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Abstract. In this paper, we study the products of finitely many resolvents of monotone operators and convex functions

in the settings of Hadamard space. We propose an iterative method for finding products of finitely many resolvents of

monotone operators, convex functions and fixed points of k-strictly pseudocontractive mappings. A strong convergence

result of our proposed algorithm was established without imposing any strict conditions on our operators. We provide

some consequences of our result and display a numerical example to illustrate the performance of our result. Our result

complements and extends some related results in the literature.

1. Introduction

Let X be a Hadamard space and let Z be a nonempty, closed and convex subset of X. A point

x ∈ Z is said to be a fixed point of a nonlinear mapping U : X → X, if x = Ux. We denote by

F(U), the set of all fixed points of U. The approximation of fixed points of nonlinear operators and

different optimization problems has been of great importance in the field of nonlinear functional

analysis due to its extensive applications in diverse mathematical problems such as game theory,

signal processing, fuzzy theory, inverse problems and many others, (see [4, 11, 16, 20–22] and

the references contained in). It is one of most flourishing areas of research in mathematics that

has engaged prosperous development and has been a major source of attraction for researchers

working in this direction.
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The theory of fixed point plays a crucial role in approximating other optimization problems. It has

been seen in the literature that optimization problems such as monotone inclusion, equilibrium,

variational inequalities and convex minimization problems can be solved using the fixed point

approach. The minimization problem (in short, MP) is to find x ∈ X such that

h(x) = min
y∈X

h(y), (1.1)

where h : X → (−∞,∞] is a proper, convex and lower semi-continuous function. The Moreau-

Yosida resolvent Rh
λ : X → X of a proper, convex and lower semi-continuous function h in X is

defined as follows:

Rh
λ(x) = min

y∈X

[
h(y) +

1
2λ

d2(y, x)
]
, ∀ x ∈ X, λ > 0. (1.2)

It is known that Rh
λ which is the resolvent of a lower semi-continuous function h in X is well

defined and non-expansive for λ > 0 (see [6]). Several iterative methods have been employed

to approximate solution of (1.2). The Proximal Point Algorithm (PPA) is known to be one of the

most effective method for solving MP (1.2). This method was introduced by Martinet [17] in 1970

and further developed by Rockerfellar [24] in the settings of real Hilbert space H as follows: Find

x1
∈ H such that

xk+1 = min
y∈X

(
h(y) +

1
2λk
‖y− xk

‖
2
)
, (1.3)

where λk > 0 for all k ≥ 1. It was established in [24] that if h has a minimizer in H and
∞∑

k=1
λk = ∞,

then the sequence {xk
} generated iteratively by (1.3) converges weakly to a minimizer of h. In order

to establish a strong convergence result, Kamimura and Takahasi [15] combined the PPA together

with the Halpern’s algorithm for approximating the solution of (1.2) as follows:u, x0
∈ H

xk+1 = αku + (1− αk)Rk
λxk.

(1.4)

The PPA was later introduced and studied in CAT(0) spaces by Bačak [5] for approximating a

solution of MP (1.2), using the following iterative method: For arbitrary x1
∈ X, the sequence {xk

}

is defined by

xk+1 = min
y∈X

(
h(y) +

1
2λk

d2(y, xk)

)
, (1.5)

where λk > 0 for all k ≥ 1. Bačak [5] established that {xk
} ∆-converges to a minimizer of h under the

condition that h has a minimizer in X and
∞∑

k=1
λk = ∞. In 2017, Suparatulatorn et al. [26] proposed

the following Halpern iterative method together with PPA for solving MP (1.2) and fixed point of



Int. J. Anal. Appl. (2025), 23:185 3

a nonexpansive mapping T as follows:
u, x1

∈ X

yk = min
y∈X

(
h(y) + 1

2λk d2(y, xk)

)
xk+1 = αku + (1− αk)Tyk.

(1.6)

They proved a strong convergence result using the following conditions:

(i)
∞∑

k=1
|λk
− λk+1

| < ∞,

(ii)
∞∑

k=1
|αk
− αk+1

| < ∞,

(iii) lim
k→∞

αk = 0 and
∞∑

k=1
αk = ∞.

For more iterative methods for solving MP (1.2), readers should consult ( [1, 2, 4, 9, 12] and the

references therein).

