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TOPOLOGICAL VECTOR-SPACE VALUED CONE BANACH

SPACES

NAYYAR MEHMOOD1,∗, AKBAR AZAM1 AND SUZANA ALEKSIĆ2

Abstract. In this paper we introduce the notion of tvs-cone normed spaces,

discuss related topological concepts and characterize the tvs-cone norm in

various directions. We construct generalize locally convex tvs generated by a
family of tvs-cone seminorms. The class of weak contractions properly includes

large classes of highly applicable contractions like Banach, Kannan, Chatterjea

and quasi etc. We prove fixed point results in tvs-cone Banach spaces for
nonexpansive self mappings and self/non-self weak contractive mappings. We

discuss the necessary conditions for T -stability of Picard iteration. To ensure
the novelty of our work we establish an application in homotopy theory without

the assumption of normality on cone and many non-trivial examples.

1. Introduction

Recently Beg et al. [1] introduced and studied topological vector space-valued
cone metric spaces (tvs-cone metric spaces), which generalized the cone metric s-
paces [2]. Many generalizations and extensions have been made by many researcher-
s, (see [3-6] ). For more details about topological vector spaces we refer to [7, 8].
Actually the idea of cone metric space was properly introduced by Huang and Zhang
in [2]. In their setting the set of real numbers was replaced by an ordered Banach
space and a vector valued metric was defined on a nonempty set. Many authors
[9-14] studied the properties of cone metric spaces and generalized important fixed
point results of complete metric spaces. The concept of cone metric space in the
sense of Huang-Zhang was characterized by Al-Rawashdeh et al. in [15].

In [16], the author introduced the notion of cone Banach spaces with normal
cones and proved some results regarding fixed points by using nonexpansive map-
pings. Later on many authors investigated some useful results in fixed and coupled
fixed points, (see [17-19] ).

Weak contractions were considered in [20], to study the fixed point results for
self mappings. It has been shown that the Banach, Kannan, Chatterjea, Zamfires-
cue, quasi and many other contractions are weak contractions. The importance of
non-self mappings is obvious. In fact fixed point theorems for non-self mappings
generalized all the corresponding results presented for self-mappings. A variety of
results on nonself mappings and weak contractions can be found in [21-27].

In this article, we introduce tvs-cone Banach space and investigate some proper-
ties without assumption of normality on cones. We generalize the results of [16] and
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explore some characteristics of norms in cone normed space. We prove fixed point
results for Picard, Mann, Ishikawa and Krasnoseskij iterations, we also present
results for weak contractive non-self mappings. Many examples have been given
and a homotopy result is established for nonexpansive mappings. We discuss the
necessary conditions for T -stability of Picard iteration.

2. Preliminaries

Let E be a topological vector space with its zero vector θ. A nonempty subset
K of E is called a convex cone if K + K ⊆ K and λK ⊆ K for λ ≥ 0. A convex
cone K is said to be pointed (or proper) if K ∩ (−K) = {θ}, and K is normal
(or saturated) if E has a base of neighborhoods of zero consisting of order-convex
subsets. For a given cone K ⊆ E we define a partial ordering 4 with respect to K
by x 4 y if and only if y − x ∈ K, x ≺ y stands for x 4 y and x 6= y, while x� y
stands for y−x ∈ intK, where intK denotes the interior of K. The cone K is said
to be solid if it has a nonempty interior.

Definition 1. Let V be a vector space over R. A vector-valued function ‖·‖K :
V → E;X → V is called a tvs-cone norm on X if the following conditions are
satisfied:

(N1) ‖x‖K < θ for all x ∈ V ,
(N2) ‖x‖K = θ if and only if x = θ,
(N3) ‖x+ y‖K 4 ‖x‖K + ‖y‖K for all x, y ∈ V ,
(N4) ‖kx‖K = |k| ‖x‖K for all k ∈ R.

The pair (X, ‖·‖K) is called a tvs-cone norm space (in brief tvs-CNS).

Definition 2. Let (V, ‖·‖K) be a tvs-cone norm space and {xn} a sequence in V .
(i) {xn} tvs-cone converges to x ∈ V if for every c ∈ E with θ � c there exists

n0 ∈ N such that ‖xn − x‖K � c for all n ≥ n0.
(ii) {xn} is a tvs-cone Cauchy sequence if for every c ∈ E with θ � c there exists

n0 ∈ N such that ‖xn − xm‖K � c for all n,m ≥ n0.
(iii) (V, ‖·‖K) is a tvs-cone complete or a tvs-cone Banach space if every tvs-cone

Cauchy sequence in V is tvs-cone convergent.

Using the consequences of Lemma 2.4 from [28], we have the following properties.

Lemma 3. Let (E,K) be a locally convex tvs. The following properties hold.

(a) For a sequence {vn} in E with θ 4 vn → θ, let θ � c then there exists
positive integer n0 such that vn � c for each n > n0.

(b) There exists a sequence {vn} in E such that for some positive integer n0

holds θ 4 vn � c for all n > n0, but vn 6→ θ.
(c) If there exists v in E such that θ 4 v � c for all c ∈ intK, then v = θ.
(d) If a 4 λa, where a ∈ K and 0 ≤ λ < 1, then a = θ.

