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ABSTRACT. The Gompertz distribution is widely used in medical and reliability studies, particularly for modeling 

mortality rates and failure data. However, it has limitations in capturing complex data behaviors, such as heavy tails 

and varying hazard rate shapes. This paper introduces the Odd Beta Prime-Gompertz (OBP-Gompertz) distribution, a 

four-parameter extension of the traditional Gompertz model. The OBP-Gompertz distribution offers flexibility in 

modeling various shapes of probability density functions, including right-skewed, left-skewed, heavy-tailed, light-

tailed, and unimodal distributions. Its hazard function can accommodate multiple forms, such as increasing, 

decreasing, bathtub-shaped, and inverted bathtub-shaped curves, making it well-suited for mortality rate data. The 

paper investigates key statistical properties, including moments, moment generating function, quantile function, Rényi 

and Tsallis entropy measures. Parameters are estimated using maximum likelihood estimation, and the model's 

robustness is assessed through Monte Carlo simulations. The OBP-Gompertz model is applied to three real-world 

COVID-19 mortality datasets from China, the Netherlands, and Nepal. The results demonstrate that the OBP-Gompertz 

model provides superior fits compared to the traditional Gompertz and other models. This work highlights the OBP-

Gompertz distribution as a valuable tool for survival analysis, reliability studies, and epidemiological research. 
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1. Introduction 

Statistical modeling of lifetime data plays an integral role across multiple disciplines, 

including engineering, biology, medicine, economics, and environmental sciences. The selection 

of an appropriate statistical distribution is critical to ensuring accurate and reliable modeling 

outcomes. Some widely used statistical distributions include the Gompertz, beta, logistic, 

Weibull, exponential, normal, and gamma models. Despite their usefulness, classical 

distributions often fall short in capturing real-world complexities such as extreme skewness, 

heavy tails, and high variability [1, 2]. These limitations necessitate the development of flexible 

models capable of addressing diverse data structures [3-5]. 

In biomedical research, skewness and kurtosis are common challenges arising from 

extreme values and outliers [6, 7]. Skewness refers to the asymmetry in data distributions, which 

may result in clustering on one side [8, 9]. For example, survival times of patients undergoing 

specific treatments often exhibit positive skewness due to the majority of patients having short 

survival times, while a few live significantly longer [10-13]. Negative skewness, on the other 

hand, may occur in physiological measurements like biomarker levels, where most values are 

high, but a few are unusually low due to specific health conditions [14-17]. Kurtosis, which 

measures the concentration of data in the tails, is another significant feature of biomedical 

datasets [18-21]. High kurtosis is often observed in clinical trials, reflecting the occurrence of rare, 

extreme reactions or outcomes [22, 23]. This behavior emphasizes the need for models that can 

effectively handle tail-heavy distributions to derive meaningful inferences about treatment 

efficacy and patient outcomes [24-28]. Additionally, biomedical data often exhibits considerable 

variability, driven by genetic diversity, environmental factors, lifestyle variations, and biological 

randomness [29-33]. This variability is further complicated by measurement errors and 

inconsistencies in data collection [34-36]. These challenges highlight the demand for advanced 

models capable of accurately describing such complex data structures [11, 37-40]. 

The Gompertz distribution is a well-established model for lifetime data and has been 

widely applied in various fields, particularly in demography, reliability analysis, and survival 

studies. First introduced by Gompertz [41], it is related to certain distributions within the Pearson 

family through a simple transformation. The Gompertz distribution has been extensively studied 

and applied in diverse fields. For instance, Johnson, et al. [42] utilized it for analyzing lifetime 

data, while Ohishi, et al. [43] explored its applications in computer science. Economos [44] applied 

the distribution in biological studies, and Bemmaor and Glady [45] used it in marketing science. 

Additional applications are discussed in studies by  [46-50].  The cumulative distribution function 

(CDF) of the Gompertz distribution is given by: 

( )
( )1

; , 1 , 0, 0, 0,
xe

M x e x


   
− −

= −                                                       (1) 

where 0    and 0   are the scale and shape parameters, respectively. 

The corresponding probability density function (PDF) is given by:  
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Despite its usefulness, the Gompertz distribution has limitations in its flexibility to 

capture diverse data behaviors, especially for datasets exhibiting heavy tails. Moreover, the 

classical Gompertz model struggles to represent certain data patterns, such as bathtub-shaped 

and unimodal hazard rates, limiting its broader applicability, see, for example [51-55]. Bathtub-

shaped hazard rates are characterized by high initial failure rates, followed by a period of 

stabilization and an eventual increase due to aging or wear-out effects [56]. Examples include 

human mortality rates and failure rates of certain mechanical systems. Similarly, unimodal 

hazard rates, where failure rates peak and then decline, are commonly observed in disease 

progression scenarios . For this reason, several generalizations of the Gompertz distribution have 

been developed by researchers to enhance its flexibility. Examples include the beta-Gompertz 

distribution [57], Gompertz-power series distributions [58], generalized Gompertz distribution 

[59], the three-parameter Gompertz distribution [60], unit-Gompertz distribution [61], Gompertz-

Lindley distribution [62], and generalized gamma-Gompertz distribution [63]. 

The Odd Beta Prime Generalized (OBP-G) family of distributions, proposed by Suleiman, 

et al. [64], has facilitated the introduction of several generalized distributions. These include the 

OBP-Weibull distribution by [65] and the OBP-Gumbel distribution by [66]. Other extensions 

include the OBP-Kumaraswamy distribution by [67], the OBP-inverted Kumaraswamy by [68], 

the OBP-Burr X distribution by [69], the OBP-Fréchet distribution by [70], and OBP-exponential 

distribution by [71].  The CDF of the OBP-G family is defined as: 
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( )

( )

( )

( )

;

1 ;

,

; , , , , 0, , ,
,

M x

M x

B

G x x
B





 

     
 

− +=                                        (3) 

where ( );M x   is the baseline CDF, 
( ) ( );

,
M x

B

   is the incomplete beta function, ( ),B    is the 

beta function, ,    are shape parameters, and  +  is the parameter of the parent model . The 

incomplete beta function 
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The corresponding PDF of the OBP-G family is defined as:  
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        (4) 

where ( );m x   is the baseline PDF. 
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The first objective of this paper is to introduce a new four-parameter distribution referred 

to as the OBP-Gompertz distribution. This new distribution is developed by combining the OBP-

G family and the traditional Gompertz model. The OBP-Gompertz distribution extends the 

Gompertz model, offering greater flexibility by accommodating heavy tails in the density 

function and exhibiting a versatile hazard function capable of taking forms such as bathtub-

shaped, increasing, decreasing, and unimodal. This enhanced flexibility makes it particularly 

suitable for analyzing complex biomedical data, where such hazard rate patterns are often 

observed. The primary motivation for this study is to develop a flexible statistical model capable 

of effectively analyzing COVID-19 mortality data from countries such as China, the Netherlands, 

and Nepal. Mortality data often exhibit diverse patterns, including right-skewed, left-skewed, 

heavy, or light tails. The OBP-Gompertz distribution is designed to handle these complexities, 

making it a robust tool for modeling such data. Fig. 1 shows the study plan. 

 

             FIGURE 1. Study framework. 
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The fundamental objectives in establishing the OBP-Gompertz distribution are as follows: 

1. To address variations in mortality data patterns, accommodate diverse characteristics such as 

right-skewed, left-skewed, heavy, or light tails, thereby enabling more accurate modeling of 

COVID-19 mortality data. 

2. To capture diverse hazard rate shapes, including increasing, decreasing, bathtub, and upside-

down bathtub patterns, which are vital for analyzing the complex dynamics of time-

dependent mortality trends. 

