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Abstract. In this paper, we use the Atangana-Baleanu Caputo derivative to design and assess a fractional-order infection
model for West Nile virus. The model offers insights into the evolution of the virus and takes into account its intricate
dynamics of transmission. We investigate the system’s qualitative behavior and prove existence and uniqueness findings
using fixed-point theory. Additionally, we examine the suggested model’s stability in terms of Hyers-Ulam stability.
Euler’s approach for the Atangana-Baleanu integral is used to numerically simulate the fractional-order model in order
to visualize the effects of different parameters. The theoretical findings are verified, and the impact of fractional-order
derivatives on the dynamics of the system is demonstrated using MATLAB. The study emphasizes the use of fractional

calculus in epidemiological modeling, which offers a more realistic depiction of the spread of illness in the actual world.

1. INTRODUCTION

The West Nile virus (WNYV), a single-stranded virus that belongs to the Flavivirus in the family
Flaviviridae, is the cause of West Nile disease (WND), an emergent vector-borne illness that was
initially discovered in the West Nile area of Uganda in 1937 (Smithburn et al., 1940). The virus
has spread throughout Africa, Europe, the Middle East, West and Central Asia, and most recently,
North America. It is spread by female mosquitoes that have fed on the blood of infected birds
and can infect humans and other animals (Campbell et al., 2002; Centers of Disease control and
prevention, 2002 a; Chowers et al., 2001; Nash et al., 2001; Petersen and Marfin, 2002). Few studies
have fully analyzed the viraemic responses of various bird species, and the distribution of various
WNV strains along with the diversity of local avian community composition make extrapolating

results to regions outside of those tested potentially erroneous [14,17,26,30].
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In many disciplines, like engineering, chemistry, and biology, where differential equations are
usually used to simulate real-world processes, time delays are crucial. The time lag between an
activity and its impact on a system is represented by these delays [7-10,18,19,25,28,29].

In recent years, researchers have explored different fractional derivative formulations, with the
Atangana-Baleanu Caputo (ABC) [1-3] derivative gaining significant attention due to its non-
locality, singular kernel, and ability to incorporate memory effects more effectively than classical
Caputo or Riemann-Liouville derivatives. The ABC derivative [2] enhances the modeling of disease
dynamics by accounting for long-term interactions between infected and susceptible populations,
thus offering a more realistic representation of WNV transmission [12,13].

Another crucial aspect of studying fractional models is analyzing their stability properties,
which provide insight into the robustness of solutions under small perturbations. The Hyers-
Ulam stability concept plays a fundamental role in determining whether small deviations in initial
conditions lead to bounded or unbounded solutions over time. Establishing Hyers-Ulam stability
ensures the reliability of the fractional WNV model by confirming that minor errors in population
estimates do not result in unrealistic predictions. This stability analysis is particularly important for
epidemiological models, where precise forecasting of infection trends is critical for implementing
public health interventions.

In this study, we formulate a fractional-order West Nile virus model using the Atangana-Baleanu

Caputo derivative and investigate its Hyers-Ulam stability. Our primary objectives are:

(1) To develop a fractional mathematical model incorporating bird and mosquito vectors with
memory-dependent transmission rates.

(2) To analyze the Hyers-Ulam stability of the proposed model and establish conditions under
which the system remains stable.

(3) To validate the effectiveness of fractional derivatives in capturing the realistic dynamics of

WNYV transmission.

The remainder of the document is organized as follows: Basic preliminary information is presented
in Section 2, and the fractional model’s mathematical formulation is presented in Section 3. WNV
model using the Atangana-Baleanu Caputo derivative section 5 explores the stability analysis with
a focus on Hyers - Ulam stability criteria. Section 6 provides numerical simulations to support
theoretical findings and section 7 concludes the study with key insights and future research
directions.

Section 4 explores the existence and uniqueness of the proposed model.

