(k+2)a
wherez € U,C € U \ E(p) and m > 3.

3 1017
—4(k+2)(k+3)(k+4)} > %%{%}

Theorem 3.1. Let us take ) C C and ¢ € ©1[Q), ¢]. If f € A and p € Q fulfil the following conditions:
2 117 ,Z)) k+4f( )
%(C g <C)) >0, , <L (3.1)
' (0) @ |[Tm

and
q)(Z)Z:II;Hf( ), D)’k+3f( ), Z))/k+2f( ), z)Vk+1f( ), Z:Zf(z);z)
is univalent in U, then
Qc {o(D15 ), DL ), DL f ), D ), Db fyz) sz e ), (32)
implies that
o(z) < D flz) (ze ).

Proof. Let g(z) be a function defined by (2.3) and ¢(z) given in (2.8). Since ¢ € ®1[(), g], from (2.9)
and (3.2) we have

Qc {l,b(g(Z),Zg’( ) ZZg//( ) Z3g///< ) Z4guu( ) = (Ll)}
Therefore, itis clear from (2.8) the admissibility condition for the function ¢p € ®1[Q), g] is equivalent

to the admissibility condition for i as given in Definition 1.6. Hence ¢ € ®}[(), o] and by using
the Lemma 1.2, we get o(z) < g(z) or

0(z) <DL f(z) (ze ),
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O

Let Q) be a simply connected domain such that ) # C, then ) = h(A) for some conformal
mapping h from U into the domain Q). Now, suppose the class ®[h(U), g] is denoted by P[4, o],

then the next two results are the immediate consequences of Theorem 3.1.

Theorem 3.2. Suppose h(z) is a function analytic in U and ¢ € Oo[h(U), o). If f € M, D" Z+4 f(z) e
and o € K verifying the following conditions:

{0 (D™ 72, D52, DL 1 (2), D5 (2), D (2) ) 2 < U
is univalent in U, and
h(z) < {¢ (Z)Z:’l;-ir‘lf(z), Z)Z:’;+3f(z),2)3;:1;+2f(z), Z)Z:ZHf(z), Z)Zlgf(z)) 1z € (Ll} ,
then
o(z) < D" f(2)

Proof. The proof of this theorem is skipped due to similar proof of the Theorem 3.1. O

Theorem 3.3. Let ¢ : C° X U —> C, h(z) be analytic in U, and 1 is given by (2.9). Suppose that the

differential equation
W@, (2,2 (2),2p" (2), 2" (2) 2 e U} = h(2), (3:3)
has a solution o(z) € Q. IfZ)ng(z) €Qi,0€K, 0 (z) #0and f € M satisfy the condition (3.1),

(D47 (2, DL 1), DL (2, DU ), DL (2)) 2 e )
is univalent in U, and
n(z) < (D0 £, Dl £ (), Dl P (), Dl ), D) ) sz e ),

then

o) < D" f(2)
and o(z) is the best subordinate of (3.3).

Proof. The proof of this theorem is skipped due to similar proof of the Theorem 3.1. m]

Definition 3.2. If O C C and 9 € @ NK;. Let ®1[Q), o] be the family of admissible functions which
consists of functions ¢ : C°> X U —> C that satisfy the condition of admissibility:

P(a, b, x,y,wz)¢Q,

whenever
mCg'(C) + (k+3)o(z)
(k+3) ’

—2(k+3)}2%‘2&{1+

a=9(C), b=

(k+2)x+b-(k+3)a
sR{ b—a
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x{ b2 )

+3(k+3)(k+4)} mzaa{

and

%{(k+2)[k(k+1)w—4(k+l)(k+3)y+6(k+3)(k+4)x—3(k+4)(k+5)a]
b—a
—4(k+3)(k+4)(k+5)(b—a) g™ (Q)
b-a Rl ont

wherez € U,C € IU \ E(p) and m > 3.