3. To enhance the fit for real-world datasets by generalizing the Gompertz distribution, allowing 

it to outperform many traditional statistical models when dealing with complex mortality 

data. 

4. To support public health and epidemiology research by providing a robust statistical tool for 

studying regional and temporal variations in COVID-19 mortality, enabling better 

understanding and decision-making. 

5. To investigate the statistical properties associated with the proposed model, including 

moments, linear representations, the quantile function, Rényi and Tsallis entropies, and the 

moment-generating function. 

6. To assess the performance of the OBP-Gompertz model parameters through maximum 

likelihood estimation and validation via Monte Carlo simulations. 

7. To demonstrate the application of the OBP-Gompertz distribution by analyzing COVID-19 

mortality data from China, the Netherlands, and Nepal, showcasing its ability to provide 

meaningful insights and enable effective cross-country comparisons. 

This paper is organized into seven sections. Section II introduces the OBP-Gompertz 

model and its distributional properties, including the hazard and survival functions. Section III 

delves into the structural characteristics of the model. Section IV outlines the methods for 

parameter estimation. Section V presents simulation studies to evaluate the robustness and 

efficiency of the model parameters. Section VI demonstrates the practical applicability of the OBP-

Gompertz model by applying it to COVID-19 mortality data from China, the Netherlands, and 

Nepal. Finally, Section VII concludes the paper with a summary of key findings and 

recommendations for future research. 

2. The OBP-Gompertz Distribution 

This section derives the OBP-Gompertz distribution by utilizing the OBP-G family. The 

expressions for the CDF, PDF, validity checks, survival function, and hazard function of the OBP-

Gompertz distribution are presented. Additionally, numerical and graphical representations of 

the CDF, PDF, survival function, and hazard function are provided, highlighting their unique 

and distinct shapes. 
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The CDF of the OBP-Gompertz distribution is expressed in the following equation. This 

representation is obtained by substituting the CDF specified in (1) with the CDF from (3): 
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 The PDF of the OBP-Gompertz distribution, substituting (1) and (2) into the general OBP-

G PDF in (4): 
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=       (6)                                                       

Figs. 2 and 3 illustrate the flexibility of the OBP-Gompertz distribution in modeling 

diverse data patterns. The CDFs in Fig. 2 highlight its ability to adapt to varying growth trends, 

from steep initial increases that plateau to more gradual, steady growth, reflecting the diverse 

progression of COVID-19 mortality rates across populations. Fig. 3, presenting the PDFs, further 

emphasizes this versatility, presenting shapes that are right-skewed, left-skewed, heavy-tailed, 

light-tailed, and moderately skewed. This adaptability is particularly relevant for modeling 

phenomena like COVID-19 mortality, where most cases are mild, but a smaller fraction exhibits 

severe or fatal outcomes. The presence of heavy tails also enables the model to account for rare 

but extreme events, such as unexpected spikes in mortality rates. Overall, the OBP-Gompertz 

distribution's ability to capture both common trends and outliers makes it a robust and promising 

tool for analyzing complex biomedical data. 

 

FIGURE 2. Possible shapes of the OBP-Gompertz CDF for various parameter combinations. 
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FIGURE 3. Possible shapes of the OBP-Gompertz PDF for various parameter combinations. 

In Table 1, the numerical results of the CDF and PDF of the OBP-Gompertz distribution 

are presented for various combinations of the parameters 0.5, 0.7, = =  and 1.2 = , with 

varying , ,   and  . This table illustrates how the CDF and PDF evolve with different parameter 

values, shedding light on the distribution's capacity to model diverse datasets. The analysis 

covers different values of , ,   and  , providing insights into how the probability of an event 

occurring and the rate of that occurrence change under varying conditions. At smaller values of 

x , the CDF is closer to 1, meaning the event is more likely to have occurred, while the PDF shows 

the density of this likelihood. For example, with 1, 2, 0.5  = = = , the CDF is higher, indicating 

a greater likelihood of event occurrence at the initial stages. As x  increases, the CDF decreases, 

and the PDF starts to show the rate at which this probability changes. The transition in these 

values across different   settings emphasize how the OBP-Gompertz distribution can capture 

shifts in event likelihood and rate over time. 

The parameter   plays a pivotal role in shaping the distribution's behavior. As   

increases, the shape of the CDF becomes steeper, and the PDF tends to concentrate more around 

certain values. For instance, when 1.2 = , the CDF decreases more rapidly, reflecting a higher 

rate of change in the probability of the event. Conversely, for 0.5 = , the CDF decays more 

gradually, and the PDF exhibits a more spread-out distribution. This highlights how   governs 

the distribution's sensitivity to changes in x  and influences the event's likelihood over time. 
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Additionally, the values of ,  , and   show how the distribution adapts to different risk and 

survival scenarios. Increasing   leads to higher CDF values and lower PDF values at smaller x , 

indicating a slower rate of event occurrence. Similarly, increasing   results in a more pronounced 

change in the PDF, reflecting a faster rate of  

Change in the probability density. These behaviors demonstrate the flexibility of the OBP-

Gompertz distribution in modeling different risk profiles and survival patterns. Overall, the OBP-

Gompertz distribution proves to be a powerful tool for capturing a wide range of survival and 

risk dynamics. Its ability to adjust the tail behavior and rate of occurrence through parameter 

variation makes it particularly valuable in fields where precise modeling of these factors is 

essential. The results in Table 1 demonstrate the distribution’s versatility in handling diverse 

conditions and offer valuable insights into how the likelihood of events and their rates evolve 

across different parameter settings. 

      Fig. 4 presents the 3D PDF and contour plots of the OBP-Gompertz distribution for 

selected parameter combinations. The 3D plots visualize the overall shape of the PDF, while the 

contour plots provide a detailed view of the density landscape. These visualizations provide 

insights into the distribution's shape and behavior under different conditions. For example, the 

plot ( 1.5, 1.5) = =  shows a relatively symmetric PDF, with the peak occurring around 2.5 =  

and 2.5 = . The contour lines indicate that the density decreases as we move away from the peak 

in any direction. The plot ( 2.0, 1.0) = =  shows a slightly right-skewed PDF, with the peak 

occurring around 2 =  and 2 = . The contour lines indicate that the density decreases as we 

move away from the peak, with a steeper decline in the right tail. The plot ( 3.0, 0.5) = =  shows 

a more pronounced right-skewed PDF, with the peak occurring around 2 =  and 2.5 = . The 

contour lines indicate a rapid decrease in density as we move to the right of the peak, highlighting 

the distribution's heavy tail. By examining these plots, we can observe the flexibility of the OBP-

Gompertz distribution in capturing a wide range of shapes, from symmetric to highly skewed. 

This flexibility makes the OBP-Gompertz distribution a powerful tool for modeling various real-

world phenomena. 

A. Validation of the OBP-Gompertz Distribution 

To confirm that ( ); , , ,f x      is a valid PDF, we must show that: 

( )
0

; , , , 1.f x dx   


=                                                                                (7)                                 

 To verify this, we substitute (6) into (7): 

( )
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( ) ( )( ) ( )( )
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1 1 1
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1
; , , , . 1 . .
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x x xe e exf x dx e e e e dx
B

   
      

 

  − −
− − − − − −

= −                (8)                                                                   
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Thus, the integral in (8) becomes: 
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The integral ( )
1

11

0

1u u du
 −− −  is the definition of the Beta function, ( ),B   : 

( ) ( )
1
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−− − =                                                                 (11) 

 Thus, (10) simplifies to: 
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 This confirms that ( ); , , ,f x      is a valid PDF. 