2. PRELIMINARIES

Definition 2.1: [22]
Let f € [1,00), Q) C R be open subsets. Next, the following describes the Sobolev space H* (Q):

H*(Q) = {g € 2(Q0); DPg € L}(Q), VI| < f)
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Definition 2.2: [23]

For a function f € H’(0,1) and 0 < A < 1, and the Atangana-Baleanu fractional derivative in
Caputo sense is defined as:

ABCD/\f == /\ff EA[ yy)]dy
1

where p(A) is a normalization function that satisfies u(0) =

= u(1). The Mittag-Leffler
function E, is represented as:
) k

X
Ev= ) fer )

k=0
Additionally, the fractional integral of Atangana-Baleanu integral of order A is given by:

1-A A * _
L) = A0 + g |, S

Theorem 2.1:

The Atangana-Baleanu fractional derivative, both in the Caputo and Riemann-Liouville senses,

satisfy the Lipschitzcondition for any two functions f, g € H L, m), where m > I:

14PCoD5 £ (x) = AP<oDyg (0l < mllf (x) = g ()
and

IPRoDz £ (x) = APRoDig (1)1l < mllf (x) — g (%)l

3. MatHEMATICAL FORMULATION

3.1. Single Resident Bird Model. The system of ODEs describing the dynamics of mosquito
vectors and bird hosts is formulated as follows:
So = YoNy = AoSy — 1155,
Ey = AuSovoEo — ioEo
I, = vyEy = pioly
Sp = YpH + ppRp — ApSp — 1pSp
Ep = AySp — vpEp — pEp
Iy = voEb = oIy = oIy = Ol
Ry = yoly = puRy — tipRy 3.1)

The derivatives are taken with respect to time, measured in days. The subscript v denotes the
mosquito vector, while b represents the resident bird host.

Both birds and mosquitoes enter the susceptible population at a per-capita birth rate y; and exit
all compartments at the same rate y;. Mosquitoes transition from exposed to infectious stage at

a constant per-capita rate v,, which corresponds to the inverse of the incubation period. Infected
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birds progress to the infectious state at rate v, and recover at a constant rate ;. The recruitment
rate of birds is expressed as:

_ B

= 0

where K represents the carrying capacity. The mosquitoes biting rate is determined as a function

H

of the total number of bites per day.

b= Gva.ObNb

= 2
Ova.ObNb (3 )

The parameter o, is the number of per day by mosquito and o}, is the number of bites per day by

an arian hoset. The force of infection A, and A, are

Iy I
Ao = by, Bo,~—, Ap = by, By, — 3.3
o = by,o, Ny boPb, N, (3.3)
are the rates individuals are infected and move from the susceptible to the exposed class.
Parameters Descriptions
Sy Susceptible mosquitoes
Sy Susceptible resident birds
E, Exposed vectors
Ey Exposed birds
I Infected vectors
I Infected birds
Ry Recovered birds
Ny Total vectors
Ny Total birds
)y Recruitment rate of vectors
vy Recruitment rate of birds
Ui Death rate of species i
Vi Incubation rate for species i
Vi Loss of infectivity rate of species i
pi Loss of immunity rate of species i
o; Disease induced death rate of species i
b Total number of bites per day
by, Numbers of bites from vector per bird per day
byp Numbers of bites from bird per vector per day
Bij Probability of transmission per bite j to i
pi Max hosts
A inoculate rate of species i
Ny Total vectors
N, Total birds
Uy Recruitment rate of vectors
vy Recruitment rate of birds
Ui Death rate of species i
Vi Incubation rate for species i
Vi Loss of infectivity rate of species i
pi Loss of immunity rate of species i
o Disease induced death rate of species i
b Total number of bites per day
by, Numbers of bites from vector per bird per day
byp Numbers of bites from bird per vector per day
Bij Probability of transmission per bite j to i
pi Max hosts
A inoculate rate of species i
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4. Ex1sTENCE AND UNIQUENESS OF SOLUTION

This section examines if a solution exists for the model (3.1)’s, fractional order. So, we have

1—)/1
B(y1)

71 f ? i1 (s) (s) (5)
— L | (s- oN = 2,88 — 11,8%)a
BT O( 7)" " (PN, 0~ HoSy )dg

1 —)/2
B(y2)

V2 ’ /o= s) — s) — Uy(s
mfo(s—q)l H(AoSo(5) = VoEo(s) = pto(s))dg

So(t) = So(0) + (PN = 1085 — 1oS5))+

Ey(t) = Eyx(0) + (A0Su(s) = VoEo(s) — to(s))+

1 -3
B(ys3)