Remark 4. For a Banach space E with non-normal cone K, with norm ‖·‖ . The
following may hold.
(a) For sequences {vn}, {un} in E with norm ‖·‖ , it may happen that vn → v,
un → u, but ‖vn − un‖ 6→ ‖v − u‖ (see Example 5). In particular, vn → v, n→∞,
may imply that ‖vn − v‖ 6→ θ, n→∞ (this is impossible in CNS defined in [16] if
the cone is normal).
(b) If vn → v and vn → u, then v = u.
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Example 5. Let V = R and let E be the set of all real-valued functions on V which
also have continuous derivatives on V. Then E is a vector space over R under the
following operations:

(x+ y) (t) = x (t) + y (t) , (αx) (t) = αx (t)

for all x, y ∈ E, α ∈ R. Then E with norm

‖x‖ = ‖x‖∞ + ‖x′‖∞,
has non-normal solid cone, see [5, 8]:

K = {x ∈ E : θ 4 x}, where θ(t) = 0 for all t ∈ X.
Consider the sequences

xn(t) =
1 + sinnt

n+ 2
, yn(t) =

1− sinnt

n+ 2
, n ≥ 0.

in E. We have xn → θ, yn → θ, n→ +∞, but

‖xn − yn‖ =

∥∥∥∥2 sinnt

n+ 2

∥∥∥∥ = sup
t∈V

{
2 sinnt

n+ 2

}
+ sup
t∈V

{
2n cosnt

n+ 2

}
=

2 sinn

n+ 2
+ 1 6→ θ, n→ +∞.

Also as xn → θ, consider

‖xn − θ‖ = ‖xn‖ = 1 6→ θ.

Definition 6 ([1]). Let X be a nonempty set and (E,K) a tvs. A vector-valued
function d : X ×X → E is said to be a tvs-cone metric if the following conditions
are satisfied:

(C1) θ 4 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(C2) d(x, y) = d(y, x) for all x, y ∈ X,
(C3) d(x, z) 4 d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d) is called a tvs-cone metric space.

Note that each tvs-CNS is a tvs-cone metric space with induced tvs-cone metric
d : X ×X → E defined by d(x, y) = ‖x− y‖ for all x, y ∈ X.

Remark 7 ([1]). The concept of cone metric spaces is more general than that of
metric spaces, because each metric space is a cone metric space, and a cone metric
space in the sense of Huang and Zhang is a special case of tvs-cone metric spaces
when (X, d) is a cone metric space with respect to a normal cone K.

If K is a normal cone, then a tvs-CNS (V, ‖ · ‖K) becomes a CNS [16] and with
the induced tvs-cone metric [1] this space becomes cone metric space in the sense
of [2].

CNS in the case of [16] gives us generalized induced norm known as b-norm
‖·‖b : V → R defined by ‖·‖b = ‖‖·‖K‖. The triangular property of cone norm

‖x+ y‖K 4 ‖x‖K + ‖y‖K ,
gives us the following property of b-norm,

‖x+ y‖b ≤ k(‖x‖b + ‖y‖b),
where k is a constant of normality.
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Obviously every norm is a b-norm, but the contrary is not true, consider the
following example

Example 8. Let X = R and ‖·‖b : X → R defined by ‖x‖b = |x|3. For x, y ∈ X we
have |x+ y|3 ≤ (|x|+ |y|)3 ≤ 23(|x|3 + |y|3), but |x+ y|3 6≤ (|x|3 + |y|3). Therefore,
‖x‖b is a b-norm, but it is not a norm on X.

Let us recall the following definitions.

Definition 9 ([5, 29]). Let X be a nonempty set. A vector-valued function d :
X ×X → E is said to be cone symmetric if the following conditions are satisfied:

(C1) θ 4 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(C2) d(x, y) = d(y, x) for all x, y ∈ X.

The pair (X, d) is called a cone symmetric space.

It is clear that the cone symmetric space may not be a cone metric space (see
Example 2.2 in [29]). For a given cone symmetric space (X, d) one can deduce (see
[29]) a symmetric metric space with D : X×X → R defined by D(x, y) = ‖d(x, y)‖
for all x, y ∈ X.

For a cone metric space (X, d) with normal cone K with normal constant k ≥ 1,
we have

D(x, y) = ‖d(x, y)‖ ≤ k ‖d(x, z) + d(z, y)‖ ≤ k(D(x, z) +D(z, y)).

In this case, the metric D becomes b-metric and, hence, the concept of b-metric
spaces is more general then that of metric spaces and the topology τD generated
by D coincides with τ b generated by b-metric on X.

In the following we explore the concept of tvs-cone seminorm.

Definition 10. Let V be a vector space over scalars F . If a mapping ρK : X →
(E,K) satisfies:

(SN1) ρK(x) < θ for all x ∈ V ,
(SN2) ρK(x+ y) 4 ρK(x) + ρK(y) for all x, y ∈ V ,
(SN3) ρK(kx) = |k|ρK(x) for all x ∈ V , k ∈ F .

Then ρK is called a tvs-cone seminorm on X.

Note that a tvs-cone seminorm is a norm if ρK(x) = θ implies x = θ. A tvs-cone
seminorm on X induces a pseudo tvs-cone metric defined by dp(x, y) = ρK(x− y)
which satisfies:

(PC1) θ 4 dp(x, y) for all x, y ∈ X,
(PC2) dp(x, y) = dp(y, x) for all x, y ∈ X,
(PC3) dp(x, z) 4 dp(x, y) + dp(y, z) for all x, y, z ∈ X.

Note that dp(x, y) = θ does not imply x 6= y.
The class of tvs-cone pseudo metric spaces is larger than the class of tvs-cone metric
spaces.