B. Survival Function of OBP-Gompertz Distribution 

The survival function ( )S x  of the OBP-Gompertz distribution is expressed as: 
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C. Hazard Function of OBP-Gompertz Distribution 

The hazard function ( )h x  of the OBP-Gompertz distribution is expressed as:  
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                                     (14)                                             

Figs. 5 and 6 highlight the flexibility of the OBP-Gompertz distribution in capturing a 

variety of survival and hazard function patterns, making it highly suitable for modeling COVID-

19 mortality dynamics. Fig. 5 reveals the broad range of survival function shapes, from steep 

initial drops to gradual declines, which align with different survival probabilities based on 

parameter combinations. This flexibility is especially useful in biomedical research, where 

survival functions often represent patient outcomes under varying disease progressions and 

treatment effects. Similarly, Fig. 6 demonstrates the ability of the OBP-Gompertz distribution to 

model diverse hazard rate patterns, including decreasing, increasing, bathtub-shaped, and 

upside-down bathtub-shaped patterns. These hazard functions align with the varying mortality 
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risks observed during the pandemic, capturing dynamics such as sudden surges, steady declines, 

or prolonged risk periods. Together, these figures demonstrate the OBP-Gompertz distribution's 

potential as a robust tool for analyzing and understanding the complex mortality patterns 

associated with COVID-19. 

In Table 2, the survival and hazard functions of the OBP-Gompertz distribution are 

presented for various combinations of the parameters , , ,    and  . The table demonstrates 

how these functions vary with different parameter values, offering insights into the flexibility and 

versatility of the OBP-Gompertz distribution in modeling diverse datasets. The analysis spans 

different values of 0.5, 0.7, 1.2  = = =  and highlights how the survival probabilities and hazard 

rates evolve with changes in the , ,   and   parameters, as well as the variable x . 

At smaller values of x , the survival probabilities are higher, meaning the event is less 

likely to occur. For example, at 0.1, 0.5, 1, 2,x   = = = =  and 0.5 = , the survival probability is 

0.853753, and the hazard rate is 0.790569. As x  increases, survival probabilities drop, and hazard 

rates rise. This shows the risk of the event grows over time. The pattern holds across different 

parameter combinations, highlighting the distribution's ability to handle various survival and 

risk scenarios. The parameter   significantly impacts the survival and hazard trends. Higher   

values, such as 1.2 = , lead to higher survival probabilities and lower hazard rates at small x  

values. However, these trends reverse sharply as x  grows. For instance, at 5x =  with 1, 2, = =  

and 0.5 = , the survival probability is 0.326922 when 0.5 = , compared to 0.031767 when 1.2 =

. Similarly, the hazard rate increases from 0.111803 for 0.5 =  to 0.827838 for 1.2 = . This 

illustrates how   shapes the tail behavior and risk dynamics. 

The distribution also adapts well to different parameter settings, offering versatility in 

modeling risks. For example, increasing   from 2 to 2.5 raises survival probabilities and lowers 

hazard rates for similar x  values. This shows the scale parameter's role in moderating how fast 

survival decreases and risk grows. Likewise, increasing   to 1.5 results in higher survival rates 

at smaller x  and slower hazard growth, reflecting the shape parameter's effect on the 

distribution's steepness. Overall, the OBP-Gompertz distribution effectively captures various 

survival and hazard patterns. Its flexibility makes it ideal for real-world applications, especially 

those needing precise control over risks and tail behaviors. These results demonstrate the 

distribution’s ability to provide meaningful insights into survival and risk dynamics under 

diverse conditions. 

      The 3D and contour plots in Fig. 7 provide a comprehensive view of the hazard 

function of the OBP-Gompertz distribution under specific parameter constraints such as 

2.5, 2.0 = = ; 1.0, 2.5 = = ; 3.0, 0.5 = = . The 3D plot visualizes the overall shape of the 
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hazard function as a function of   and  , while the contour plot highlights specific regions of 

interest and the rate of change. The contour lines reveal how the hazard rate changes with respect 

to   and  . As   increases, the hazard rate generally increases, indicating a higher risk of failure. 

However, the impact of   on the hazard rate is more complex, demonstrating the distribution's 

flexibility in capturing various hazard rate patterns. 

 

 

 

FIGURE 4. 3D PDF and contour plots of the OBP-Gompertz distribution. 
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FIGURE 5. Possible shapes of the OBP-Gompertz survival function. 

 

 

                  FIGURE 6. Possible shapes of the OBP-Gompertz hazard function. 
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TABLE 1. Numerical results for the CDF and PDF of the OBP-Gompertz distribution  
    0.5 =  0.7 =  1.2 =  