I RN PSR i
B(y3)r(y3)L(S 7)" " ((VoEu(s) — ol (s))dg

I,(t) = L,(0) +

(VoEo(s) — polu(s))+

Sp(t) = Sp(0) + ;(_—)Z;(%H(S) + poRo(s) + ApSp(s) — psSu(s))+

BT (ra) fo s(s — )" (W (s) + ppRy(s) 4+ ApSp(s) — wpSp(s))dg

Eb(t) = Eb(O) + %(/\bsb(s) - UbEb(S) — ybEb(S))-f-
V5

B(ys)I(ys) fos(s =) (AsSp(s) — vpEp(s) — ppEp(s))dg

1- )/6
B(ye)

m f (5= )77 (VoEp(s) = ulo(s) = polo(s) = 05Ev(s))ddg

Iy(t) = I,(0) + (VuEp(s) = yply(s) — uplp(s) — 0pEp(s))+

Ry(t) = Ry(0) + %wb(s) — puRo(S) = 1Ry (5))+

e [ =0 )~ ) - e

Now we can write as follows:
Z1(s,S0) = o = No(s) = AoSu () = oS (s)
Z5(s,Ey) = A4Su(s) — VuEu(s) — uoEo(s)
Z3(S,Iv) - VUEZ)(S) - [Jv[v(s)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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Z4(s,Sp) = Wy — p(s) + puRp(s) = ApSu(s) — ppSp(s)
Z5(s, Ep) = ApSp(s) = VoEp(s) — upEp(s)
Zo(s,Ip) = VhEb(S) Yolp(s) = pplp(s) — Oply(s)
Z7(s,Rp) = yplp(s) — poRo(s) — ppRp(s)

And define Q; as follows:
Q1 = Yo —No(s) = Ao — o
Q2 = AuSu(s) = Vo — pho
Q3 = VuEy(s) — o
Qs = Ppu(s) — ppRey(s) = Ap = o (4.8)
Qs = Ay = Sp(s) = Vi — iy
Qe = VbEu(8) —7p — tp — 00
Q7 = Vplp(s) — po — tho-

To prove our findings, we use the following assumptions:

For the S,(s), 5u(s), Eu(s), Eo(s), In(s), Io(s), Su(s), Su(s), Ep(s), Ep(s), Iy(s), I(s), Ry(s), Ry(s)
€ L0,1 be continuous functions such that: |S,(s)| < Ly, |Ex(s)| < L, I(s)| < Ls, |Sp(s)] <
|Ep(s)| < Ls, l(s)| < Le, IRy(s)| < L7

Theorem 4.1: The Lipschitz property is satisfy the Z; fori = 1,2,...,7if 0 < Q; < 1, if the
assumption (B) is hold true and fulfills Q; < 1fori =1,2,...,7.

Proof. First, we prove that Z; (s, S,) satisfies the Lipschitz property. Now,

1Z1(s, S0) = Z1 (s, So)ll = l1$oNo(5) = AuSu(s) = t1050(S) = (YN (s) = 1050(5) = 1oSu(s))

< (YoNo(5) = 150 (5) = 1050(5) IS0 = Sol

< QlIS, - SlI. (4.9)
where Q; = ¥,Ny(s) — 1,5,(s) — 1S5 (s).
Similarly, the other kernels satisfies the Lipschitz property:

1Z2(S, Ev) = Z2(S, Eo)Il < QallEo = Eol
1Z5(S, Io) = Z3(S, Io) Il < Qallly = Ll
1Z4(S, Sp) = Z4(S, Sp) Il < QullSy — Sl
1Z5(S, Ey) = Z5(S, Ev)Il < QslIE, — Eyl
1Z6(S, 1p) = Z6 (S, 1)1l < Qellly — Tyl
Ry)

1Z7(S, Rp) — Z7(S, Ry)ll < QIR — Ry
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7

Thus, if all the kernels Z; satisfy the condition0 < Q; < 1,i = 1,2,

propertyand consequently form a contraction for Z;, foralli =1,2,...