Equivalently, ρK is a tvs-cone seminorm on a vector space V if the following
conditions are satisfied:

(SN(i)) ρK(v + v) 4 ρK(u) + ρK(v) for all u, v ∈ V,
(SN(ii)) ρK(kv) = |k| ρK(v) for all v ∈ V , k ∈ F .

This cone seminorm gives us generalized seminorm, so called b-seminorm ‖·‖bs :
X → R defined by

‖x‖bs = ‖ρK(x)‖ .
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Using (SN(i)), b-seminorm has the following property

‖x+ y‖bs ≤ k(‖x‖bs + ‖y‖bs).
Note that b-seminorm is a seminorm if k = 1 and every seminorm is a b-seminorm.
The next example shows that the contrary is not true, i.e., b-seminorm does not
need to be seminorm.

Example 11. Let X = R and ‖ · ‖bs : X → R is defined by ‖x‖bs = |x|3 + 1. For
x, y ∈ X, we have

|x+ y|3 + 1 ≤ (|x|+ |y|)3 + 1 ≤ 23(|x|3 + |y|3) + 1 ≤ 23(|x|3 + |y|3) + 16

= 23(|x|3 + 1 + |y|3 + 1),

which implies ‖x+y‖bs ≤ 23(‖x‖bs+‖y‖bs). This shows that ‖x‖bs is a b-seminorm,
but not a seminorm on X.

3. Main Results

Let {ρKi : i ∈ I} be a family of tvs-cone seminorms on a vector space V . For
θ � ε and i ∈ I = {1, 2, 3, . . . , n}, define

U(u0,ρK1
,ρK2

,ρK3
,...,ρKn ,ε)

= U(u0,ρKn,ε)
= {u ∈ V : ρKi(u− u0)� ε, i ∈ I} .

Note that U(u0,ρKn,ε)
= u0 + U(θ,ρKn,ε)

.

Lemma 12. The set U(θ,ρKn,ε)
is balanced and convex in V.

Proof. For any w ∈ U(θ,ρKn,ε)
and |k| ≤ 1, we have ρKi(kw) 4 |k|ρKi(w) � ε,

i ∈ I. Thus U(θ,ρKn,ε)
is absorbing. Now, for 0 ≤ t ≤ 1 and u, v ∈ U(θ,ρKn,ε)

, we
obtain

ρKi(tu+ (1− t)v) 4 tρKi(u) + (1− t)ρKi(v)� tε+ (1− t)ε = ε,

which implies tρKi(u)+(1−t)ρKi(v) ∈ U(θ,ρKn,ε)
. Therefore, U(θ,ρKn,ε)

is convex.

Lemma 13. Let {ρKi : i ∈ I} be a family of tvs-cone seminorms on a vector space
(V, F ). For each v ∈ V denote with Nv the collection of sets of the form

U(v,ρKn,ε)
= {u ∈ V : ρKi(u− v)� ε, i ∈ I}.

Let T be the collection of ∅ and all subsets G of X such that for each u ∈ G there
exists some U ∈ Nv such that U ⊆ G. Then T is topology on V and preserves the
structure of vector space. The sets Nv form an open locally convex neighborhood
base at x. The topological space (V, T ) is Hausdorff iff the family {ρKi : i ∈ I} of
tvs-cone seminorms is separating, i.e. for θ 6= u ∈ V there exists some i0 ∈ I such
that ρKi0(u) 6= θ.

Proof. It is clear that V and the union of any number of elements of T belong to
T . We will show that A,B ∈ T implies A∩B ∈ T . The case A∩B = ∅ is obvious.
Suppose that A ∩B 6= ∅ and v ∈ A ∩B. By definition of T there exist U1, U2 ∈ T
such that U1 ⊆ A and U2 ⊆ B. Let for comparable ε, δ ∈ intK, we define

U1 := U(v,ρKn,ε)
= {u ∈ V : ρKi(u− v)� ε, 1 ≤ i ≤ n}

and
U2 = U(v,µKm,δ)

=
{
u ∈ V : µKj(u− v)� δ, 1 ≤ j ≤ m

}
.

If we set
U3 = U(v,ρK1

,ρK2
,ρK3

,...,ρKn ,µK1
,µK2

,µK3
,...,µKm ,γ),
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where γ = ε if δ − ε ∈ intK and γ = δ if ε − δ ∈ intK, then U3 ∈ Nv and
U3 ⊆ U1 ∩ U2 ⊆ A ∩ B. Hence T is topology on V . Let U(v,ρKn,ε)

∈ Nv and
w ∈ U(v,ρKn,ε)

. Then ρKi(w − v) � ε, 1 ≤ i ≤ n. Now choose θ � δ such that
δ � ε − ρKi(w − v) for 1 ≤ i ≤ n. For any 1 ≤ i ≤ n and u ∈ V satisfying
ρKi(w − u)� δ we have

ρKi(u− v) 4 ρKi(u− w) + ρKi(w − v)� δ + ρKi(w − v)� ε.

We see that U(u,ρKn,δ)
⊆ U(v,ρKn,ε)

, hence U(v,ρKn,ε)
is open. Lemma 12 implies

that the elements of Nv are convex. Therefore, Nv is an open locally convex neigh-
borhood base at v consisting of the open sets U(v,ρKn,ε)

.
Now we will show that the topology T is compatible. Let u, v ∈ V and let

U(u+v,ρKn,ε)
be a basic neighborhood of u + v. Let (un, vn) → (u, v) in V × V .