x        CDF PDF CDF PDF CDF PDF 

0.100000 1 2 0.5 0.146247 0.674951 0.094948 0.632036 0.094948 0.632036 

0.644444 1 2 0.5 0.330609 0.208462 0.30762 0.276476 0.30762 0.276476 

1.188889 1 2 0.5 0.420263 0.132923 0.431285 0.188982 0.431285 0.188982 

1.733333 1 2 0.5 0.482259 0.098313 0.520413 0.142321 0.520413 0.142321 

2.277778 1 2 0.5 0.529809 0.077886 0.589208 0.112315 0.589208 0.112315 

2.822222 1 2 0.5 0.568278 0.064246 0.644302 0.091195 0.644302 0.091195 

3.366667 1 2 0.5 0.600453 0.054439 0.689486 0.075507 0.689486 0.075507 

3.911111 1 2 0.5 0.627987 0.047027 0.727172 0.063426 0.727172 0.063426 

4.455556 1 2 0.5 0.65195 0.041222 0.759007 0.053877 0.759007 0.053877 

5.000000 1 2 0.5 0.673078 0.036551 0.786172 0.046179 0.786172 0.046179 

0.100000 1 2.5 0.5 0.146247 0.674951 0.094948 0.632036 0.094948 0.632036 

0.644444 1 2.5 0.5 0.330609 0.208462 0.30762 0.276476 0.30762 0.276476 

1.188889 1 2.5 0.5 0.420263 0.132923 0.431285 0.188982 0.431285 0.188982 

1.733333 1 2.5 0.5 0.482259 0.098313 0.520413 0.142321 0.520413 0.142321 

2.277778 1 2.5 0.5 0.529809 0.077886 0.589208 0.112315 0.589208 0.112315 

2.822222 1 2.5 0.5 0.568278 0.064246 0.644302 0.091195 0.644302 0.091195 

3.366667 1 2.5 0.5 0.600453 0.054439 0.689486 0.075507 0.689486 0.075507 

3.911111 1 2.5 0.5 0.627987 0.047027 0.727172 0.063426 0.727172 0.063426 

4.455556 1 2.5 0.5 0.65195 0.041222 0.759007 0.053877 0.759007 0.053877 

5.000000 1 2.5 0.5 0.673078 0.036551 0.786172 0.046179 0.786172 0.046179 

0.100000 1 3 0.5 0.146247 0.674951 0.094948 0.632036 0.094948 0.632036 

0.644444 1 3 0.5 0.330609 0.208462 0.30762 0.276476 0.30762 0.276476 

1.188889 1 3 0.5 0.420263 0.132923 0.431285 0.188982 0.431285 0.188982 

1.733333 1 3 0.5 0.482259 0.098313 0.520413 0.142321 0.520413 0.142321 

2.277778 1 3 0.5 0.529809 0.077886 0.589208 0.112315 0.589208 0.112315 

2.822222 1 3 0.5 0.568278 0.064246 0.644302 0.091195 0.644302 0.091195 

3.366667 1 3 0.5 0.600453 0.054439 0.689486 0.075507 0.689486 0.075507 

3.911111 1 3 0.5 0.627987 0.047027 0.727172 0.063426 0.727172 0.063426 

4.455556 1 3 0.5 0.65195 0.041222 0.759007 0.053877 0.759007 0.053877 

5.000000 1 3 0.5 0.673078 0.036551 0.786172 0.046179 0.786172 0.046179 

0.100000 1.5 2 0.5 0.085076 0.610122 0.043584 0.447513 0.043584 0.447513 

0.644444 1.5 2 0.5 0.302067 0.292111 0.270372 0.374731 0.270372 0.374731 

1.188889 1.5 2 0.5 0.434067 0.203241 0.450974 0.290743 0.450974 0.290743 

1.733333 1.5 2 0.5 0.53014 0.15356 0.589686 0.221421 0.589686 0.221421 

2.277778 1.5 2 0.5 0.604281 0.120793 0.694786 0.16697 0.694786 0.16697 

2.822222 1.5 2 0.5 0.663351 0.097401 0.77378 0.125089 0.77378 0.125089 

3.366667 1.5 2 0.5 0.711399 0.079897 0.832818 0.093263 0.832818 0.093263 

3.911111 1.5 2 0.5 0.751068 0.06638 0.876752 0.069271 0.876752 0.069271 

4.455556 1.5 2 0.5 0.784192 0.055702 0.909335 0.051291 0.909335 0.051291 

5.000000 1.5 2 0.5 0.812101 0.047121 0.93343 0.037878 0.93343 0.037878 

0.100000 1.5 2.5 0.5 0.085076 0.610122 0.043584 0.447513 0.043584 0.447513 



14  Int. J. Anal. Appl. (2025), 23:206 

 

TABLE 2. Numerical results for the survival and hazard functions of the proposed model 

    0.5 =  0.7 =  1.2 =  

x        Survival Hazard 
Survival Hazard 

Survival Hazard 

0.100000 1 2 0.5 0.853753 0.790569 0.905052 0.698342 0.968945 0.378574 

0.644444 1 2 0.5 0.669391 0.311421 0.692380 0.399312 0.744445 0.549526 

1.188889 1 2 0.5 0.579737 0.229282 0.568715 0.332296 0.540438 0.621126 

1.733333 1 2 0.5 0.517741 0.189889 0.479587 0.296759 0.380051 0.669773 

2.277778 1 2 0.5 0.470191 0.165647 0.410792 0.273410 0.261136 0.707381 

2.822222 1 2 0.5 0.431722 0.148814 0.355698 0.256384 0.176133 0.738362 

3.366667 1 2 0.5 0.399547 0.136251 0.310514 0.243169 0.116962 0.764876 

3.911111 1 2 0.5 0.372013 0.126412 0.272828 0.232476 0.076627 0.788154 

4.455556 1 2 0.5 0.348050 0.118437 0.240993 0.223562 0.049605 0.808969 

5.000000 1 2 0.5 0.326922 0.111803 0.213828 0.215962 0.031767 0.827838 

0.100000 1 2.5 0.5 0.853753 0.790569 0.905052 0.698342 0.968945 0.378574 

0.644444 1 2.5 0.5 0.669391 0.311421 0.692380 0.399312 0.744445 0.549526 

1.188889 1 2.5 0.5 0.579737 0.229282 0.568715 0.332296 0.540438 0.621126 

1.733333 1 2.5 0.5 0.517741 0.189889 0.479587 0.296759 0.380051 0.669773 

2.277778 1 2.5 0.5 0.470191 0.165647 0.410792 0.273410 0.261136 0.707381 

2.822222 1 2.5 0.5 0.431722 0.148814 0.355698 0.256384 0.176133 0.738362 

3.366667 1 2.5 0.5 0.399547 0.136251 0.310514 0.243169 0.116962 0.764876 

3.911111 1 2.5 0.5 0.372013 0.126412 0.272828 0.232476 0.076627 0.788154 

4.455556 1 2.5 0.5 0.348050 0.118437 0.240993 0.223562 0.049605 0.808969 

5.000000 1 2.5 0.5 0.326922 0.111803 0.213828 0.215962 0.031767 0.827838 

0.100000 1 3 0.5 0.853753 0.790569 0.905052 0.698342 0.968945 0.378574 

0.644444 1 3 0.5 0.669391 0.311421 0.692380 0.399312 0.744445 0.549526 

1.188889 1 3 0.5 0.579737 0.229282 0.568715 0.332296 0.540438 0.621126 

1.733333 1 3 0.5 0.517741 0.189889 0.479587 0.296759 0.380051 0.669773 

2.277778 1 3 0.5 0.470191 0.165647 0.410792 0.273410 0.261136 0.707381 

2.822222 1 3 0.5 0.431722 0.148814 0.355698 0.256384 0.176133 0.738362 

3.366667 1 3 0.5 0.399547 0.136251 0.310514 0.243169 0.116962 0.764876 

3.911111 1 3 0.5 0.372013 0.126412 0.272828 0.232476 0.076627 0.788154 

4.455556 1 3 0.5 0.348050 0.118437 0.240993 0.223562 0.049605 0.808969 

5.000000 1 3 0.5 0.326922 0.111803 0.213828 0.215962 0.031767 0.827838 

0.100000 1.5 2 0.5 0.914924 0.666855 0.956416 0.467907 0.992107 0.142640 

0.644444 1.5 2 0.5 0.697933 0.418538 0.729628 0.513592 0.797138 0.633273 

1.188889 1.5 2 0.5 0.565933 0.359125 0.549026 0.529561 0.505255 1.033607 

1.733333 1.5 2 0.5 0.469860 0.326822 0.410314 0.539639 0.260350 1.397488 

2.277778 1.5 2 0.5 0.395719 0.305248 0.305214 0.547060 0.110765 1.738808 

2.822222 1.5 2 0.5 0.336649 0.289323 0.226220 0.552954 0.039313 2.064027 

3.366667 1.5 2 0.5 0.288601 0.276842 0.167182 0.557852 0.011730 2.376855 

3.911111 1.5 2 0.5 0.248932 0.266659 0.123248 0.562049 0.002960 2.679678 

4.455556 1.5 2 0.5 0.215808 0.258111 0.090665 0.565724 0.000635 2.974158 

5.000000 1.5 2 0.5 0.187899 0.250778 0.066570 0.568994 0.000116 3.261508 

0.100000 1.5 2.5 0.5 0.914924 0.666855 0.956416 0.467907 0.992107 0.142640 
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FIGURE 7. 3D hazard function and contour plots of the OBP-Gompertz distribution. 
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3. Properties of OBP-Gompertz Distribution 

This section introduces the key statistical properties of the OBP-Gompertz distribution, 

including the derivation of moments, moment generating function, Rényi and Tsallis entropies, 

and stress-strength function. These properties are essential for comprehensive modeling and 

analysis, providing insights into the distribution's behavior and applications in various fields. 