Now, Equation (4.2) to (4.7) can be rewrite as

1—)/1
B(y1)
+B

1
V1 SS_ -1
m)r(mfo (="l

B(y2)

V2

+ —_—
B(y2)T

Su(s) — S,(0) =

21(s, S5(5))

E,(s) — E,(0)

22(s, Eo(s))

1 —)/4
B(ya)

Sp(s) = Sp(0) = 24(s, Sp(s))

V4 ’ s— gyl
" B(y4)T (y4) fo( Vg,

B0re) 26(s,Iy(s))

V6 ss_ ve—1
" B(ye)T(76) fo( o Zsla,

1=y
B(y7)
V7

T BOoT

Re(s) = Ry(0) z7(s, R (s))

S _ 2_1

(y7) LS(S -9)"'Z5(q,

..., 7, they fulfill the Lipschitz
,7.

So(q))dq. (4.10)

E,(q))dg. (4.11)

(4.12)

(4.13)

Sv(9))dq.

(4.14)

Iy(q))dq. (4.15)

Ry(q))dg. (4.16)
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with the initial conditions are given as Sy, (s) = S,(0), Ey,(s) = Eo(0), I, (s) = I,(0), Sp,(s) =
Sp(0), Ep,(s) = Ep(0), I, (s) = I;(0) and Ry, (s) = Rp(0). Apply the recursive relation, we get:

50, (5) = $:(0) = 51 21(5,50, )

i m fo (s =)' Z1(q, So,., (9))da, 4.17)

Evn (S) - EU(O) = ;E—)Z;Z2<S, EU;H (S))
" m fos(s =)' 22(q, Eo,., (9))da, 4.18)

i m jo‘ (S - 4)73—123 (q’ Iy, 4 <q>)dq/ (4.19)

Z3(s, I, 1 (5))

51,(5)=$(0) = G255, 5)

" W fo (=07 24(9, Su,., (@), (4.20)

B (5) ~E4(0) = 5L25(6, s ()

i Wi(%) fo (s —q)"""'Zs(q, Ev,, (9))da, (4.21)

10 (9) = 1(0) = 55 Za(s 1y, (9)

" W;(Ve) fo (s =)' Ze(q, Iy, (q))da, (4.22)

R (3) = Re(0) = 552705,y )

i W fo (s=q)7"'Z7(q, Ry, ,(9))da, (4.23)

Now, we look at the differences between the succeeding words as follows:

Kin(5) = (Soy — Suy 1)(5) = }3(‘;; (2465, 50, (5))) — (Z1(5, S0 1 (5))

V1 ? -
T BOOTOn) fo (s =) (Z1(q,50,(9)) = Z1(4, o1 (4)) )4,

(4.24)
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Kan(9) = (= En ) 8) = s (Za(s o (5))) = (Za(5, Eon(5)

V2
T BOAT02) o

Kan(9) = (I~ 1)(5) = Gt (Za(5 10, (9)) = (Za(s s (5)

V3 * .
EGEﬁTESbﬂ(S‘WV (239, 1,(9)) — Z3(q, 1, (9)) )dg,

Ki6) = (55,5, (5) = e Za(5,50,(5) = (Za(5 S5, 1(5))

fos(s — )" (Z4(9,S5,(q)) = Za(q, Sp,_,(9)) )dg,

V4
B(ya)T(ys)

1 —)/5
B(ys)

V5 s -~
B(ys)T(ys) fo (s =) (Z5(q, Ev,(9)) — Z5(q, Ev,, (9)))dg,

Ksu(s) = (Ep, — Ep,,)(s) = (Z5(s, Ey,(s))) = (Z5(s, Ep,-1(5)))

Kon(9) = (I, =15, () = Lo Zofo 1 5))) = (2,1 4(5)

fos(s —9) N (Z6(9,14,(9)) — Z6(q,1v,, (q)) )dq,

V6
B(ye)T(v6)

1- ]/7
B(y7)
V7

wwﬁ@ﬂﬁ@‘ww”ﬁwmwm—&wmmw»m

For equations (4.24) to (4.30) taking the norm for both sides

K7n(s) = (Rp, =Ry, ;) (s) = (Z7(s, Ry, (5))) = (Z7(s, Rp,1(s)))