Then there exists an integer n0 such that (un, vn) ∈ U(u,ρKn,
ε
2 ) × U(v,ρKn,

ε
2 ) for all

n ≥ n0. For 1 ≤ i ≤ n and for all n ≥ n0, we have

ρKi(u+ v − (un + vn)) 4 ρKi(u− un) + ρKi(v − vn)� ε,

which gives un + vn ∈ U(u+v,ρKn,ε)
, and, therefore, un + vn → u + v. Now let

(kn, vn) → (k, v) in F × V. Let U(kv,ρKn,δ)
be a basic neighborhood of kv. Choose

t > 0 and θ � γ such that for 1 ≤ i ≤ n there exists an integer m0 such that
(kn, vn) ∈ {ζ ∈ F : |ζ − k| < t} × U(v,ρKn,γ) for all n ≥ m0, with tρKi(v) � δ

2 and

(|k|+ t)γ � δ
2 . For n ≥ m0 we have

ρKi(kv − knvn) 4 ρKi(kv − knv) + ρKi(knv − knvn)

4 |k − kn| ρKi(v) + |kn| ρKi(v − vn)

4 |t| ρKi(v) + |kn| ρKi(v − vn)

� |t| ρKi(v) + (|k|+ t)γ

� δ

2
+
δ

2
= δ,

thus knvn ∈ U(kv,ρKn,δ)
. Therefore (V, T ) is a tvs.

Now, suppose that the family P = {ρKi : i ∈ I} of tvs-cone seminorms is
separating. For any u, v ∈ V with u 6= v there exists some j0 ∈ I such that
θ � δ = ρKj0(v − u). Thus, the open sets U(u,ρKj0 ,

δ
2 ) and U(v,ρKj0 ,

δ
2 ) are disjoint

containing u and v and so the space (V, T ) is Hausdorff.
We conclude that the space (V, T ) is locally convex tvs.

Definition 14. [20] Let X be a tvs-cone normed space and T : X → X an operator.

(i) T is an almost weak contraction if for all x, y ∈ E, L ≥ 0 and δ ∈ (0, 1),
we have

(w1) ‖Tu− Tv‖K 4 δ · ‖u− v‖K + L · ‖u− Tu‖K , ∀u, v ∈ X.

(ii) T is a weak contraction if

(w2) ‖Tu− Tv‖K 4 δ · ‖u− v‖K + L · ‖v − Tu‖K .

Definition 15. Let X be a tvs-cone normed space and T : X → X an operator.

(i) T is a Zamfirescue contraction if for all u, v ∈ X and a ∈ [0, 1), b, c ∈
[0, 1

2 ), one of the following conditions is satisfied
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(z1)

‖Tu− Tv‖K 4 a · ‖u− v‖K ,
(z2)

‖Tu− Tv‖K 4 b (‖u− Tu‖K + ‖v − Tv‖K) ,

(z3)

‖Tu− Tv‖K 4 c (‖u− Tv‖K + ‖v − Tu‖K) .

(ii) T is a Quasi contraction if for all u, v ∈ X and α ∈ [0, 1), holds

‖Tu− Tv‖K 4 c ·m,

where

m ∈ {‖u− v‖K , ‖u− Tu‖K , ‖v − Tv‖K , ‖u− Tv‖K , ‖v − Tu‖K} .

Remark 16. [20](a) Every Zamfirescue contraction is a weak contraction.
(b) Every Quasi contraction is a weak contraction.

Definition 17. [19] Let X be a tvs-cone normed space, T : X → X an operator
and u0 ∈ X. A sequence {un} is called:

1) Picard iteration if

(p1) un+1 = Tun;

2) Mann iteration if

(m1) un+1 = (1− αn)un + αnTun;

3) Ishikawa iteration if

un+1 = (1− αn)un + αnTvn, (i1)

vn = (1− βn)xn + βnTxn,

where {αn} ⊆ (0, 1) and {βn} ⊆ [0, 1).
4) Krasnoselskij iteration if

un+1 = (1− λ)un + λTun,

where λ ∈ (0, 1).

Denote with F (T ) the set of all fixed points of T .

Lemma 18. Let X be a tvs-cone Banach space and {an} and {bn} be sequences
in E satisfying an+1 4 λan + bn, where λ ∈ (0, 1) and bn → θ as n → ∞. Then
lim
n→∞

an = θ.

Proof. On the contrary, suppose that lim
n→∞

an 6= θ and lim
n→∞

an = c, for some θ � c.

Then, by lemma 3 (d), we have an = θ.

In the following theorem we obtain a fixed point result for nonself weak contrac-
tions in a tvs-cone Banach space.

Theorem 19. Let X be a tvs cone Banach space and C be a nonempty closed and
convex subset of X. Suppose that T : C → X is a weak contraction (satisfying
(w2)), such that δ(1 + L) < 1. If T (∂C) ⊆ C, then T has a fixed point.
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Proof. We construct two sequences {un} and {vn} in the following way. Let us
choose u0 arbitrary in X and set v1 = Tu0. If v1 ∈ C, then set u1 = v1. If not, then
there exists u1 ∈ ∂C such that

‖u1 − u0‖K + ‖u1 − v1‖K = ‖u0 − v1‖K .

Thus u1 ∈ C and let v2 = Tu1. We have

‖v2 − v1‖K = ‖Tu0 − Tu1‖K 4 δ · ‖u1 − u0‖K + L · ‖u1 − Tu0‖ .