Let X be a complete CAT(0) space with dual X∗. A multivalued operator B : X→ 2X∗ with domain

Dom(B) = {x ∈ X : Bx = ∅} is monotone (see [10]) if and only if for all x, y ∈ Dom(B), x∗ ∈ Bx, y∗ ∈
By, we have

〈x∗ − y∗,−→yx〉 ≥ 0. (1.7)

The resolvent of the operator B of order µ > 0 is the multivalued operator JB
µ : X→ 2X defined by

JB
µ := {z ∈ X : [

1
µ
−→zx ∈ Bz]}. (1.8)

For µ > 0, the operator B satisfies the range conditions if Dom(JB
µ) ∈ X (see [10]). The theory of

monotone operators plays a crucial role in analysis and numerical solutions of convex minimization

problems. It is a valuable tool used in the study of gradient and subdifferential mappings and

other mappings that appear in many problems, such as optimization, equilibrium or in variational

inequality problems. In the case of real Hilbert spaces, the problem of finding zeros of monotone

operators has been investigated by several authors (see [3, 4, 11, 13, 15, 18, 25]). One of the most

important problems in monotone operator theory is the problem of finding a zero of a monotone

operator for which is defined by

find x ∈ Dom(B) : 0 ∈ Bx, (1.9)

and sometimes called Monotone Inclusion Problem (MIP) with solution set B−1(0). In the setting

of real Hilbert spaces, Martinet [17] and Rockellar [24] defined the PPA for solving MIP as follows:

0 ∈ B(xk+1) + µk(xk+1
− xk), k = 0, 1, 2, · · · (1.10)

where {µk
} is a sequence of positive real numbers. Rockfellar [24] established that the sequence

{xk
} generated by the PPA converges weakly to a zero of monotone operator B provided that µk

≥ 0

for each k ≥ 1. In 2017 Ranjbar and Khatibzadeli [23] extended the study of monotone operators

and their resolvents from the setting of real Hilbert spaces to CAT(0) spaces. They proposed the
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following iterative method to approximate solution of (1.9) and established a strong convergence

result as follows: u, x0
∈ X

xk+1 = βku⊕ (1− βk)JB
µkx

k.
(1.11)

where µk
∈ (0,∞) and {βk

} ⊂ (0, 1). Since the inception of (1.9) in CAT(0) space, several authors

have considered solving (1.9) in the setting of a Hadamard space. In 2019, Okeke and Izuchukwu

[19] introduced a Halpern method to approximate the solution of the resolvents of monotone

operators and convex functions due to its numerous applications in real life problems. They

established a strong convergence result for approximating the solution of the composition of (1.5)

and (1.7) using the following iterative method:
u, x0

∈ X

yk = JB
µ ◦Rh

λ(x
k)

xk+1 = βku⊕ (1− βk)Tyk, k ≥ 0

(1.12)

where λ,µ ∈ (0,∞) and {βk
} ⊂ (0, 1).

Our contributions is stated as follows:

(1) We extend the results of [24] and [15] from Hilbert spaces to Hadamard spaces.

(2) The results in [5,19,23,26] are special cases of the result discussed in this manuscript as we

considered a finitely many resolvents of monotone operators and convex functions.

(3) We considered a k-strictly pseudocontractive mapping which generalizes the nonexpansive

mapping considered in [19, 26].

Spurred by the result of ( [1, 3, 8, 18, 19, 23, 25]), we introduce a Halpern method together with

the PPA to approximate solutions of products of finitely many resolvents of monotone operators

and convex functions in the setting of Hadamard spaces. Using our proposed iterative method,

we establish a strong convergence theorem for approximating solutions of finite family of k−
strictly pseudocontrative mappings, finitely many resolvents of monotone operators and convex

functions. Lastly, we state some consequences of our main result and display some numerical

example to show the behaviour of our main result.

2. Preliminaries

In this section we recall some results and definitions that will be needed in our main results.

Definition 2.1. Let X be a Hadamard space. A nonlinear mapping U is said to be:

(1) a contraction, if there exists k ∈ (0, 1) such that

d(Ux, Uy) ≤ kd(x, y),∀x, y ∈ X,

if k = 1, then U is called nonexpansive.
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(2) k-strictly pseudo-contractive, if p ∈ F(U) and k ∈ (0, 1), then

d2(Ux, p) ≤ d2(x, p) + kd2(x, Ux), ∀ x ∈ X.