A. Moments 

The thr  moment of the OBP-Gompertz distribution is expressed as: 

( ) ( )
0

; , , , .r rE X x f x dx   


=                                                                            (15) 

       Substituting the PDF of the OBP-Gompertz distribution from (6) into (15): 

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 1

0

. 1 . .
,

x x xe e er r xE X x e e e e dx
B

   
  

 

 − −
− − − − − −

= −                    (16)                                                                                                  

   

The first four moments of the OBP-Gompertz distribution (for 1,2,3,4r = ) are as follows: 

  For 1:r =  

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 1

0

. 1 . .
,

x x xe e exE X xe e e e dx
B

   
  

 

 − −
− − − − − −

= −                        (17)                                                                                                   

 

 For 2:r =  

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 12 2

0

. 1 . .
,

x x xe e exE X x e e e e dx
B

   
  

 

 − −
− − − − − −

= −                   (18)      

For 3r =  and 4r = , the process is identical: 

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 13 3

0

. 1 . .
,

x x xe e exE X x e e e e dx
B

   
  

 

 − −
− − − − − −

= −                    (19)      

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 14 4

0

. 1 . .
,

x x xe e exE X x e e e e dx
B

   
  

 

 − −
− − − − − −

= −                   (20)                                                   

The variance is then given by: 

( ) ( ) ( )( )
22 .Var X E X E X= −                                                                              (21)                                                                                         

The skewness measures the asymmetrical distribution and is given by: 

( )( )3

3
,

E X
Skewness





−
=                                                                                     (22) 

where ( )( ) ( ) ( ) ( ) ( )
3 33 23 2E X E X E X E X E X− = − + , ( )E X =  is the mean, and  2  is the 

variance.      
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The kurtosis measures the tailedness of the distribution and is given by: 

( )( )4

4
,

E X
Kurtosis





−
=                                                                                          (23)                                                                  

where ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
2 44 4 3 24 6 3 .E X E X E X E X E X E X E X− = − + −  

In Table 3, the mean, variance, skewness, and kurtosis of the OBP-Gompertz distribution 

are presented across various combinations of the parameters , , ,    and  . The table shows how 

these statistical moments change for different values of , , ,    and  , providing insights into the 

distribution's behavior. 

For the parameters 1.5, 0.5, 0.5,  = = =  and 0.5 = , the mean is 3.0586, with a variance 

of 1.8029, skewness of 0.0556, and kurtosis of -0.5474, indicating a moderately spread distribution 

with slightly positive skewness and a relatively flat shape. As   increases to 1, the mean decreases 

to 2.1306, and the variance also decreases to 1.1843, while the skewness becomes more positive 

(0.3085) and the kurtosis is less negative (-0.4553), suggesting a more pronounced peak and 

slightly more positive asymmetry. As   increases further, the mean continues to decrease, 

reaching 1.1115 at 1.5 = , with the variance dropping to 0.4566. The skewness increases to 

0.6707, and the kurtosis becomes positive (0.0773), indicating that the distribution is becoming 

more concentrated around the mean and less spread out. At higher values of   (1.5 and beyond), 

the mean, variance, and skewness values all tend to decrease, while kurtosis moves toward a 

more positive value, signaling a transition toward a more concentrated distribution with a 

sharper peak. For higher values of   (2.0 and 2.5), the mean continues to decrease, while 

variance and skewness also show decreasing trends. For instance, when 2.0, 0.5, 0.5,  = = =  

and 0.5 = , the mean is 3.3022, and the variance is 1.5716. As   increases, the mean continues to 

decrease, and the skewness remains relatively low. This pattern is also visible for higher values 

of  , where the distribution becomes more concentrated, with lower mean values and higher 

peak (positive kurtosis) values at higher   values. 

The skewness remains positive for most combinations of parameters, but its magnitude 

increases as   increases, suggesting that the distribution becomes more asymmetric. The kurtosis, 

in general, shows more negative values at lower values of  , indicating a flatter distribution, but 

as   increases, the kurtosis becomes positive, reflecting a sharper peak. The trend is consistent 

across different values of   and  . Overall, the results from Table 3 indicate that as   increases, 

the OBP-Gompertz distribution tends to become more concentrated around the mean with higher 

skewness and kurtosis values, especially for higher values of   and  . The distribution exhibits 
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more pronounced changes in the statistical moments as   increases, suggesting a shift towards a 

more ordered and less spread-out distribution 

The 3D and contour plots in Figs. 8-11 provide a comprehensive view of the OBP-

Gompertz distribution's statistical properties under specific parameter constraints. By fixing the 

values of   and  , we can explore the behavior of the distribution with respect to   and  . The 

3D plots visualize the overall shape of the statistical measure, while the contour plots highlight 

specific regions of interest and the rate of change. For instance, in Fig. 8, the contour lines reveal 

how the mean increases with both   and  , while in Fig. 9, the contour lines show how the 

variance changes with respect to the parameters. In Fig. 10, the contour lines illustrate how the 

skewness can be positive or negative depending on the parameter values, highlighting the 

distribution's flexibility in capturing asymmetry. Similarly, in Fig. 11, the contour lines show how 

the kurtosis varies with   and  , indicating the distribution's ability to model different levels of 

tail weight.  

 

 
FIGURE 8. 3D mean and contour plots of the OBP-Gompertz distribution. 
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FIGURE 9. 3D variance and contour plots of the OBP-Gompertz distribution. 
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 TABLE 3. The mean, variance, skewness, and kurtosis for the OBP-Gompertz distribution  

        Mean Variance Skewness Kurtosis 

1.5 0.5 0.5 0.5 3.0586 1.8029 0.0556 -0.5474 

1.5 0.5 0.5 1 2.1306 1.1843 0.3085 -0.4553 

1.5 0.5 0.5 1.5 1.6739 0.8637 0.4678 -0.2859 

1.5 1 0.5 0.5 2.2312 1.1992 0.2358 -0.4983 

1.5 1 0.5 1 1.4661 0.6854 0.5067 -0.2158 

1.5 1 0.5 1.5 1.1115 0.4566 0.6707 0.0773 

1.5 1 1 0.5 1.1156 0.2998 0.2358 -0.4983 

1.5 1 1 1 0.733 0.1714 0.5067 -0.2158 

1.5 1 1 1.5 0.5557 0.1142 0.6707 0.0773 

1.5 1 1.5 0.5 0.7437 0.1332 0.2358 -0.4983 

1.5 1 1.5 1 0.4887 0.0762 0.5067 -0.2158 

1.5 1 1.5 1.5 0.3705 0.0507 0.6707 0.0773 

1.5 1.5 0.5 0.5 1.8042 0.8985 0.3588 -0.4032 

1.5 1.5 0.5 1 1.1436 0.4689 0.6344 0.0052 

1.5 1.5 0.5 1.5 0.8492 0.2954 0.7962 0.3688 

1.5 1.5 1 0.5 0.9021 0.2246 0.3588 -0.4032 

1.5 1.5 1 1 0.5718 0.1172 0.6344 0.0052 

1.5 1.5 1 1.5 0.4246 0.0738 0.7962 0.3688 

1.5 1.5 1.5 0.5 0.6014 0.0998 0.3588 -0.4032 

1.5 1.5 1.5 1 0.3812 0.0521 0.6344 0.0052 

1.5 1.5 1.5 1.5 0.2831 0.0328 0.7962 0.3688 

2 0.5 0.5 0.5 3.3022 1.5716 0.0208 -0.427 

2 0.5 0.5 1 2.3205 1.0749 0.2574 -0.3884 

2 0.5 0.5 1.5 1.8317 0.8018 0.4097 -0.2577 

2 1 0.5 0.5 2.4989 1.0787 0.1406 -0.4237 

2 1 0.5 1 1.6627 0.6475 0.3971 -0.2464 

2 1 0.5 1.5 1.2689 0.4428 0.5547 -0.0218 

2 1 1 0.5 1.2495 0.2697 0.1406 -0.4237 

2 1 1 1 0.8265 0.1212 0.3971 -0.2464 

2 1 1 1.5 0.6118 0.0744 0.5547 -0.0218 

2 1 1.5 0.5 0.8679 0.1264 0.1406 -0.4237 

2 1 1.5 1 0.5663 0.0704 0.3971 -0.2464 

2 1 1.5 1.5 0.4293 0.0456 0.5547 -0.0218 

2 1.5 0.5 0.5 2.3489 1.0078 0.2499 -0.3898 

2 1.5 0.5 1 1.5551 0.5773 0.4827 -0.0954 

2 1.5 0.5 1.5 1.1878 0.3556 0.6423 0.1417 

2 1.5 1 0.5 1.2361 0.2154 0.2499 -0.3898 

2 1.5 1 1 0.8306 0.0963 0.4827 -0.0954 

2 1.5 1 1.5 0.6164 0.0603 0.6423 0.1417 

2 1.5 1.5 0.5 0.8687 0.1225 0.2499 -0.3898 

2 1.5 1.5 1 0.5772 0.0689 0.4827 -0.0954 

2 1.5 1.5 1.5 0.4296 0.0429 0.6423 0.1417 
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FIGURE 10. 3D skewness and contour plots of the OBP-Gompertz distribution. 
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FIGURE 11. 3D kurtosis and contour plots of the OBP-Gompertz distribution. 