If v2 ∈ C, set u2 = v2. Otherwise, there exists u2 ∈ ∂C such that

‖u2 − u1‖K + ‖v2 − u2‖K = ‖v2 − u1‖K .

Thus u2 ∈ C. Let v3 = Tu2 and consider

‖v2 − v3‖K = ‖Tu1 − Tu2‖K 4 δ · ‖u2 − u1‖K + L · ‖u2 − Tu1‖K .

Continuing in the same way, we construct the sequences {un} and {vn} such that
(i) vn+1 = Tun,
(ii) ‖vn − vn+1‖K 4 δ · ‖un−1 − un‖K + L · ‖un − Tun−1‖K ,
where
(iii) vn ∈ C implies vn = un.
(iv) If vn 6∈ C, then vn 6= un, and then un ∈ ∂C is such that

‖un−1 − un‖K + ‖vn − un‖K = ‖vn − un−1‖K .

We will show that {un} is a Cauchy sequence. Define

P = {ui ∈ {un} : ui = vi} ,
Q = {ui ∈ {un} : ui 6= vi} .

It is obvious that if un ∈ Q, then un−1 and un+1 are in P. We have the following
three possibilities.
Case 1. If un, un+1 ∈ P, then

‖un − un+1‖K = ‖vn − vn+1‖K 4 δ · ‖un−1 − un‖K + L · ‖un − Tun−1‖K
4 δ · ‖un−1 − un‖K .

Case 2. If un ∈ P, un+1 ∈ Q, then

‖un − un+1‖K 4 ‖un − un+1‖K + ‖un+1 − vn+1‖K
= ‖un − vn+1‖K
= ‖vn − vn+1‖K
4 δ · ‖un−1 − un‖K + L · ‖un − Tun−1‖K
4 δ · ‖un−1 − un‖K .



TOPOLOGICAL VECTOR-SPACE VALUED CONE BANACH SPACES 213

Case 3. If un ∈ Q, un+1 ∈ P, then

‖un − un+1‖K 4 ‖vn − un‖K + ‖vn − vn+1‖K
4 ‖vn − un‖K + δ · ‖un−1 − un‖K + L · ‖un − Tun−1‖K
4 ‖vn − un‖K + ‖un−1 − un‖K + L · ‖vn − un‖K
= ‖vn − un−1‖K + L · ‖vn − un‖K
= ‖vn − un−1‖K + L · ‖vn − un−1‖K − L · ‖un−1 − un‖K
4 (1 + L) ‖vn−1 − vn‖K
4 (1 + L)δ · ‖un−2 − un−1‖K + (1 + L)L · ‖un−1 − Tun−2‖K
4 (1 + L)δ · ‖un−2 − un−1‖K
= h ‖un−2 − un−1‖K ,

where h = (1 + L)δ < 1.
Taking α = max {δ, h}, and combining all above three cases we have

‖un − un+1‖K 4

{
α ‖un−1 − un‖K
α ‖un−2 − un−1‖K

.

By mathematical induction, for all n > 0, we have

‖un − un+1‖K 4 h(n−1)/2w

for w ∈ {‖u1 − u0‖K , ‖u2 − u1‖K} .
Now for n > m, we consider

‖um − un‖K 4 ‖un − un−1‖K + ‖un−1 − un−2‖+ · · ·+ ‖um−1 − um‖
4 (h(n−1)/2 + h(n−2)/2 + · · ·+ h(m−1)/2)w

4
h(m−1)/2

1− h(n−m)/2
w.

As h < 1, we have h(m−1)/2 → 0 when n,m→∞, and this gives us h(m−1)/2

1−h(n−m)/2w →
θ, n → ∞, in the locally convex space E. Now, according to Lemma 3-(a), we
conclude that for every c ∈ E with θ � c there is a natural number k1 such that
‖um − un‖K � c for all m,n ≥ k1, so {un} is a tvs-cone Cauchy sequence in C.
As C is closed, thus there exists some u ∈ C, such that un → u as n→∞.
By construction of {un} there exists a subsequence

{
unq
}

such that

vnq = unq = Tunq−1

and unq → u as q → ∞. So, for a given c ∈ E with θ � c, let us choose a natural

number k2 such that
∥∥u− unq∥∥K � c

1+L and
∥∥unq−1

− u
∥∥
K
� c

δ for all q−1 ≥ k2.
Now, we have

‖u− Tu‖K 4
∥∥u− unq∥∥K +

∥∥unq − Tu∥∥K
4

∥∥u− unq∥∥K +
∥∥Tunq−1

− Tu
∥∥
K

4
∥∥u− unq∥∥K + δ

∥∥unq−1 − u
∥∥
K

+ L
∥∥u− Tunq−1

∥∥
K

4 (1 + L)
∥∥u− unq∥∥K + δ

∥∥unq−1
− u
∥∥
K
,

i.e. ‖u− Tu‖K � c(k2) for all q − 1 ≥ k2.
This completes the proof.
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Theorem 20. Let X be a tvs cone Banach space and C be a nonempty closed and
convex subset of X. Suppose that T : C → X is a weak contraction (satisfying
(w1)), such that δ(1 +L) < 1. If T satisfies the condition: u ∈ ∂C ⇒ Tu ∈ C, then
T has a fixed point.