Let X be a Hadamard space. A mapping h : X→ (−∞,∞) is said to be convex, if

h(λx⊕ (1− λ)y) ≤ λh(x) + (1− λ)h(y) ∀x, y ∈ X, λ ∈ (0, 1).

h is proper, if Dom(h) is nonempty. The mapping h : Dom(h)→ (−∞,∞] is lower semicontinuous

at a point x ∈ Dom, if

h(x) ≤ lim inf
n→∞

h(xn). (2.1)

Lemma 2.1. [27] Let X be a CAT(0) space, {v1, v2, ..., vm} ⊂ X and {β1, β2, ...βm} ⊂ (0, 1) with
m∑

j=0
β j = 1.

Then

d2

 m∑
j=1

β jv j, x

 ≤ m∑
j=1

β jd2(v j, x) −
m∑

j,k=1, j,k

β jβkd2(v j, vk).

Lemma 2.2. [28] Let X be a Hadamard space . Then for all v, x, y, z ∈ X and t ∈ [0, 1], we have
(1) d (tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z) ,
(2) d2 (tx⊕ (1− t)y, z) ≤ td2(y, z) − t(1− t)d2(x, z) ,
(3) d2 (z, tx⊕ (1− t)y) ≤ t2d2(z, x) + (1− t)d2(z, y) + 2t(1− t)〈−→zx,−→zy〉.

Lemma 2.3. [28] Every bounded sequence in a Hadamard space has a ∆-convergence subsequence.

Definition 2.2. Let C be a nonempty,closed and convex subset of a Hadamard space X. A mapping
U : C→ C is said to be ∆-demiclosed at 0, if for any bounded sequence {xk

} ⊂ X such that ∆ − lim
k→∞

xk = x

and lim
k→∞

d
(
xk, Uxk

)
= 0, then x = Ux.

Lemma 2.4. [30] Let C be a nonempty, closed and convex subset of a Hadamard space X and U : X→ X
be a σ-strictly pseudocontractive mapping, then I −U is demiclosed at 0.

Remark 2.1. [13] Suppose X is a Hadamard space and JB
µ is the resolvent of the monotone operator

B : X→ 2X∗ of order µ > 0 then

d2
(
x, JB

µy
)
+ d2

(
JB
µy, y

)
≤ d2 (x, y) ,

for all x ∈ B−1(0) and y ∈ Dom(JB
µ).

Lemma 2.5. [32] Let X be a Hadamard space and h : X → (−∞.∞] be a proper convex and lower
semi-continuous function. Then for all x, y ∈ X and λ > 0, we have

1
2λ

d2
(
Rh
λu, y

)
−

1
2λ

d2 (u, y) +
1

2λ
d2

(
u, Rh

λu
)
+ h

(
Rh
λu

)
≤ h(y).
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Lemma 2.6. [13] Let X be a Hadamard space and X∗ be its dual space. For each j = 1, 2, ..., m, let
h j : X → (−∞,∞], j = 1, 2, ..., N be a proper,convex and lower semi-continuous functions. For each
j = 1, 2, · · · , N, let B j : X → 2X∗ be a multivalued monotone mappings that satisfy the range conditions.
Then

F
(
∆hm
λ
◦ψBN

µ

)
=

 N⋂
j=1

B−1
j (0)

⋂
 m⋂

j=1

arg min
y∈X

h j(y)

 ,

where ∆m
λ = Rhm

λ
◦Rhm−1

λ
◦ · · · ◦Rh2

λ
◦Rh1

λ
, ∆0

λ
= I,ψN

µ = JBN
µ ◦ JBN−1

µ ◦ · · · ◦ JB2
µ ◦ JB1

µ ,ψ0
µ = I,µ,λ ∈ (0,∞).

Lemma 2.7. [13] Let X be a Hadamard space, {xk
} be a sequence in X and x ∈ X. Then sequence {xk

}

∆-converges to x if and only if lim sup
k→∞

〈
−−→
xkx,−→yx〉 ≤ 0,∀y ∈ X.

Lemma 2.8. [31] Let {gk
} be a sequence of nonnegative real numbers, {rk

} be a sequence of real numbers in

(0, 1) such that
∞∑

k=1
rk = ∞ and {vk

} be a sequence of real numbers. Assume that

gk+1
≤

(
1− rk

)
gk + rkvk,∀n ≥ 1,

if lim sup
n→∞

vkn ≥ 0 for every subsequence {gkn} of {gk
} satisfying the condition:

lim sup
n→∞

(
gkn − gkn+1

)
≤ 0,

then lim
k→∞

gk = 0 .