B. Moment Generating Function 

The moment generating function (MGF) is given by:  

( ) ( ) ( )
0

; , , , .tX tx

XM t E e e f x dx   


= =                                                    (24)  

Substituting the PDF of the OBP-Gompertz distribution from (6) into (24): 

( )
( )

( ) ( )( ) ( )( )
1 1

1 1 1

0

. 1 . .
,

x x xe e etx x

XM t e e e e e dx
B

   
  

 

 − −
− − − − − −

= −                     (25)  

C. Quantile Function 

The quantile function ( )Q p  of the OBP-Gompertz distribution is defined as the inverse 

of the CDF in (5). By definition, an inverse function ( )Q p  must satisfy the conditions outlined by 

the following functional equation: 

( )( )F Q p p=  for every  0,1 .p                                                         (26)                                                        

Using the CDF provided in (5) applies: 
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( )
( )

( )( )
11

0

1
1 .

,

M Q p

u u du p
B



 

−− − =                                                        (27)  

Solving for ( )Q p  requires inverting 
( )

( )
1

1 ; ,
xe

e M x


 
− −

− = , which gives: 

( ) ( )
1 1

ln 1 ln 1 .Q p p
 

 
= + − 

 
                                                                   (28)          

D.  Rényi and Tsallis Entropy Measures                     

The Rényi entropy for the OBP-Gompertz distribution is defined as: 

( ) ( )
0

1
ln ; , , , , 0, 1.

1

q

RH q f x dx q q
q

   


=     −                                  (29)                

Substituting (6) into (29): 

( )

( ) ( ) ( )

( )

1 1
1 1 1

0

. 1 .
1

ln .
1 ,

x x x

q

e e ex

R

e e e e

H q dx
q B

  
 

  

 

− −
− − − − − −



    −        =
−  

  

              (30)                                                                                     

Expanding the thq  power and simplifying the exponent (30) becomes: 

( )
( )( )

( )
1 1

ln . ,
1 ,

q

R q
H q I

q B


 

 
 =

−  
 

                                                 (31)                                                                   

where 
( ) ( )( )

( )1
1 1

0

. . 1 .
x x q

q e eq xI e e e dx
  

 
 −

− − − −
= −                                             

The Tsallis entropy for the OBP-Gompertz distribution is defined as: 

( ) ( )( )
0

1
1 ; , , , , 0, 1.

1

q

TH q f x dx q q
q

   
 

= −   
−  

                       (32)                                                                  

Substituting (6) into (32), the Tsallis entropy becomes:  

( )

( ) ( ) ( )

( )

1 1
1 1 1

0

. 1 .
1

1 .
1 ,

x x x

q

e e ex

T

e e e e

H q dx
q B

  
 

  

 

− −
− − − − − −



      −         = −
 −  
  

   

                      (33)                                                                           

Expanding the thq  power and simplify the exponent (33) becomes: 

( )
( )( )

( )
( ) ( )( )

( )1
1 1

0

1 1
1 . 1 ,

1 ,

x x q
q x C e eq

T q
H q e e dx

q B

  
 


 

 −
− − − −

 
 = − −

−  
 

           (34)                                                                         

where ( ). 1 1 .C q =  + −    The Tsallis entropy for the OBP-Gompertz distribution is: 
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( )
( )

( )( )

.1
1 ,

1 ,

q

T

T q

I
H q

q B



 

 
 = −

−  
 

                                                              (35) 

where 
( ) ( )( )

( )1
1 1

0

. 1 .
x x q

q x C e e

TI e e dx
  

 
 −

− − − −
= −  

In Table 4, the Rényi and Tsallis entropy values of the OBP-Gompertz distribution are 

presented across various parameter combinations , , ,    and  , with the entropies computed 

for different values of q . The table shows how entropy changes for 1.5, 2.0,q q= =  and 2.5q = , 

both for Rényi and Tsallis entropy measures. For 1.5, 0.5, = =  and 0.5 = , the entropy values 

are relatively high. At 0.5q = , Rényi entropy is 1.6365 and Tsallis entropy is 1.1176, indicating 

higher uncertainty in the system. As q  increases to 1.5, Rényi entropy decreases, reaching 1.5663, 

while Tsallis entropy drops to 0.6031, reflecting a decrease in entropy as the system moves toward 

more ordered behavior. 

For the same set of parameters, when   increases from 0.5 to 1.5, the entropy values 

generally decrease, particularly for Tsallis entropy. For example, at 1.5 = , the Rényi entropy for 

0.5q =  is 1.2293, which is smaller than the value at 0.5 = , reflecting a lower level of uncertainty 

as   increases. This pattern continues for higher values of q , with a more pronounced drop for 

Tsallis entropy compared to Rényi entropy, suggesting that Tsallis entropy is more sensitive to 

changes in  . As the parameter   increases, the entropy values exhibit more notable changes. 

For instance, at 1.5, 1.5, = =  and 0.5 = , the Rényi entropy at 0.5q =  is 1.2447, which 

decreases to 0.167 as   reaches 2.5, showing a sharp decline in entropy as the shape parameter 

increases. The corresponding Tsallis entropy shows a similar but slightly smaller decrease. The 

entropy values demonstrate a consistent trend as the parameters , ,   and   increase, the entropy 

generally decreases, indicating a more ordered or predictable system. However, the Tsallis 

entropy tends to decrease more significantly than the Rényi entropy, suggesting that Tsallis 

entropy is more sensitive to the changes in the distribution's shape. 

Fig. 12 showcases the Rényi entropy of the OBP-Gompertz distribution in a 3D plot and a 

contour plot. The contour plot reveals a nuanced relationship between the parameters   and  . 

As   increases, the entropy generally rises, indicating a growing degree of uncertainty or 

randomness within the system. However, the impact of   is more intricate, demonstrating the 

distribution’s flexibility in capturing a wide range of information-theoretic behaviors. This 

adaptability makes the OBP-Gompertz distribution a powerful tool for modeling complex 

systems with varying levels of uncertainty and complexity. Fig. 13 presents the Tsallis entropy of 

the OBP-Gompertz distribution in both 3D and contour plot formats. The contour plot highlights 
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the distribution’s sensitivity to both λ and  . Increasing   leads to higher Tsallis entropy, 

suggesting increased complexity and non-extensivity. Conversely, increasing   tends to decrease 

the Tsallis entropy, indicating a more ordered and less complex system. This flexibility allows the 

OBP-Gompertz distribution to accommodate a broad spectrum of real-world systems with 

varying degrees of non-extensivity and complexity. 