Corollary 21. Let X be a cone Banach space with normal cone K and C be a
nonempty closed and convex subset of X. Suppose that T : C → X is a weak
contraction/almost weak contraction (satisfying (w1)/(w2)), such that δ(1+L) < 1.
If T satisfies the condition: u ∈ ∂C ⇒ Tu ∈ C, then T has a fixed point.

The following corollaries are due to remark 16.

Corollary 22. Let X be a tvs cone Banach space and C be a nonempty closed and
convex subset of X. Suppose that T : C → X is Zamfirecue operator. If T satisfies
the condition: u ∈ ∂C ⇒ Tu ∈ C, then T has a fixed point.

Corollary 23. Let X be a tvs cone Banach space and C be a nonempty closed and
convex subset of X. Suppose that T : C → X is quasi operator. If T satisfies the
condition: u ∈ ∂C ⇒ Tu ∈ C, then T has a fixed point.

Corollary 24. Let X be a Banach space and C be a nonempty closed and convex
subset of X. Suppose that T : C → X is Zamfirecue operator. If T satisfies the
condition: u ∈ ∂C ⇒ Tu ∈ C, then T has a fixed point.

Corollary 25. Let X be a Banach space and C be a nonempty closed and convex
subset of X. Suppose that T : C → X is a quasi operator. If T satisfies the condition:
u ∈ ∂C ⇒ Tu ∈ C, then T has a fixed point.

Theorem 26. Let E be a tvs-normed space, C be a closed and convex subset of
E. Let T : C → C be an almost weak contractive mapping (satisfying (w1)) with
F (T ) 6= ϕ. Let {un} be Ishikawa iteration satisfying

(α)

∞∑
j=0

αj =∞,

u0 ∈ C is arbitrary chosen. Then {un} converges strongly to a unique fixed point
of T.

Proof. It can be shown that (w1) gives us a unique fixed point. Let p ∈ F (T ) be a
unique fixed point of T and {un} be Ishikawa iteration defined in (i1) and u0 ∈ C.
We have

‖un+1 − p‖K = ‖(1− αn)un + αnTvn − p‖K
= ‖(1− αn)(un − p) + αn(Tvn − p)‖K
4 (1− αn) ‖un − p‖K + αn ‖Tvn − p‖K
4 (1− αn) ‖un − p‖K + αnδ ‖vn − p‖K , by (w1),

and

‖vn − p‖K = ‖(1− βn)un + βnTun − p‖K
= ‖(1− βn)(un − p) + βn(Tun − p)‖K
4 (1− βn) ‖un − p‖K + βnδ ‖un − p‖K , by (w1).
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So, we obtain

‖un+1 − p‖K 4
(
1− (1− δ)2αn

)
‖un − p‖K

4 e−(1−δ)2αn ‖un − p‖K

4

(
e
−(1−δ)2

n∑
j=0

αj

)
· ‖u0 − p‖K .

Using (α), this implies

(
e
−(1−δ)2

n∑
j=0

αj

)
→ 0, n→∞, which gives us

(
e
−(1−δ)2

n∑
j=0

αj

)
·

‖u0 − p‖K → θ, n → ∞, in the locally convex space E. This completes the proof
of theorem.

The following corollaries are due to remark 16.

Corollary 27. Let E be a tvs-normed space, C be a closed and convex subset of
E. Let T : C → C be Zamfirescue operator, with F (T ) 6= ϕ. Let {un} be Ishikawa
iteration satisfying

∞∑
j=0

αj =∞

where u0 ∈ C is arbitrary chosen. Then {un} converges strongly to a unique fixed
point of T.

Corollary 28. Let E be a tvs-normed space, C be a closed and convex subset of E.
Let T : C → C be a quasi operator, with F (T ) 6= ϕ. Let {un} be Ishikawa iteration
satisfying

∞∑
j=0

αj =∞

where u0 ∈ C is arbitrary chosen. Then {un} converges strongly to a unique fixed
point of T.

Corollary 29. [24] Let E be a normed space, C be a closed and convex subset of
E. Let T : C → C be a Zamfirescue operator, with F (T ) 6= ϕ. Let {un} be Ishikawa
iteration satisfying

∞∑
j=0

αj =∞

and u0 ∈ C is arbitrary chosen. Then {un} converges strongly to a unique fixed
point of T.

Corollary 30. [24] Let E be a normed space, C be a closed and convex subset of E.
Let T : C → C be a quasi operator, with F (T ) 6= ϕ. Let {un} be Ishikawa iteration
satisfying

∞∑
j=0

αj =∞

and u0 ∈ C is arbitrary chosen. Then {un} converges strongly to a unique fixed
point of T.

The following theorem is a result for fixed point of non-expansive mappings in
tvs-cone Banach space for Krasnoselskij iteration with λ = 1

2 .
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Theorem 31. Let C be a closed and convex subset of a tvs-cone Banach space
(X, ‖·‖K). Suppose that the mapping F : C → C satisfies

(a) ‖v − Fv‖K + ‖u− Fu‖K 4 η ‖v − u‖K
for all u, v ∈ C. Then F has at least one fixed point if 2 ≤ η ≤ 4.

Proof. Let us choose v0 ∈ C arbitrary and define sequence {vn} as follows:

vn+1 =
vn + Fvn

2
, n = 0, 1, 2, 3, . . .

Since

vn − Fvn = 2

(
vn −

vn + Fvn
2

)
= 2(vn − vn+1),

we have

(b) ‖vn − Fvn‖K = 2 ‖vn − vn+1‖K , n = 0, 1, 2, 3, . . . .