”Kln(s)” = ”Svn - SU;H”(S)
= 715,50, (5)) = Z4(5, s ()]
B(y1) ! "
V1
B(y1)T
< G680, () = Za(5 S ()
V1
B(y1)T()1)

f S<S — )" (Z2(4,Eo,(q)) = Z2(4, Eo,, (q)) )dg,

- j(;s (s— Q)V1—1||Z1 (s,50,(9)) = Z1(s,Sv,_, (9))Ildg,

fos(s — )" NZ1(s, S, (q)) = Z1(s, S0, (q))1ldg,

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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with Lipchitz condition we have,

IK2 ()l = IIEo, — Eo, 4 |I(s)
= B(‘jjnzz(s Eo,(5)) = Za(s, Eo,, (5))]
+W fos<s—qw-lnzz(s,lsvn(q))—zz< ons (0)) g, (4.32)
IK3, (s)Il = Iy, — I, 4 11(5)
= ENZ(5 T 5)) = Zo(5 T ()
i m f< — )7 M1Za(5, T, (9)) = Za(s, oy () ldg. (4.33)
IKan ()1l = 1ISp, = Sb,_,I(s)
= EZA(s 1, 5)) = Za(5 S, ()
V4 ? y4—1
+ mfo (s =) NZ4(s, Sp,(q)) — Z4(s, Sp,, (q))lldq. (4.34)
IK54(s)Il = lIEp, — Ep,_,I(s)
- B(_yy;nzS(s Ey, () = Z5(s, Eg, , (5))ll
’ m ]:<s — )75 1Z5(s, Eo, (7)) - Zs(s, v, , (9))ldg. (4.35)
IKen (s)Il = Iy, — Ip, ,lI(5)
~ FESZe(s, 1 (5) = Zo(s )
V6 ? Ye—1
+ Foates fo (5= 0V Z6(s, 1, (9)) = Ze(5, T, (4) Il (436)
IK7, (s)Il = IRy, — Ry, ,11(5)
— 275, R, () = 275 Re )
" W fos@ —q)71Z7(s, Ry, (9)) = Z7(s, Re,_, (9))lldg. (4.37)
O

Theorem 4.2: The model (3.1) has a solution provided that the following are holds true ¢ =

; 7
maxQ; <1,i€ N1'
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Proof. Using Equations (4.24) to (4.30)

Kin(S) = =L2(Z4 (5,50, (5)) = (Z1(5, Sup-1(5))

B(y1)
L ’ —_ )1 _
*FTT [ = 0,50 0) = 23065 ()
1- 71 ] S
S[B - + BOOTO) Q1llSv, — Soll
1-n " ] S, — 438
S[Bm*w() o'l (39
Similarly we have,
1-72 V2
KZ”“)S[Bm)* BTy >] PlEs - (43)
1-vy3 V3
K3n(5)S[B(y3> + 500 )] "Ly — I, |l (4.40)
[1—y4 V4 1" e
) =[50 BTG 1S -
_1—)/5 Vs m : B
Ksu(s) < 3075) + e ¢"||Ep — Ey,|l (4.42)
I-76 Ve "o
Ken(s) < [B(yé) + B(%)F(%)] Q" — I, | (4.43)
1-y7 V7
109 ¢ 565+ 33ty =Rl 4
.. The functions K; ,(s) = 0, fori =1,2,...,7asn — oo for ¢ < 1. O

Theorem 4.3: Under assumption B the model (3.1) has a unique solution if the following

condition holds:

1-vy; Vi ] .

+ Qi<1l, for i=1,2,...7 (4.45)
[B(Vi) B(y)T(yi) |~

Proof. Assume that there exist another solution of the model (3.1) denoted as (§U(s), E.(s), I,(s),

Su(s), Ep(s),I,(s) and Ry(s)), which satisfies the integral system defined by equations (4.10) to

(4.16). Then, we obtain:

$o6) = (ot + W fos<s—4)71‘121(1130(!1))014-
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Apply the norm on both sides,