 

 

FIGURE 12. 3D Rényi  entropy and contour plots of the OBP-Gompertz distribution.  
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TABLE 4.  Rényi and Tsallis entropy measures for the OBP-Gompertz distribution 

    1.5q =  2.0q =  2.5q =  

        
Rényi 

Entropy 
Tsallis 

Entropy 
Rényi 

Entropy 
Tsallis 

Entropy 
Rényi 

Entropy 
Tsallis 

Entropy 

1.5 0.5 0.5 0.5 1.6365 1.1176 1.5963 0.7974 1.5663 0.6031 

1.5 0.5 0.5 1 1.4101 1.0118 1.3732 0.7467 1.3461 0.5782 

1.5 0.5 0.5 1.5 1.2293 0.9183 1.1908 0.696 1.1631 0.5502 

1.5 1 0.5 0.5 1.4234 1.0184 1.3863 0.75 1.3589 0.5798 

1.5 1 0.5 1 1.1072 0.8502 1.0678 0.6563 1.0396 0.5265 

1.5 1 0.5 1.5 0.8707 0.7059 0.8267 0.5625 0.7955 0.4645 

1.5 1 1 0.5 0.7303 0.6118 0.6931 0.5 0.6658 0.4211 

1.5 1 1 1 0.414 0.374 0.3747 0.3125 0.3465 0.2702 

1.5 1 1 1.5 0.1776 0.1699 0.1335 0.125 0.1023 0.0948 

1.5 1 1.5 0.5 0.3248 0.2998 0.2877 0.25 0.2603 0.2155 

1.5 1 1.5 1 0.0086 0.0085 -0.0308 -0.0313 -0.059 -0.0617 

1.5 1 1.5 1.5 -0.2279 -0.2414 -0.2719 -0.3125 -0.3032 -0.3838 

1.5 1.5 0.5 0.5 1.2656 0.9378 1.2286 0.7073 1.2016 0.5567 

1.5 1.5 0.5 1 0.8919 0.7196 0.8491 0.5722 0.8187 0.4714 

1.5 1.5 0.5 1.5 0.6234 0.5356 0.5747 0.4371 0.5403 0.3702 

1.5 1.5 1 0.5 0.5725 0.4978 0.5354 0.4146 0.5085 0.3557 

1.5 1.5 1 1 0.1987 0.1892 0.156 0.1444 0.1256 0.1144 

1.5 1.5 1 1.5 -0.0697 -0.071 -0.1185 -0.1258 -0.1528 -0.1717 

1.5 1.5 1.5 0.5 0.167 0.1602 0.13 0.1219 0.103 0.0955 

1.5 1.5 1.5 1 -0.2067 -0.2178 -0.2495 -0.2834 -0.2799 -0.3478 

1.5 1.5 1.5 1.5 -0.4752 -0.5364 -0.524 -0.6887 -0.5583 -0.8736 

2 0.5 0.5 0.5 1.5667 1.0862 1.5198 0.7813 1.4857 0.5949 

2 0.5 0.5 1 1.369 0.9913 1.3257 0.7344 1.2941 0.571 

2 0.5 0.5 1.5 1.2067 0.9061 1.1632 0.6875 1.1316 0.5446 

2 1 0.5 0.5 1.3768 0.9952 1.3322 0.7361 1.2997 0.5718 

2 1 0.5 1 1.1016 0.847 1.0578 0.6528 1.0262 0.5236 

2 1 0.5 1.5 0.8886 0.7175 0.8427 0.5694 0.8098 0.4688 

2 1 1 0.5 0.6837 0.5791 0.6391 0.4722 0.6066 0.3983 

2 1 1 1 0.4084 0.3694 0.3646 0.3056 0.3331 0.2621 

2 1 1 1.5 0.1955 0.1863 0.1495 0.1389 0.1167 0.107 

2 1 1.5 0.5 0.2782 0.2597 0.2336 0.2083 0.2011 0.1736 

2 1 1.5 1 0.003 0.003 -0.0408 -0.0417 -0.0724 -0.0765 

2 1 1.5 1.5 -0.21 -0.2214 -0.2559 -0.2917 -0.2888 -0.3615 

2 1.5 0.5 0.5 1.2447 0.9266 1.2014 0.6992 1.1698 0.5514 

2 1.5 0.5 1 0.9171 0.7356 0.8723 0.582 0.8402 0.4776 

2 1.5 0.5 1.5 0.6732 0.5716 0.6252 0.4648 0.5911 0.392 

2 1.5 1 0.5 0.5516 0.4821 0.5082 0.3984 0.4767 0.3406 

2 1.5 1 1 0.224 0.2119 0.1792 0.1641 0.1471 0.132 

2 1.5 1 1.5 -0.0199 -0.02 -0.068 -0.0703 -0.1021 -0.1103 

2 1.5 1.5 0.5 0.1461 0.1409 0.1028 0.0977 0.0712 0.0676 
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FIGURE 13. 3D Tsallis entropy and contour plots of the OBP-Gompertz distribution. 

 

4. Estimation of Parameter 

The maximum likelihood estimation (MLE) is a method used to estimate the parameters 

of a distribution by maximizing the likelihood function. In this section, we derive the MLEs for 

the parameters of the OBP-Gompertz distribution. 

Suppose we have a sample of size n , denoted by 
 1 2, ,..., nx x x

. The likelihood function is 

given by: 

( ) ( )
1

, , , ; , , , ,
n

i

i

L f x       
=

=                                                             (36)                   
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where ( ); , , ,if x      is the PDF of the OBP-Gompertz distribution expressed in (6). Substituting 

(6) into (36), we have:  

( )
( )( )

( ) ( ) ( )
1 1

1 1 1

1

1
, , , . 1 . .

,

x x xi i i

i

n
e e ex

n
i

L e e e e
B

  
 

      
 

− −
− − − − − −

=

    = −    
    

            (37)                                                        

Taking the natural logarithm of the likelihood function to obtain the log-likelihood 
function: 

              

( ) ( )
( )

( )
( )

( )
( )

1 1

1 1

1

1

, , , ln , ln 1 ln 1

1 ln .

x xi i
i

xi

n n
x e e

i i

n
e

i

n B e e

e

 



  



       



− − − −

= =

− −

=

   = − + + − −
      

 + −
  

 


          

(38) 
Upon simplification, we have: 

( ) ( ) ( ) ( )

( )
( )

( ) ( )

1 1

1

1 1

, , , ln , ln 1

1 ln 1 1 1 .

i

xi

i

n n
x

i

i i

n n
e x

i i

n B n x e

e e




 

        

  

= =

− −

= =

= − + + − −

 + − − − − −
  

 

 
                                   (39)              

                                                                                          

To find the MLEs, we take partial derivatives of ( ), , ,     with respect to , , ,    and 

 , and set them equal to zero as follows: 

        
( )

( ) ( )( ) ( )1

1

, , ,
ln 1 ,

xi
n

e

i

n e
   

    


− −

=

 = − − + + −
   

                                      (40)  

where ( ).  is the digamma function. 

( )
( ) ( )( ) ( )

1

, , ,
1 ,i

n
x

i

n e
   

     
 =

= − − + − −


                                           (41) 

                                                      
( )

1 1
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n n
x

i i

i i

n
x e x

   


  = =

= + −


                                                                   (42) 

     
( )

( ) ( )
( ) ( )

( )

1

1
1 1

1, , ,
1 1 .

1

xi

i

i

xi

e x
n n

x

e
i i

e en
e

e





 





   


 

− −

− −
= =

−
= − − + −

 −
                            (43)                                                                                                                                     

Because (40-43) are nonlinear, numerical optimization techniques such as the Newton-
Raphson method are required to estimate , , ,    and  . 