Combining (a) and (b), we have

2 ‖vn−1 − vn‖K + 2 ‖vn − vn+1‖K 4 η ‖vn−1 − vn‖K ,
which gives

‖vn − vn+1‖K 4 λ ‖vn−1 − vn‖K , n = 0, 1, 2, 3 . . . ,

for λ = η−2
2 < 1.

According to the previous inequality, for m ≥ n, we obtain

‖vn − vm‖K 4
λn

1− λ
‖v0 − v1‖K .

Since λn → 0 as n → ∞, then λn

1−λ ‖v0 − v1‖K → θ, n → ∞, in the locally convex

space E. Now, according to Lemma 3 part (a), we conclude that for every c ∈ E
with θ � c there exists a natural number n1 such that ‖vn − vm‖K � c for all
m,n ≥ n1. Therefore, {vn} is a tvs-cone Cauchy sequence in C. Since C is closed,
there exists some w ∈ C, such that vn → w as n → ∞. Now, choose a positive
integer m1 such that for every c ∈ E with θ � c we have ‖w − vn‖K �

1
η c for all

n ≥ m1.
Substituting v = w and u = vn in (a), for all n ≥ m1, we obtain

‖w − Fw‖K + 2 ‖vn − vn+1‖K 4 η ‖w − vn‖K ,
‖w − Fw‖K 4 η ‖w − vn‖K − 2 ‖vn − vn+1‖K � c.

Thus, w = Fw is a fixed point of F.

Corollary 32. [16] Let C be a closed and convex subset of a cone Banach space
(X, ‖·‖K). Suppose that the mapping F : C → C satisfies

‖v − Fv‖K + ‖u− Fu‖K 4 η ‖v − u‖K
for all u, v ∈ C. Then F has at least one fixed point if 2 ≤ η ≤ 4.

The next theorem is an application of above theorem in topological homotopy
theory.

Theorem 33. Let (X, ‖·‖K) be a tvs-cone Banach space, C a closed and convex
subset of X and U an open subset of C. Let K : [0, 1] × Ū → C be a homotopy
mapping with the following conditions:

(a) ξ 6= K(t, ξ), for each ξ ∈ ∂U and each t ∈ [0, 1],
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(b) K(t, ·) : Ū → C is a mapping satisfying the conditions of Theorem 31,
(c) there exists a continuous increasing function g : (0, 1]→ P such that∥∥∥K(s, ξ)−K(t, ξ́)

∥∥∥
K

4 g(s)− g(t),

g(s) ∈ g(t) + P,

for all s, t ∈ [0, 1], and each ξ ∈ Ū .
Then K(0, ·) has a fixed point if and only if K(1, ·) has a fixed point.

Proof. We first suppose that K(0, ·) has a fixed point z, i.e. z = K(0, z). From (a),
we obtain z ∈ U . Define

Γ := {(t, ξ) ∈ [0, 1]× C : ξ = K(ξ, t)}.
Clearly Γ 6= φ. We define the partial ordering in Γ as follows:

(t, ξ) - (s, ξ́)⇔ t ≤ s and
∥∥∥ξ́ − ξ∥∥∥

K
4

2

η − 2
(g(s)− g(t)).

Let B be a totally ordered subset of Γ and t̊ = sup{t : (t, ξ) ∈ B}. Consider
a sequence {(tn, ξn)}n≥0 in B such that, (tn, ξn) - (tn+1, ξn+1) and tn → t̊ as
n→∞. For m > n, we have

‖ξm − ξn‖K 4
2

η − 2
(g(tm)− g(tn))→ θ, as n,m→∞,

and conclude that {ξn} is a tvs-cone Cauchy sequence. There exists ξ̊ ∈ C such

that ξn → ξ̊. Choose n0 ∈ N such that for θ � c we have ‖̊ξ − ξn‖K � c
η for

all n ≥ n0. The mapping K(t, ·) satisfies all the conditions of Theorem 31 and

substituting v = ξ̊ and u = ξn into (1), for all n ≥ n0, we obtain∥∥∥̊ξ −K(̊t, ξ̊)
∥∥∥
K

+ 2
∥∥ξn − ξn+1

∥∥
K

4 η
∥∥∥̊ξ − ξn∥∥∥

K
,∥∥∥̊ξ −K(̊t, ξ̊)

∥∥∥
K

4 η
∥∥∥̊ξ − ξn∥∥∥

K
− 2

∥∥ξn − ξn+1

∥∥
K
� c.

We see that ξ̊ = K(̊t, ξ̊) and, hence, ξ̊ ∈ U, which implies (̊t, ξ̊) ∈ Γ. Thus, (t, ξ) -
(̊t, ξ̊) for all (t, ξ) ∈ B gives us that (̊t, ξ̊) is an upper bound of B. By Zorn’s lemma,

Γ has maximal element (̊t, ξ̊).
We claim that t̊ = 1. On the contrary, suppose that t̊ ≤ 1. Let us choose θ � r

arbitrary and, for any t ≥ t̊, consider

Br (̊ξ) =
{
ξ :
∥∥ξ − ξ̊∥∥

K
4 r
}
⊂ U,

where r = 2
η−2 (g(t)− g(̊t)).

Using the condition (c), we have∥∥K(t, ξ)−K(̊t, ξ̊)
∥∥
K

4 g(t)− g(̊t) =
η − 2

2
r � r.