3. Main Results

Theorem 3.1. Let X be a Hadamard space and X∗ be its dual space. Let B j : X→ (−∞,∞], j = 1, 2, · · · , m
be a proper,convex and lower semi-continuous functions. Let U j, j = 1, 2, · · · , m be a finite fam-
ily of σ j-strictly pseudocontractive mappings for some 0 < σ j < 1 and h j : X → 2X∗ , j =

1, 2, · · · , N be a multivalued monotone mappings that satisfy the range conditions. Assume that

Ω =
m⋂

j=1

(
F(U j)

⋂
arg min

y∈X
B j(y)

)⋂  N⋂
j=1

h−1
j (0)

 is nonempty; For arbitrary x1, u ∈ X, let the sequence

{xk
} be generated iteratively by 

wk =
(
1− αk

)
xk
⊕ αku

uk = ∆m
λ ◦ψ

N
µ (wk)

xk+1 = βk,0uk
⊕

m∑
j=1
⊕βk, jU juk

(3.1)

where βk,0
⊂ [a, b] for some a, b ∈ (σ j, 1), αk

∈ (0, 1) satisfying
m∑

j=0
βk, j = 1 and

∆m
λ = Rhm

λ
◦ Rhm−1

λ
◦ · · · ◦ Rh2

λ
◦ Rh1

λ
, ∆0

λ
= I,ψN

µ = JBN
µ ◦ JBN−1

µ ◦ · · · ◦ JB2
µ ◦ JB1

µ ,ψ0
µ = I,µ,λ ∈ (0,∞),

satisfying the following condition:
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(1) lim
k→∞

αk = 0, and
∞∑

k=1
αk = ∞.

Then {xk
} converges strongly to p = PΩu, where PΩ is the metric projection of X.

Proof. Let p ∈ Ω, then we have from (3.1) and Lemma 2.8 that

d2
(
xk+1, p

)
=d2

βk,0uk
⊕

m∑
j=1

⊕βk, jU juk, p


≤ βk,0d2

(
uk, p

)
+

m∑
j=1

⊕βk, jd2
(
U juk, p

)
− βk,0

m∑
j=1

βk, jd2
(
uk, U juk

)
≤ βk,0d2

(
uk, p

)
+

m∑
j=1

(
d2

(
uk, p

)
+ σ jd2

(
uk, U juk

))
− βk,0

m∑
j=1

βk, jd2
(
uk, U juk

)
= d2

(
uk, p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
(3.2)

= d2
(
∆hm
λ
ψBN
µ (wk), p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
...

≤ d2
(
ψBN
µ wk, p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
≤ d2

(
ψBN−1
µ wk, p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
...

≤ d2
(
wk, p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
(3.3)

≤ d2
(
wk, p

)
(3.4)

≤

(
1− αk

)
d2

(
xk, p

)
+ αkd2 (u, p)

≤ max{d2
(
xk, p

)
, d2 (u, p)}. (3.5)

Hence {xk
} is bounded, consequently {wk

} and {uk
} are also bounded.

Furthermore, using Lemma 2.8 and (3.4), we obtain

d2
(
xk+1, p

)
≤d2

(
wk, p

)
−

(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
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≤ (αk)2d2 (u, p) +
(
1− αk

)2
d2

(
xk, p

)
+ 2αk

(
1− αk

)
〈
−→up,
−−→

xkp〉 −
(
βk,0
− σ j

) m∑
j=1

βk, jd2
(
uk, U juk

)
(3.6)

≤

(
1− αk

)2
d2

(
xk, p

)
+ αk

[
αkd2 (u, p) + 2

(
1− αk

)
〈
−→up,
−−→

xkp〉
]

=
(
1− αk

)
d2

(
xk, p

)
+ αkΘk, (3.7)

where Θk = αkd (u, p) + 2
(
1− αk

)
〈
−→up,
−−→
xkp〉. From Lemma 2.8, it suffices that

lim sup
n→∞

(
d2

(
xkn , p

)
− d2

(
xkn+1 , p

))
≤ 0. (3.8)

To establish this, suppose {d(xkn , p)} is a subsequence of {d
(
xk, p

)
}, then

lim sup
n→∞

(
d2

(
xkn , p

)
− d2

(
xkn+1, p

))
= lim sup

n→∞

(
d
(
xkn , p

)
− d

(
xkn+1, p

)) (
d
(
xkn , p

)
+ d

(
xkn+1, p

))
≤ 0.

