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Abstract. In this paper, we consider representations of the affine group that are induced by hypercomplex characters

specifically, double and dual characters instead of complex characters. The double and dual number systems provide a

rich algebraic structure that allows for the development of generalized representations, extending beyond the complex

Hilbert spaces. We derive the hypercomplex representations by starting from certain subgroups of the affine group.

Then, we investigate how these representations act on vector spaces equipped with indefinite inner products, naturally

leading to the framework of Krein spaces.

1. Introduction

The affine group, denoted by Aff, is a non-commutative, locally compact Lie group of small-

est dimensionality. It consists of transformations of the real line of the form x → ax + b where

a ∈ R+, b ∈ R. The affine group arises naturally in mathematics and physics, as it describes trans-

formations involving both scaling and translation. Understanding affine group representations is

crucial for various branches of analysis, geometry, and mathematical physics. The unitary rep-

resentations of the affine group were first introduced by Gelfand and Naimark [10].The induced

representations of the affine group from a complex character were later developed in works such

as [4, 7].

Hypercomplex numbers are two-dimensional real, associative, and commutative algebras that

are isomorphic to one of three systems: the complex numbers, dual numbers, or double (split-

complex) numbers. The development of hypercomplex systems(including dual numbers, double

numbers, quaternions, and Clifford algebras) has significantly enriched various areas of math-

ematics and physics. Double numbers were first introduced in 1848 by James Cockle through

his work on tessarines (an early form of split-complex numbers ) [24]. Dual numbers were later
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introduced by Clifford in 1873 as a natural extension for describing infinitesimal transformations

in what he termed motor algebra [25]. Hypercomplex numbers have found diverse applications in

physics. Specifically, dual numbers offer an effective algebraic framework for classical mechanics

and kinematics, where they model infinitesimal displacements and derivatives. In contrast, dou-

ble numbers underpin the structure of hyperbolic quantum mechanics, an alternative to standard

quantum theory that uses an indefinite metric [3, 8, 12].

In this paper, we focus on representations of the affine group using only dual and double

numbers. The geometric spaces associated with these number systems are often categorized as

elliptic, parabolic, and hyperbolic. The elliptic case corresponds to the upper half-plane model

based on complex numbers. In parallel, the parabolic and hyperbolic cases correspond to the

upper half-planes modeled by dual and double numbers, respectively.

2. Double and Dual Numbers

Definition 2.1. [6, 16] Double numbers is given by O = {a + jb : j2 = 1 and a, b ∈ R}. The triple
(O,+.×) is a commutative ring with identity where addition and multiplication are defined as follows:

(1) (a + jb) + (a1 + jb1) = (a + a1) + j(b + b1),

(2) (a + jb) × (a1 + jb1) = (aa1 + bb1) + j(ab1 + a1b).

For w = a + jb ∈ O, the conjugate is given by w̄ = a − jb, then the modulus is |w|2 = ww̄ = a2
− b2.

In geometry the double numbers plane is a hyperbolic such that e jt = cosh t + j sinh t, where the unit
hyperbola is given by |w|2 = 1.

Remark 2.1. A distinctive feature of double numbers algebra is the existence of zero divisors:

j± =
1
√

2
(1± j), (2.1)

which satisfy j+ j− = 0 and j2
±
= j±. This implies that the double numbers are algebraically isomorphic to

R×R, with the idempotents j±.

Definition 2.2. [11, 16] Dual numbers is given by D = {a + εb : ε2 = 0 and a, b ∈ R}, and the triple
(D,+,×) is a commutative ring with identity where the addition and multiplication is defined as follows:

(1) (a + εb) + (a1 + εb1) = (a + a1) + ε(b + b1),

(2) (a + εb) × (a1 + εb1) = aa1 + ε(ab1 + a1b).

For w = a + εb ∈ D, the conjugate is given by w̄ = a − εb and the modulus is |w|2 = ww̄ = a2. Also, in
geometry dual numbers plane is parabolic such that eεt = 1 + εt, where the unit strip is given by a = ±1.

2.1. Inner product Structures over Double and Dual Numbers. The dobule number algebra

O contains idempotent elements j± (2.1). Also, the dual number algebra D contains nilpotent

elements, specifically ε, satisfying ε2 = 0. Due to the presence of zero divisors and idempotents in

O, and nilpotents in D, any inner product defined on these algebras is indefinite. As a result, the

appropriate framework for defining inner product structures on O and D is within the theory of

Krein spaces, which generalize Hilbert spaces to allow for indefinite inner products.
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Definition 2.3. [20,23] A Krein spaceK is a vector space equipped with indefinite inner product [., .], such
that there exists a direct sum decomposition K = K+

⊕
K−, where (K+, [., .]+) is a Hilbert spaces with

positive definite inner product and (K−,−[., .]−) is a Hilbert space with negative definite inner product. The
indefinite inner product onK is given as follows:

[x, y] = [x, y]+ − [x, y]−, (2.2)

for x = x+ + x−, y = y+ + y−, x±, y± ∈ K±.