A 1 -1 A
Su(s) = Su(8)|| < Z1(8,5,(s)) — Z1(s, Sy (s
152(s) = So(s)ll B(yl)ll 1(5,Su(s)) = Z1(s, Su(s))l
71 fs -1 R
| (8- 1Z1(9,50(q)) — Z1(q, So(q))lld (4.46)
BoT0on) Jp © 79 1(9,50(9)) = Z1(4, 50(4))lidg
7, satisfies the Lipschitz property,
N . Q .
ISy = Soll < IS0 = Soll + =—=—IIS0o = S4ll. 4.47
4 4 B(V])Ql 4 4 B()/1)T()/1) v v ( )
This gives,
L-7 Q1 &
Q1+ ———-1|lISo = Sull 2 0. (4.48)
B(y1) B(y1)L(y1)
implies
So(s) = 5y(s)
Similarly,
Eo(s) = Eo(s)
Iy(s) = Iu(s)
Sp(s) = Si(s)
Ey(s) = Ey(s)
Iy(s) = Iy(s)
Ry(s) = Ry(s)
Therefore, the model (3.1) has unique solution. ]

5. Hyers - ULaM StaBILITY

In this section, we analyze the Hyers - Ulam stability of the proposed model (3.1).

Definition 5.1: The model (3.1) is said to possess Hyers - Ulam stability if there exist positive

constants 1; > 0,1 € N’l/, ensuring that for every ¢ > 0,17 € N’ the given condition is satisfied

I50(s) - }5’(_;; Z1(,So(s) + m fos(s ~)"71Z4(9, S0(q) )dgll < €1, (5.1)
IFa(9) - %22(5' Eo(s)) + m fos(s — )" Z5(q, Eo(q))dqll < &2 (5.2)
Io(s) = ;3(;?;23(5'10@) " m fos(s —q)"7Z3(q,1,(9) )dqll < &3 (5.3)
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I58(s) - %Z‘*(S’ %(3)) + B(V:)/;(M) fos(s =) Z4(q,Sb(q) )dqll < e4 (5.4)
() - B(_ySZS(S’ E(s)) + B(VS;(%) fos(s — )" Z5(q, Ev(q))dqll < &5 (5.5)
Ih(6) = 5232600, 9) + gt [ zia gl s e 69
1 -V7 V7 ® y—
IRy(5) = By 27 ReE) + 50 3r0) fo (s =" 270, Rol0) il < e7 67
and there exist a solution 5, (s), E,(s), I, (s), Sy(s), Ey(s), I,(s) and R (s) satisfying
a _1-n s & (s 71 ? oyl &
Su(e) = it 210 806)) + gt [ (s=0)Zi(g, Sula))an 658)
n . 1- V2 N V2 S — A
Eo(s) = mzz(s, Eo(s)) + mfo (s —9)"> " Za(q, Eo(q))dg. (5.9)
N 1- V3 N V3 S 4 N
(e) = B 26 16 + gt [ s=ay 20, lla))as. (5.10)
N . 1 —]/4 A )/4 S - A
Sp(s) = mzzx(s, Sp(s)) + mfo (s —9)"* " Z4(q, Su(q))dq. (5.11)
A 1 — V5 A V5 S 5— A
Ep(s) = B(yS)Zs(s, Ep(s)) + B(ys)T(5) fo (s =)' Zs(q, Es(q))dg. (5.12)
N . 1 —7Ye N Y6 S o— N
Iy(s) = m&(s,lb(s)) + Wj; (s=4)"*"'Zs(q,1y())dg. (5.13)
R(5) = 522005, R9) + L [ (5= Za(a,Refa)i. (514)
B(y7) " B(y7)I'(y7) Jo ’
such that,
1So(s) = Su(s)] < Areq
IEv(S) - EU(S)| < A2€2
|IU(S) — fU(S)| < Azes
1Sp(s) = Sp(5)] < Ages
|Eb(s) — Eb(s)l < Ases
|Ib(S) —fb(S)| < A656



14 Int. ]. Anal. Appl. (2025), 23:178

|R;J (S) — Rb(s)l < Ayey
Theorem 5.2: The model (3.1) is Hyers - Ulam stable under assumption B.