Now from (3.6) and (3.8) and condition (1) of (3.1), we set

lim sup
n→∞

(βkn,0
− σ j

) m∑
j=1

βkn, jd2
(
ukn , U jukn

)
≤ lim sup

n→∞

(
(αkn)2d2 (u, p) +

(
1− αkn

)
d2

(
xkn , p

)
− d2

(
xkn+1 , p

))
+ lim sup

n→∞

(
2αkn

(
1− αkn

)
〈
−→up,
−−→

xknp〉
)

= lim sup
n→∞

(
d2

(
xkn , p

)
− d2

(
xkn+1 , p

))
= − lim inf

n→∞

(
d2

(
xkn+1 , p

)
− d2

(
xkn , p

))
≤ 0. (3.9)

Using the condition on βk,0, we obtain that

lim
n→∞

d
(
ukn , U jukn

)
= 0. (3.10)

It is obvious from Algorithm 3.1 and condition (1) of Algorithm (3.1) that

d
(
xkn+1, ukn

)
≤ βk,0d

(
uk, uk

)
+

m∑
j=1

βk, jd
(
U jukn , ukn

)
→ 0, n→∞, (3.11)

and

d
(
wkn , xkn

)
≤ αknd

(
u, xkn

)
→ 0, n→∞. (3.12)
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Using Remark 2.1 and (3.12), we get

d2
(
uk, ∆hm−1

λ
ψBN
µ wk

)
= d2

(
Rhm
λ
(∆hm−1

λ
ψBN
µ wk), ∆hm−1

λ
ψBN
µ wk

)
≤ d2

(
∆hm−1
λ

ψBN
µ wk, p

)
− d2

(
Rhm
λ
(∆hm−1

λ
ψBN
µ wk, p

)
...

≤ d2
(
wk, p

)
− d2

(
xk+1, p

)
≤ d2

(
wk, xk

)
+ d2

(
xk, p

)
+ 2d

(
wk, xk

)
d
(
xk, p

)
− d2

(
xk+1, p

)
= d2

(
wk, xk

)
+ 2d

(
wk, xk

)
d2

(
xk, p

)
+

[
d2

(
xk, p

)
− d2

(
xk+1, p

)]
→ 0, n→∞.

(3.13)

Thus

lim
n→∞

d2
(
ukn , ∆hm−1

λ
ψBN
µ wkn

)
= 0. (3.14)

Following the same argument as in (3.14) and applying Remark 2.1, we get

d2
(
∆m−1
λ ψN

µwkn , ∆m−2
λ ψN

µwkn
)

≤ d2
(
∆m−2
λ ψN

µwkn , p
)
− d2

(
∆m−1
λ ψN

µwkn , p
)

...

≤ d2
(
wkn , p

)
− d2

(
ukn , p

)
≤ d2

(
wkn , p

)
− d2

(
xkn+1, p

)
≤ d2

(
wkn , xkn

)
+ 2d

(
wkn , xkn

)
d
(
xkn , p

)
+

[
d2

(
xkn , p

)
− d2

(
xkn+1, p

)]
→ 0, n

→∞. (3.15)

Thus by continuing the process in the same manner, we obtain that

lim
n→∞

d2
(
∆hm−2
λ

ψBN
µ wkn , ∆hm−2

λ
ψBN
µ wkn

)
= · · · = lim

n→∞
d2

(
∆h1
λ
ψBN
µ wkn ,ψBN

µ wkn
)
= 0. (3.16)

From Lemma 2.5, we have
1

2µd2
(
ψBN
µ wkn , p

)
−

1
2µd2

(
ψBN−1
µ wkn , p

)
+ 1

2µd2
(
ψBN−1
µ wkn ,ψBN

µ p
)
+ h(ψBN

µ wkn) ≤ h(p).

Since h(p) ≤ h(ψBN
µ wkn), we have

d2
(
ψBN
µ wkn ,ψBN−1

µ wkn
)
≤ d2

(
ψBN−1
µ wkn , p

)
− d2

(
ψBN
µ wkn , p

)
...