Definition 2.4. [20,21] Let (K , [., .]) be a Krein space,with fundamental decompositionK = K+

⊕
K−,

then there exist a unique operators

P+ : (K , [., .])→ (K+, [., .]), P− : (K , [., .])→ (K−, [., .]),

defined as follows: P+(k) = K+ and P−(k) = k− for all k ∈ K , where k+ ∈ K+,k− ∈ K− and k = k+ + k−.

The operators P+ and P− are known as fundamental projectors. The operator J : (K , [., .]) → (K , [., .])

defined by J = P+
− P−. That is, Jk = P+k − P−k = k+ − K−. The operator J is called the fundamental

symmetry of the Krein spaceK associated with the fundamental decomposition.

Definition 2.5. [20, 21] Let (K , [., .) be a Krein space and J the fundamental symmetry associated with
the decompositionK = K+

⊕
K−. The function [., .]J : K ×K → C is defined as follows:

[x, y]J = [Jx, y], x, y ∈ K .

This function is referred to as the J-inner product and is usual positive definite inner product.

Theorem 2.1. [19,20] Let (K , [., .]) be a Krein space , and consider J as the fundamental symmetry linked
to the decompositionK = K+

⊕
K−. Then the following holds:

|[x, y]| ≤ ‖x‖J‖y‖J, x, y ∈ K .

Proposition 2.1. [19–21] In the Krein space (K , [., .]), the fundamental symmetry J determines a norm
onK , given by

‖x‖2J = [x, x]J, ∀x ∈ K . (2.3)

Then, the Hilbert spaces (K+, [., .]+) and (K−, [., .]−), have the following norm respectively:

‖x+‖2 = [x+, x+], ‖x−‖2 = [x−, x−], ∀x+ ∈ K+, x− ∈ K−.

Therefore,

‖x‖2J = ‖x
+
‖

2
+ + ‖x−‖2−, x = x+ + x− ∈ K .
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2.2. L2 Spaces over Double and Dual Numbers. We define square-integrable function spaces

over the of double and dual algebras as follows.

A function f : R2
→ O is written as

f (x) = f1(x) + j f2(x), with f1, f2 : R2
→ R,

where j2 = 1. The double numbers form a real commutative algebra with an indefinite inner

product:

[ f , f ] = ‖ f ‖2 =

∫
R2

f (x) f (x)dx

=

∫
R2

f1(x)2
− f2(x)2dx

=

∫
R2
| f (x)|2dx

(2.4)

We define the L2-space with respect to this indefinite inner product as a Krein space:

L2(R
2, O) :=

{
f = f1 + j f2 | f1, f2 ∈ L2(R

2)
}

.

A function f : R2
→ D is said to be square-integrable if it can be written as

f (x) = f1(x) + ε f2(x), with f1, f2 : R2
→ R,

and

[ f , f ] = ‖ f ‖2
∫

R2
| f1(x)|2 dx < ∞.

Since ε2 = 0, the dual component does not contribute to the norm. The space of such functions is

denoted by

L2(R
2, D) :=

{
f = f1 + ε f2 | f1, f2 ∈ L2(R

2)
}

.

These spaces generalize the classical L2 space to hypercomplex-valued functions, with double

numbers to indefinite norms and dual numbers leading to degenerate norms.

3. The Affine Group

An element of the affine group Aff [4,7] is denoted by (a, b) where a ∈ R+ and b ∈ R. The group

law on Aff is defined by

(a, b) ∗ (a′, b′) = (aa′, ab′ + b), (3.1)

where e = (1, 0) is the identity element and the inverse of (a, b) is given by (a, b)−1 = (a−1,−ba−1).

We can decompose the affine group as a semi-direct product Aff = A nN. The subgroup N is

a closed normal subgroup defined by {(1, b) : b ∈ R}, and identified with R through the mapping

(1, b)↔ b. The subgroup A = {(a, 0) : a > 0} is identified with R+ where (a, 0)↔ a, [5].

The affine group is a locally compact group thus it has a left Haar measure which is given as

follow:

dν(a, b) = a−2dadb, (3.2)
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and it is left invariant measure that is dν((a′, b′) ∗ (a, b)) = dν(a, b). In addition, we can obtain a

right Haar measure

dµ(a, b) = a−1dadb, (3.3)

which is right invariant.