Proof. Since model (3.1) has a unique solution. Let us consider S, (s),E(s), I,(s), 5y(s),Ep(s), I ()

and R, (s) as approximate solutions satisfying equations (4.10) to (4.16). Thus, we obtain,

1S5(s) = So(s)ll < ;3(_;3 1Z1(s,So(5)) = Z1.(5, So())]
V1 ® - )
+mfo (s =) "M1Z1(q, So(q)) = Z1(q,So(q))lldg

1-9y1 71
= [B(m) BOOTO)

1- )
Lete; = Qq, 1 = B(yyll) + B()n))/;(w)' Implies,

]Ql”sv - S‘v”

1S0(s) = So(s)Il < e1¢1 (5.15)
Similarly,
”EU(S) - Ev(s)” < 521/)2
”Iv(s) _jv(s)” < é31,b3
1S5(s) = Sp(s)l < eaipa
IEs(s) — Eb(s)Il < es5¢5
() = I (s)Il < e6ths
IRy (s) = Ry (s)Il < e7¢7 (5.16)
Hence, model (3.1) is Hyers - Ulam stable. ]

6. NUMERICAL SCHEME AND SIMULATIONS

In this section, we present the numerical simulation conducted for the west nile virus dis-
ease (3.1). The fractional Atangana - Baleanu integral is implemented using Euler’s method, as
described in [4]:

1-A
hu1 = ho + MZ(SnH,hnH(X))

/\ n
T ]_ZO b5 (1)) 61)

Forn =0,1,...,N —1 the coefficients b, 1 ; for j = 0,1,...,n are are determined using the relation:

bﬁ = —(n-j)*+ (n-j+1)*. Using the above numerical scheme, we have
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s 2 (X1, S (1)

B(y1)

V1 :
BOOTOr+ 1) £ Z CRRACTEED)

Un+1 = SZ}0 +

V2
—Z ,E
B()/z) Z(x”H‘l Unt1 (x))

V2 5,
b2 Z(xj,Eyp
B(Vz)F(yz+1); w1, 2 (%, Eo (%))

Ey,s1 = Eoy +

V3
m% (Xns1,Io, 1 (%))

B )/3+1 anm (%j, I (%))

Ivn+1 = IUO +

4
Vs (ns1, b, (1))

Tm

74+1 anm (xj: 50;(x))

Sy = Sbo +

n+1

-5
=E —7 ,E
bO + B(VS) 5(x”+1 bn+1 (x))

7/5+1 Zb”+1] (xjs By, (%))

Ey

n+1

Ve
mzdxnﬂf I, (x))

7/6+1 anm (xjo Iy (x))

I = Ibo +

n+1

V7
Z7(x71+1/ Rbn+1 (x))

Wﬁ

Ry = Rbo —+4

n+1

y7+1 an+1z (xj, Ry, (x))-

6.2)

(6.3)

(6.4)

(6.5)

(6.6)

6.7)

(6.8)

The equations (6.2) to (6.8) present numerical smnulatlons of model (3.1), where the parameter

values are considered as

Xo = 0.05—-0.08
1, = 0.05 - 0.33
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vy, = 0.07-0.14
oy = 0.125-0.33
Yp = 0-0.022

pp = 0—0.01

v, =033-1

Y, =0-0.2

pp =10

op = 0.125-0.33
op =0—00
Bo, = 0.65 -1

Effect of Varying lambda_b

1200 4

1000 4

800 7

600

Population

400 -

200 +

—— Susceptible Hosts (S_b)
Exposed Hosts (E_b)
—— Infected Hosts {I_b)
—— Recovered Hosts (R_b)
—— Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
Infected Hosts (I_b)
—— Recovered Hosts (R_b)
Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
— Infected Hosts (I_b)
Recovered Hosts (R_b)

T T T
0 25 50

T T T
75 100 125

Time (days)

T T T
150 175 200

Figure (1) depicts the impact of different values of A; on the bird host compartment within the

WNV model. As Ay, increases, the susceptible population (S;) declines more rapidly due to higher

infection rates. The exposed (E;,) and infected (I;) population initially rise but later decline as

individuals recover or die. The recovered population (R;) exhibits a steady increase over time,

indicating long-term immunity.
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Effect of Varying lambda v

1200 4 —— Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
—— Infected Hosts (I_b)
—— Recovered Hosts (R_b)
1000 + ——— Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
- Infected Hosts (I_b)
800 —— Recovered Hosts (R_b)
Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
& —— Infected Hosts (I_b)
é 600 —— Recovered Hosts (R_b)
2 \
&
400
200 4
04
(I) 2‘5 5‘0 7‘5 160 léS 1.“}0 17‘5 2[‘)(1
Time (days)

Figure (2) suggests that higher vector-to-host transmission accelerates the epidemic, depleting

the susceptible population more quickly and leading to a higher number of recovered individuals.