Hence, for each t ∈ [0, 1], there exists some ξ ∈ Br (̊ξ) ⊂ U such that ξ = K(t, ξ).
Since ∥∥ξ − ξ̊∥∥

K
4 r =

2

η − 2
(g(t)− g(̊t))

implies (̊t, ξ̊) - (t, ξ), we obtain a contradiction. Therefore, t̊ = 1.

From the above it follows that K(1, ·) has a fixed point ξ̊ = K(1, ξ̊).
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Conversely, if K(1, ·) has a fixed point, then, in the same way, we can prove that
K(0, ·) has a fixed point.

Let X be a tvs cone normed space and T be a self operator of X. Let u0 be any
fixed point and xn+1 = ξ(T, xn) is an iteration process involving T, which computes
the sequence {xn} in X.

Definition 34. (see also [30]) The iteration procedure xn+1 = ξ(T, xn) is said to
be T -stable with respect to T if {xn} converges to a unique fixed point q of T and
whenever {yn} is a sequence in X with

lim
n→∞

‖yn+1 − ξ(T, xn)‖K = θ

we have lim
n→∞

yn = q.

Theorem 35. Let X be a tvs-cone normed space and T be a weak contraction
(satisfying (w1)) with v = q ∈ F (T ) 6= ϕ, in addition, whenever {yn} is a sequence
with lim

n→∞
‖yn+1 − Tyn‖K = θ, then the Picard iteration defined in (p1) is T -stable.

Proof. We will show that the sequence {yn} with lim
n→∞

‖yn+1 − ξ(T, xn)‖K = θ,

satisfies lim
n→∞

yn = q.

We have

‖yn+1 − q‖K 4 ‖yn+1 − Tyn‖K + ‖Tyn − q‖K
4 ‖yn+1 − Tyn‖K + δ ‖yn − q‖K + L ‖yn − Tyn‖K
= δ ‖yn − q‖K + (‖yn+1 − Tyn‖K + L ‖yn − Tyn‖K)

= δan + bn,

where an = ‖yn − q‖K and bn = (‖yn+1 − Tyn‖K + L ‖yn − Tyn‖K).
Using Lemma 18, we have an → θ as n→∞. Thus, lim

n→∞
yn = q.
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[5] Radenović, S, Kadelburg Z, Janković, S: On cone metric spaces. A survey, Nonlinear Anal.

74 (2011), 2591-260.
[6] Rezapour, SH, Khandani, H, Vaezpour, SM: Efficacy of cones on topological vector spaces

and application to common fixed points of multifunctions. Rendiconti del Circolo Matematico
di Palermo. 59 (2010), 185–197.

[7] Rudin, W: Functional Analysis. McGraw-Hill, Inc. USA. 1973.

[8] Schaefer, H, H, Wolff, M, P: Topological vector spaces, 2nd Edition. 1999 Springer-Verlag
New York, Inc.

[9] Arshad, M, Azam, A and Vetro, P, Some common fixed point results in cone metric spaces,

Fixed Point Theory Appl. 2009 (2009), Article ID 493965.
[10] Azam, A, Arshad, M, Beg, I: Common fixed points of two maps in cone metric spaces. Rend.

Circ. Mat. Palermo 57 (2008), 433–441.

[11] Haghi, RH, Rezapour, S, Shahzad, N: Some fixed point generalizations are not real general-
izations. Nonlinear Analysis: Theory, Methods & Applications. 74(5)(2011), 1799-1803.



TOPOLOGICAL VECTOR-SPACE VALUED CONE BANACH SPACES 219

[12] Khani, M, Pourmahdian, M: On the metrizability of cone metric spaces. Topology Appl.
158(2)(2011), 190–193.

[13] Rezapour, SH: Best Approximations in Cone Metric Spaces. Mathematica Moravica.

11(2007), 85–88.
[14] Rezapour, SH, Hamlbarani, R: Some notes on paper ”Cone metric spaces and fixed point

theorems of contractive mappings”. J. Math. Anal. Appl. 345(2008), 719–724.

[15] Al-Rawashdeh, A., Shatanawi, W. and Khandaqji, M: Normed Ordered and E-Mertic Spaces,
International Journal of Mathematics and Mathematical Sciences, 2012(2012), Article ID

272137.
[16] Karapınar, E: Fixed Point Theorems in Cone Banach Spaces. Fixed Point Theory and Ap-

plications. 2009(2009), Article ID 609281.

[17] Abdeljawad, T, Karapinar, E, Tas, K: Common fixed point theorems in cone Banach space.
Hacettepe Journal of Mathematics and Statistics, Volume 40 (2) (2011), 211 – 217.

[18] Mutlu, A, Yolcu, N: Fixed point theorems for φp-operator in cone Banach spaces. Fixed Point

Theory and Applications 2013(2013), Article ID 56.

[19] Yousefi, B, Yadegarnejad, A, Kenary, HA, Park, C: Equivalence of semistability of Pi-
card, Mann, Krasnoselskij and Ishikawa iterations. Fixed Point Theory and Applications,

2014(2014), Article ID 5.

[20] Berinde, V: On the approximation of fixed points of weak contractive mappings. Carpathian
J. Math, 19(1)(2003), 7-22.

[21] Alghamdi, M A, Berinde, V, Shahzad, N: Fixed points of multivalued nonself almost con-

tractions. Journal of Applied Mathematics, 2013.
[22] Assad, N. A: A fixed point theorem in Banach space. Publications de l’Institut Mathématique
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