Therefore, the affine group is a non-unimodular group, and the modular function of the group

is given by 4(a, b) = a−1 [5]. The measure on the subgroup A is the Haar measure da
a and on the

subgroup N is the Lebesgue measure db.

4. Induced Representations

In this section, we describe the construction of induced representations [2,5,7]. Let G be a group

H be a closed subgroup of G; then X = G/H is the left coset space. For a character χ : H → T,

where χ(h1h2) = χ(h1)χ(h2) and |χ(h)| = 1, let Vχ be the vector space of functions F : G → C

having the property:

F(gh) = χ(h)F(g), ∀g ∈ G, h ∈ H. (4.1)

The space Vχ is invariant under the left action of G, that is

Λ(g) : Vχ → Vχ, [Λ(g)F](g′) = F(g−1g′), g, g′ ∈ G. (4.2)

The restriction of the left action of G on the space Vχ is called the induced representation.

An equivalent realization of the above induced representation can be defined on the homoge-

neous space X = G/H. Let s : X → G, be a section map that is a right inverse of the natural

projection map p : G→ X, that is p ◦ s = IX. Then the left action of G on the homogeneous space

X is given by:

g · x = p(gs(x)),

where g ∈ G and x ∈ X.

The map r : G → H is defined by r(g) = s(p(g))−1g. Then each element g ∈ G has a unique

decomposition of the form g = s(p(g))r(g) [2].

Now, for a character χ of the subgroup H, introduce the lifting mapLχ : W(X)→ Vχ, as follows:

[Lχ f ](g) = χ(r(g)) f (p(g)), f ∈W(X),

where W(X) := { f : X → C} is the vector space of all complex functions on the homogeneous

space X = G/H. Let the pulling map P : Vχ →W(X), given by:

[PF](x) = F(s(x)).

Next, the operator πχ(g) on W(X) is given as follows:

πχ(g) := P ◦Λ(g) ◦Lχ. (4.3)

Thus, the representation πχ acts on W(X) via the following explicit formula:

[πχ(g) f ](x) = χ(r(g−1
∗ s(x))) f (g−1

· x). (4.4)
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5. Elliptic Representations of the Affine Group

By elliptic representations we mean the representation that is induced by a complex character.

The affine group has three non-conjugated subgroups {e}, N and A. Hence, we can obtain the

following representations [4]:

• the left regular representation which induced from the subgroup H = {e},[
Λ(a, b)F

]
(x, y) := F((a, b)−1

∗ (x, y)) = F
(

x
a

,
y− b

a

)
, (5.1)

where (x, y) ∈ Aff.

• the co-adjoint representation which induced from the subgroup N,

[ρχω(a, b) f ](x) =
√

ae2πibωt f (ax), (5.2)

where f ∈ L2(R, da).
• the quasi-regular representation which induced from the subgroup A,

[πχτ(a, b) f ](x) =
(1

a

)−iτ+ 1
2

f
(

x− b
a

)
, (5.3)

where f ∈ L2(R).

6. Hyperbolic and Parabolic Representations of the Affine Group

In this section, we construct hyperbolic and parabolic representations of the group Aff. We

consider the inductions from double character of the subgroups for the hyperbolic case and dual

character for the parabolic case.

6.1. Induced representation from the trivial subgroup. For the trivial subgroup H = {e}, the

homogeneous space is given by X = Aff/H ∼ Aff. Let L2(Aff, dν), be the space of double-valued

functions (for the hyperbolic case) or dual-valued functions (for the parabolic case) on Aff with

respect to the left Haar measure dν. The induced representation of the affine group onL2(Aff, dν),
is called the left regular representation and defined by the operator (5.1).

6.2. Induced representations from the subgroup N. In accordance with the general construction

in 4, we will obtain an induced representation constructed in the homogeneous space left X =

Aff/N using lifting and pulling maps. First, because the affine group is a semi-direct product of

subgroups N and A, there is a natural section map s for Aff/N � R+ in Aff. The map s is given as

follows:

s : R+ → Aff, where s(a) = (a, 0). (6.1)

This is the right inverse of the following natural projection map:

p : Aff→ R+, where p(a, b) = a. (6.2)
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Then, the unique decomposition of any (a, b) ∈ Aff, takes the following form:

(a, b) = (a, 0) ∗
(
1,

b
a

)
, (6.3)

and the map r : Aff→ N is given by

r(a, b) = s(a)−1
∗ (a, b) =

(
1,

b
a

)
. (6.4)