Effect of Varying nu_v

—— Susceptible Hosts (S_b) =

—— Exposed Hosts (E_b)
—— Infected Hosts (I_b) /
5000 1 —— Recovered Hosts (R_b)

—— Susceptible Hosts (S_b) /
—— Exposed Hosts (E_b)
- Infected Hosts {1_b)
4000 + ___ Recovered Hosts (R_b) -
Susceptible Hosts (S_b) /
—— Exposed Hosts (E_b)
& — Infected Hosts (I_b)
,_:, 30001 Recovered Hosts (R_b) //
=3 e
£
2000 +
1000 4
o4
T T T T T T T T T
0 25 50 75 100 125 150 175 200
Time (days)

Figure (3) presents the impact of varying the mosquito transmission rate (v,) on the population
dynamics of West Nile Virus among bird hosts over time. The results suggest that interventions

targeting mosquito populations could be effective in mitigating disease spread.
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Effect of Varying gamma b

Susceptible Hosts (S_b)

1200 4 =
—— Exposed Hosts (E_b)
—— Infected Hosts (I_b)
—— Recovered Hosts (R_b)

1000 + —— Susceptible Hosts (5_b)

Exposed Hosts (E_b)
- Infected Hosts (I_b) L

800 Recovered Hosts (R_b) /

Susceptible Hosts (S_b)

Exposed Hosts (E_b)

‘5 \ _———Infected Hosts (I_b)
E 600 3 / —— Recovered Hosts (R_b)
3
&
400
200 4

T T T T
0 25 50 75 100 125 150 175 200
Time (days)

Figure (4) represents that as the recovery rate increases, the infected bird population (I;) declines
more rapidly. The susceptible population decreases initially due to infection but stabilizes over

time.

Effect of Varying psi_b

1200 4 y —— Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)}
—— Infected Hosts (I_b)
—— Recovered Hosts (R_b)
1000 + —— Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
- Infected Hosts (I_b}
—— Recovered Hosts (R_b)
8001 Susceptible Hosts (S_b)
—— Exposed Hosts (E_b)
‘5 —— Infected Hosts (I_b)}
,_:, 600 —— Recovered Hosts (R_b)
[+
&
400 -
200 +
o4
T T T T T T T T T
0 25 50 75 100 125 150 175 200
Time {(days)

Figure (5) represents that as ¢, increases, there is a rapid decline in the susceptible population
(Sp) within the first 25 days due to increased exposure and infection. The exposed and infected
populations rise sharply during this period, peaking early before gradually declining as more

individuals recover.
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Effect of Varying delta b

Susceptible Hosts (S_b)
Exposed Hosts (E_b)
Infected Hosts (1_b)
Recovered Hosts (R_b)
Susceptible Hosts (S_b)
Exposed Hosts (E_b)
Infected Hosts (I_b)
Recovered Hosts (R_b)
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400 4 //

200 4

1200 4

1000 +

800 4

Population

T T T T T T T T T
0 25 50 75 100 125 150 175 200
Time (days)

Figure (6) suggests that increasing S, may reduce the overall disease burden by limiting the
duration of infectiousness, but at the cost of higher host mortality.

7. CONCLUSION:

This study investigated the impact of varying key epidemiological parameters on the population
dynamics of WNV. The simulation results reveal significant variations in disease transmission,
infection duration, and population stability based on these parameter changes. Higher birth rates
(vo) lead to increased transmission rates, contributing to a larger infected host population over
time. Increased recovery rates (v,) reduce infection duration and promote a higher recovered host
population. These results highlight the complex interplay between host and vector dynamics in
shaping disease outbreaks.

Managing transmission parameters through interventions such as vector control, vaccination, or
environmental modifications could significantly alter the epidemic trajectory. Future work should
incorporate additional ecological and environmental factors to improve the predictive power of

these models.
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