≤ d2
(
wkn , p

)
− d2

(
ukn , p

)
≤ d2

(
wkn , p

)
− d2

(
xkn+1, p

)
≤ d2

(
wkn , xkn

)
+ 2d

(
wkn , xkn

)
d
(
xkn , p

)
+

[
d2

(
xkn , p

)
− d2

(
xkn+1, p

)]
→ 0, n→∞.

(3.17)
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Following the same approach as in (3.17), we can prove that

lim
n→∞

d2
(
ψBN−1
µ wkn ,ψBN−2

µ wkn
)
= · · · = lim

n→∞
d2

(
ψB2
µ wkn ,ψB1

µ wkn
)
= d2

(
ψB1
µ wkn , wkn

)
= 0. (3.18)

Hence

d
(
ukn , wkn

)
≤ d

(
ukn , ∆hm−1

λ
ψBN
µ wkn

)
+ d

(
∆hm−1
λ

ψBN
µ wkn , ∆hm−2

λ
ψBN
µ wkn

)
+ · · ·+ d

(
∆h1
λ
ψBN
µ wkn ,ψBN

µ wkn
)

+ d
(
ψBN
µ wkn ,ψBN−1

µ wkn
)
+ d

(
ψBN−1
µ wkn ,ψBN−2

µ wkn
)
+ · · ·+ d

(
ψB1
µ wkn , wkn

)
,

which implies from (3.13)-(3.18) that

lim
n→∞

d2
(
ukn , wkn

)
= 0. (3.19)

Using (3.13) and (3.19), we obtain that

lim
n→∞

d2
(
ukn , xkn

)
= 0. (3.20)

Also, from (3.14) and (3.20), we get

lim
n→∞

d2
(
xkn+1, xkn

)
= 0. (3.21)

since {xkn} is bounded, then from Definition 2.2, there exists a subsequence {xknj} of {xkn} such that

∆ − lim
j→∞
{xknj} = q. Also, using (3.13) and (3.21), there exist a subsequence {wknj} of {wkn} and {uknj}

of {ukn} such that ∆ − lim
j→∞
{wknj} = q and ∆ − lim

j→∞
{uknj} = q respectively. Using (3.11) and Definition

(2.2), we obtain that q ∈
m⋂

j=1
F(U j). Also, since ∆m

λ ◦ψ
N
µ is nonexpansive. Thus it follows from (3.20)

and Lemma (2.6) that

q ∈ F
(
∆m
λ ◦ψ

N
µ

)
=

 N⋂
j=1

B−1
j (0)

⋂  m⋂
j=1

arg min
y∈X

h j(y)

. Hence, we conclude that q ∈ Ω.

Now, for arbitrary u ∈ X, we obtain from Lemma (2,10), that

lim sup
j→∞

〈
−→up,
−−→

xkp〉 ≤ 0,

which implies from (3.7) that

lim sup
n→∞

(
αknd2(u, p) + 2(1− αkn)〈−→up,

−−→

xkp〉
)

. (3.22)

Thus lim sup
n→∞

Θkn ≤ 0. By substituting (3.22) into (3.4) and applying Lemma 2.8, we have that

d
(
xkn , p

)
= 0. Hence {xk

} → p ∈ Ω. �

The following results can be obtained as consequences of our main results.

By setting m = N = 1 in Theorem 3.1 we have the following result:

Corollary 3.1. Let X be a Hadamard space and X∗ be its dual space. Let h : X→ (−∞,∞] be a proper,convex
and lower semi-continuous functions. Let U j be σ-strictly pseudocontractive mappings and B : X → 2X∗

be a multivalued monotone mappings that satisfy the range conditions. Assume that
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Ω =
m⋂

j=1

(
F(U j)

)⋂
B−1(0)

⋂(
arg min

y∈X
h(y)

)
is nonempty; For arbitrary x1, u ∈ X, let the sequence {xk

} be

generated iteratively by 
wk =

(
1− αk

)
xk
⊕ αku

uk = ∆λ ◦ψµ(wk)

xk+1 = βk,0uk
⊕

m∑
j=1
⊕βk, jU juk,

(3.23)

where βk,0
⊂ [a, b] for some a, b ∈ (σ, 1), αk

∈ (0, 1) satisfying
m∑

j=0
βk, j = 1 and

satisfying the following condition:

(1) lim
k→∞

αk = 0, and
∞∑

k=1
αk = ∞.