The action of the group Aff on the homogeneous space X = Aff/N from the left is expressed in in

terms of p and s as follows:

(a, b) : w 7→ (a, b) ·w = p((a, b) ∗ s(w)) = aw, (6.5)

where (a, b) ∈ Aff, w ∈ X

• For the hyperbolic representation, let ητ : N → O, be the double character of the subgroup

N, defined by the following:

ητ(1, b) = e jbτ, (6.6)

where j2 = 1, |ητ(1, b)| = 1, and τ, b ∈ R. This character induces a representation of the

affine group based in the space Lητ2 (Aff, N), which consists of the O- valued functions

Fτ : Aff→ O, with the properties:

Fτ(a, b) = ητ
(
1,

b
a

)
F(a, 0).

The norm is given by:

‖Fτ‖2A =

∫
R+

∣∣∣F(a, 0)
∣∣∣2 da

a
,

where F(a, 0) = f (a) ∈ L2(R+, da
a ) the space of O-valued functions on X. The space

L
ητ
2 (Aff, N), is invariant under the left Aff-shift . Then, we can obtain the hyperbolic

representation constructed in the left homogeneous space X = Aff/N, by using the formula

(4.4) as follows:

[ρητ(a, b) f ](x) = e j b
xτ f (

x
a
), (6.7)

where (a, b) ∈ Aff, t ∈ X and f ∈ L2(R, O).

Theorem 6.1. The operator ρητ (6.7) is isometry on the Krein space L2(R, O)

Proof. Let (a, b) ∈ Aff and f ∈ L2(R, O). Then

‖ρητ(a, b) f ‖2A =

∫
R+

∣∣∣ρητ(a, b) f (x)
∣∣∣2 dx

x

=

∫
R+

∣∣∣∣∣ e j b
xτ f

(x
a

)∣∣∣∣∣2 dx
x

=

∫
R+

∣∣∣ f (t)
∣∣∣2 dt

=‖ f ‖2A,
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where t = x
a and dt = dx

a . �

Performing the changing of variables t = x−1 in (6.7), we obtain the following expression:

[ρητ(a, b) f ](t) =
√

ae jbτt f (at).

where (a, b) ∈ Aff, t ∈ X and f ∈ L2(R, O).

• For the parabolic representation, let στ : N → D, be the dual character of the subgroup N,

expressed as:

στ(1, b) = eεbτ = 1 + εbτ, (6.8)

where ε2 = 0, |στ(1, b)| = 1, and τ, b ∈ R. This character induces a representation of the

group Aff constructed in the space Lστ2 (Aff, N), which consists of the D-valued functions

Fτ : Aff→ D, with the properties:

Fτ(a, b) = στ
(
1,

b
a

)
F(a, 0).

The measure on the homogeneous space X = Aff/N � A is da
a . Then, the norm is given as

follows:

‖Fτ‖2A =

∫
R+

∣∣∣F(a, 0)
∣∣∣2 da

a
,

where F ∈ L2(R+, da
a ) the space of D-valued function in X . The spaceLστ2 (Aff, N), is invari-

ant under the left Aff-shifts (5.1). By using the formula (4.4) the parabolic representation

acts on the space X = Aff/N via the following operators:

[ρστ(a, b)g](x) = (1 + εbτ
x
a
)g(x), (6.9)

where (a, b) ∈ Aff, x ∈ X and g ∈ L2(R, D).

Theorem 6.2. The operator ρστ (6.9) is isometry on the Krein space L2(R, D).

Proof. Applying the same technique used in proving Theorem6.1. �

Now, substituting t = x−1 into equation (6.9) yields the following formula:

[ρστ(a, b)g](t) =
√

a(1 + εbτt)g(at).

where (a, b) ∈ Aff, t ∈ X and g ∈ L2(R, D).

6.3. Induced representations from the subgroup A. In the following, we will obtain an equivalent

form of this induced representation constructed in the left homogeneous space X = Aff/A. Let s
be the section map from the homogeneous space Aff/A = R to the affine group, given by

s : R→ Aff, such that s(b) = (1, b), b ∈ R. (6.10)

The right inverse of s is the natural projection map, given as follows:

p : Aff→ R, where p(a, b) = b. (6.11)
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Therefore, the unique decomposition of any (a, b) ∈ Aff, takes the following form:

(a, b) = (1, b) ∗ (a, 0),

and the map r : Aff→ A is given by

r(a, b) = s(b)−1
∗ (a, b) = (a, 0). (6.12)

The Aff-action on the homogeneous space X = Aff/N from the left is defined in terms of p and s
as follows:

(a, b) : x 7→ (a, b) · x = ax + b, (6.13)

where (a, b) ∈ Aff, x ∈ X.