Theorem 3.4. Let us suppose that O C C and ¢ € O1[Q), 0. Let f € Aand o € Qq fulfil the following

conditions:
2 111 Dyk+4
%(C ¢ (C)) >0, |[—f()] <L (3.4)

m2

o (C) ¢'(C)

and

¢

7

4 z z z z

ﬁ'”“f() @?”‘*%() D”‘“f() D) f(z) D (2) ]
;Z

is univalent in U, then

{ D”“f() D) f () @“‘“f() D) () DZ;’;f(Z) ] }
Qcio - ;zlize U (3.5)

implies that

z z 4 z

yk+4f( )
o(z) < f (zeU).

Proof. Let g(z) be defined by (2.15) and ¢(z) by (2.20). Since ¢ € ®1[Q), g], so from (2.21) and (3.5)

we get
Qcy(g(2).2¢ (2),2%¢" (2), 28" (2), 2*¢"" (2);z € U)}.
Therefore, it is clear from (2.20) the admissibility condition for the function ¢ € ®; [Q), 0] is

equivalent to the admissibility condition for ¢ as given in Definition 1.6. Hence ¢ € ®/,[(}, g] and
by using the Lemma 1.2, we get o(z) < g(z) or
D)/ k+4f( )
o(z) < f (zeU).

O

Let Q) be a simply connected domain such that Q) # C, then Q) = h(A) for some conformal
mapping & from U into the domain Q). Now, suppose the class ®[h(U), o] is denoted by P[h, o],

then the next result is an immediate consequences of Theorem 3.4.
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Theorem 3.5. Let ¢ € ®[h, g]. If f € Aand p € Q satisfies (3.4) and
D" k+4f( ) D k+3f( ) D k+2f( ) D k+1f( ) z)z;];f(z) ]
5z

¢

4 z z z z

is univalent in U, then

h(z) <¢

z z z z 4

DWW)WMKMWWU WW>Nm>]
V4

implies that

z)y k+4f( )

o(z) < f (zel).

Combining Theorems 2.2 and 3.2, we have the sandwich-type result.

Theorem 3.6. Consider two analytic functions hy(z) and ¢1(z) in U, and gx(z) € Q with 1(0) =
02(0) = 1. In addition let the function hy(z) be univalent in U and ¢ € P1[hy, g2] N P2[1, 01]. If
@V"“f( )eQINK, feM,

{‘P( yk+4f( ),D Vk+3f( ), D yk+2f( ), D yk+1f< ), Z;f<z>) : z}
is univalent in U, and the two conditions (2.1) and (3.1) are satisfied as
in(z) < {6 (D £, DA £ 2), Dl (), DU £(2), D () 2} < o),
then
0(z) < @Ziz+4f(2) < 0(2).
And from Theorems 2.7 and 3.5, we have the sandwich-type result.

Theorem 3.7. Consider two analytic functions hy(z) and 01(z) in U, and gx(z) € Q with 1(0) =

02(0) = 1. In addition let the function hy(z) be univalent in U and ¢ € P1lhy, 02] N Palhy, 01]. If
ka+4f( )
°_

eQNK, feM,
Vk+4f( ) D Vk+3f( ) Vk+2f( ) yk+1f( ) Z)ZZf(Z) .
¢ z ’ z z z Tz E

is univalent in U, and the two conditions (2.14) and (3.4) are satisfied as

@WW>ﬂmﬂuW%0@WW>ﬁm>
h1(2)< (f) . 2 . . 1z <h2()
then
Dy @)
o (z) < ——— < »(2).

4
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4. CONCLUSION

In this current research, we employed the operator Z)Z:;;, as described in (1.2), to derive vari-
ous fourth-order differential subordination and superordination outcomes for analytic functions
within the open unit disk U, through the lens of the convolution process. The findings presented
here could serve as a foundation for future research aimed at deriving fourth-order differential sub-
ordination, superordination, and sandwich-type results involving a variety of linear and nonlinear

operators.
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