Then {xk
} converges strongly to p = PΩu, where PΩ is the metric projection of X.

Setting ∆m
λ = I we get the following result:

Corollary 3.2. Let X be a Hadamard space and X∗ be its dual space. Let U j, j = 1, 2, , , m be a finite
family of σ j-strictly pseudocontractive mappings for some 0 < σ j < 1 and B j : X → 2X∗ , j = 1, 2, , , N be a
multivalued monotone mappings that satisfy the range conditions. Assume that

Ω =
m⋂

j=1
F(U j)

⋂ N⋂
j=1

B−1
j (0) is nonempty; For arbitrary x1, u ∈ X, let the sequence {xk

} be generated

iteratively by 
wk =

(
1− αk

)
xk
⊕ αku

uk = ψN
µ (wk)

xk+1 = βk,0uk
⊕

m∑
j=1
⊕βk, jU juk,

(3.24)

where βk,0
⊂ [a, b] for some a, b ∈ (σ j, 1), αk

∈ (0, 1) satisfying
m∑

j=0
βk, j = 1 and

ψN
µ = JBN

µ ◦ JBN−1
µ ◦ · · · ◦ JB2

µ ◦ JB1
µ ,ψ0

µ = I,µ ∈ (0,∞), satisfying the following condition:

(1) lim
k→∞

αk = 0, and
∞∑

k=1
αk = ∞.

Then {xk
} converges strongly to p = PΩu, where PΩ is the metric projection of X.

4. Numerical Example.

In this section, we present a numerical example of Theorem 3.1 to illustrate the performance of

our main result. Let X = R2 be endowed with the Euclidean ‖.‖2. Then, for j = 1, we define

B j : R2
→ R2 by

B1(x) = (x(1) − 2x(2), 2x(1) + x(2)).
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Clearly, B1 is a monotone operator.

Hence, we compute the resolvent of B1 as follows:

JB1
µ (x) =

(  1 0

0 1

+  µ −2µ

2µ µ

 )−1  x(1)

x(2)


=

1
1 + 2µ+ 5µ2

 1 + µ 2µ

−2µ 1 + µ

  x(1)

x(2)

 ,

which implies that

JB1
µ (x) =

(
(1 + µ)x(1) + 2µx(2)

1 + 2µ+ 5µ2 ,
(1 + µ)x(2) − 2µx(1)

1 + 2µ+ 5µ2

)
.

Thus, for j = 2, 3, we define B j : R2
→ R2 by

B2(x) = (x(1) − x(2), x(1) + x(2)), B3(x) = (x(2),−x(1)).

Thus, by similar argument as above, we obtain that

JB2
µ (x) =

(
(1 + µ)x(1) + µx(2)

1 + 2µ+ 2µ2 ,
(1 + µ)x(2) − µx(1)

1 + 2µ+ 2µ2

)
.

and

JB3
µ (x) =

(
x(1) − µx(2)

1 + µ2 ,
x(2) + µx(1)

1 + µ2

)
.

Now, define h1 : R2
→ (−∞,+∞] be defined by h1(x1, x2) = 100((x2 + 1) − (x1 + 1))2 + x2

1. Then

h1 is a proper, convex and lower semi-continuous function in (R2, d). We also define h j : R2
→

(−∞,+∞] by h j(x1, x2) = 70 jx2
1, j = 2, 3. Thus h j is a proper, convex and lower semi-continuous,

(see [9]). Let U j(x1, x2) = ( x1
2 j, x2

3 j), j = 1, ∀ k = 1
2 . Thus, U is strictly pseudo-contractive. Now,

take αk = 1
k+3 ,λ = 0.1 , µ = 0.75, βk,0 = k+1

10k+4 , βk, j =
( j+1)k+1
2(5k+2) , ∀ k ≥ 1, j = 1, 2, 3.

Case 1: u = [−0.7 1.2] and x1 = [−1.1 0.1];

Case 2: u = [2.1 1.2] and x1 = [0.8 2.0];

Case 3: u = [−2.1 1.2] and x1 = [0.8 − 2];

Case 4: u = [−3 − 5] and x1 = [−1 − 1].
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Figure 1. Top left: Case 1, Top right: Case 2, Bottom left: Case 3, Bottom right:

Case 4.
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