• For the hyperbolic representation, consider the double character σω : A → O, be of the

subgroup A defined as follows:

ηω(a, 0) = a jω, j2 = 0, ω ∈ R, (6.14)

where |ηω(a, 0)| = 1. This character induced a linear representation of the group Aff built

in the space Lηω2 (Aff) containing the functions Fω : Aff→ C with the property:

Fω(a, b) = ηω(a, 0)F(1, b).

The norm expressed as:

‖Fω‖2N =

∫
R

|F(1, b)|2db,

where F(1, b) = f (b) ∈ L2(R, db). This space is invariant under the left Aff-shift (5.1).

Then, the hyperbolic representation acts on the left homogeneous space X = Aff/A, via the

following operator:

[πηω(a, b) f ](x) =
(1

a

)− jω+ 1
2

f
(

x− b
a

)
, (6.15)

where (a, b) ∈ Aff, x ∈ X = Aff/A and f ∈ L2(R, O).

Theorem 6.3. The operator πηω (6.15) is isometry on the Krein space L2(R, O).

Proof. Let (a, b) ∈ Aff and f ∈ L2(R, O). Then

‖πηω f ‖2N =

∫
R

|πηω(a, b) f (x)|2dx

=

∫
R

∣∣∣∣∣∣∣
(1

a

)− jω+ 1
2

f
(

x− b
a

)∣∣∣∣∣∣∣
2

dx

=

∫
R

1
a

∣∣∣∣∣∣ f
(

x− b
a

)∣∣∣∣∣∣2 dx

=

∫
R

| f (t)|2dt = ‖ f ‖2N,

where t = x−b
a and dt = dx

a . �
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• For the parabolic representations,consider the dual character σω : A→ D, of the subgroup

A defined by:

σω(a, 0) = aεω, ε2 = 0, ω ∈ R, (6.16)

where |σω(a, 0)| = 1. This character induced a linear representation of the group Aff

constructed on the space Lσω2 (Aff) consisting of the functions Fω : Aff → D with the

property:

Fω(a, b) = σω(a, 0)F(1, b).

The norm is given by:

‖Fω‖2N =

∫
R

|F(1, b)|2db,

where F(1, b) = f (b) ∈ L2(R, db) the space of D-valued on X. This space is invariant under

the left Aff-shifts (5.1). Moreover, by using the formula (4.4) the parapolic representation

constructed in the left homogeneous space X = Aff/A, can be obtained as follows:

[πσω(a, b) f ](x) =
(1

a

)−εω+ 1
2

f
(

x− b
a

)
, (6.17)

where (a, b) ∈ Aff, v ∈ X = Aff/A and f ∈ L2(R, D).

Theorem 6.4. The operator πσω (6.17) isometry on the Krein space L2(R, D).

Proof. Proceeding as in the proof of Theorem 6.3. �

7. Conclusions

In this paper, we study representations of the affine group associated with three types of hyper-

complex units: complex, dual, and double numbers. In the complex case, these representations

are unitary, acting as isometries on the Hilbert space L2. In contrast, for dual and double numbers,

the corresponding representations are isometric with respect to an indefinite inner product, and

thus act on Krein spaces rather than Hilbert spaces.

A possible direction for future work is to investigate the extension of the complex representation

framework to the dual and double number cases, aiming to establish a connection between the

complex case and its hypercomplex counterparts. This approach is motivated by the fact that linear

representations which commute with scalar multiplication can naturally interact with additional

algebraic structures. In the complex case, the real vector space R2 acquires a complex structure via

the linear transformation

I : R2
→ R2, I2 = −E,

where E is the identity transformation of R2. This allows us to define complex scalar multiplication

by setting

iv = Iv, for v ∈ R2.

thus turning R2 into a complex vector space isomorphic to C. Similarly, since the algebras of

dual and double numbers are also two-dimensional real associative commutative algebras (and
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hence real vector spaces isomorphic to R2 ), they can be equipped with similar algebraic struc-

tures.This perspective provides a unified framework for studying hypercomplex representations of

the affine group in relation to the classical complex case. Additionally, exploring the irreducibility

of hypercomplex representations of the affine group and characterizing intertwining operators be-

tween hyperbolic (double number) and parabolic (dual number) representations present valuable

avenues for research. Furthermore, given the deep connections between hypercomplex-valued

affine group representations and quantum mechanics, it is worthwhile to investigate their physical

applications, particularly in relation to coherent states and the harmonic oscillator.
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