5. Monte Carlo Simulation 

This section presents the results of Monte Carlo simulations conducted to evaluate the 

performance of the MLE method for estimating the parameters of the OBP-Gompertz distribution 

across varying sample sizes (𝑛 = 10,20,30,40,50,100,150,200). The simulations involved 

generating random samples based on two parameter configurations: Case I  (𝛼 = 2.0, 𝛽 = 3.0, 𝜆 =

0.5, 𝜂 = 1.0) and Case II 𝛼 = 1.0, 𝛽 = 1.0, 𝜆 = 0.5, 𝜂 = 1.0. Each experiment was conducted 1000 
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times to determine the mean estimate, bias, and mean square error (MSE), as presented in Table 

5. 

      In Case I, smaller sample sizes exhibited higher biases and larger MSEs, with bias 

values ranging from 22.3652 to 0.9848, and MSE values varying from 8177.7443 to 0.9909. These 

results suggest that for small datasets, the parameter estimates are less stable and more 

susceptible to variability. However, as the sample size increases, biases diminish, and MSE values 

decrease substantially, falling to ranges of -1.8190 to -0.9848 for biases and 4.6764 to 0.9909 for 

MSEs. In Case II, the pattern is similar but with consistently lower levels of bias and MSE across 

all sample sizes compared to Case I. Biases range from 1.0736 to -0.0081, and MSE values stay 

between 8.4840 and 0.0230.  

The results demonstrate that the OBP-Gompertz distribution and MLE method achieve 

more accurate and reliable parameter estimates with larger sample sizes. This is evidenced by 

consistently decreasing bias and MSE, emphasizing the importance of sufficient data for 

precision. These results are graphically represented in Fig. 14, showing the trends in mean and 

bias for each parameter across various sample sizes. As expected, both cases demonstrate that 

MLE performs well for parameter estimation, particularly with larger sample sizes. The biases 

and means of the parameter estimates exhibit a clear trend of improvement as the sample size 

increases, especially for the   and   parameters. 

 

FIGURE 14. Mean and Bias of parameter estimates for Case I and Case II. 
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TABLE 5. Simulation results for the OBP-Gompertz distribution for Case I and Case II 

   Case I 
𝛼 = 2.0, 𝛽 = 3.0, 𝜆 = 0.5, 𝜂 = 1.0 

Case II 
𝛼 = 1.0, 𝛽 = 1.0, 𝜆 = 0.5, 𝜂 = 1.0 

n   Estimate Mean Bias MSE Mean Bias MSE 

 
 ̂  24.365 22.365 181.74 2.0736 1.0736 8.4840 

10 

 
̂  9.8830 6.8830 414.70 2.7921 1.7921 19.070 

 
 ̂  0.9571 0.4571 1.3444 0.9731 0.4731 1.1425 

 
 ̂  38.755 37.755 177.50 3.2003 2.2003 20.933 

 
 ̂  7.9326 5.9326 145.24 1.3866 0.3866 2.0857 

20 

 
̂  5.7245 2.7245 183.03 2.3509 1.3509 14.374 

 
 ̂  0.6567 0.1567 0.2387 0.6954 0.1954 0.2641 

 
 ̂  12.707 11.707 119.05 2.8758 1.8758 17.546 

 
 ̂  3.7455 1.7455 119.36 1.1588 0.1588 0.7239 

30 

 
̂  4.2181 1.2181 120.07 2.1042 1.1042 11.447 

 
 ̂  0.6064 0.1064 0.1520 0.6227 0.1227 0.1493 

 
 ̂  5.3459 4.3459 107.23 2.3904 1.3904 12.385 

 
 ̂  2.2626 0.2626 116.93 1.0966 0.0966 0.2097 

40 

 
̂  2.6233 -0.3767 38.081 1.6428 0.6428 7.3262 

 
 ̂  0.6053 0.1053 0.1061 0.5875 0.0875 0.1018 

 
 ̂  3.2367 2.2367 100.90 2.4095 1.4095 11.843 

 
 ̂  1.9993 -0.0007 115.46 1.0750 0.0750 0.1785 

50 

 
̂  2.3068 -0.6932 25.596 1.4994 0.4994 6.0198 

 
 ̂  0.5567 0.0567 0.0810 0.5675 0.0675 0.0722 

 
 ̂  2.8162 1.8162 92.681 2.5120 1.5120 12.379 

 
 ̂  1.0272 -0.9728 1.0202 1.0172 0.0172 0.0460 

100 

 
̂  1.4113 -1.5887 6.6439 1.1149 0.1149 2.0752 

 
 ̂  0.5270 0.0270 0.0353 0.5412 0.0412 0.0308 

 
 ̂  1.7788 0.7788 31.110 2.0629 1.0629 8.1189 

 
 ̂  1.0516 -0.9484 1.0021 1.0245 0.0245 0.0332 

150 

 
̂  1.2333 -1.7667 4.8291 1.0401 0.0401 1.4342 

 
 ̂  0.5240 0.0240 0.0203 0.5257 0.0257 0.0196 

 
 ̂  1.4297 0.4297 31.783 1.8972 0.8972 6.5494 

 
 ̂  1.0152 -0.9848 0.9909 0.9919 -0.0081 0.0230 

200 

 
̂  1.1810 -1.8190 4.6764 0.9643 -0.0357 0.6343 

 
 ̂  0.5098 0.0098 0.0157 0.5351 0.0351 0.0171 

 
 ̂  1.2490 0.2490 6.3406 1.7558 0.7558 5.8491 
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6. Real Data Application 

In this section, we demonstrate the practical utility of the OBP-Gompertz distribution by 

applying it to analyze COVID-19 mortality rate datasets from China, the Netherlands, and Nepal. 

Statistical distribution models like the OBP-Gompertz distribution are instrumental in healthcare 

analytics, providing insights into patterns of disease progression, mortality rates, and other 

critical metrics. These models enable healthcare professionals to make data-driven decisions, 

optimize resource allocation, and devise effective public health strategies. In the subsequent 

sections, we present a detailed analysis of the datasets, comparing the performance of the OBP-

Gompertz distribution to other competing models. The results highlight the superior fit of the 

OBP-Gompertz distribution and its ability to accurately capture the intricacies of the mortality 

data. 

 

I. First Dataset: COVID-19 Mortality Rate in China 

The first dataset represents the COVID-19 mortality rates in China, as reported by 

Alghamdi and Abd El-Raouf [72]. It consists of 66 observations, capturing mortality rates over a 

specific period. The data is given as: 

8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143, 142, 105, 

98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 

14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5.  

II. Second Dataset: COVID-19 Mortality Rate in the Netherlands 

The second dataset represents the COVID-19 mortality rates in the Netherlands, as 

reported Alghamdi and Abd El-Raouf [72]. It consists of 30 observations, reflecting mortality rates 

over a specific period. The data is given as: 

14.918, 10.656, 12.274, 10.289, 10.832, 7.099, 5.928, 13.211, 7.968, 7.584, 5.555, 6.027, 4.097, 

3.611, 4.960, 7.498, 6.940, 5.307, 5.048, 2.857, 2.254, 5.431, 4.462, 3.883, 3.461, 3.647, 1.974, 1.273, 

1.416, 4.235.  

III. Third Dataset:  COVID-19 Mortality Rate in Nepal 

The third dataset represents the COVID-19 mortality rates in Nepal, as reported by 

Alghamdi and Abd El-Raouf [72]. It consists of 153 observations, capturing mortality rates over 

a specific timeframe. The data is given as: 

2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11, 9, 3, 8, 7, 11, 8, 12, 12, 14, 

7, 11, 12, 6, 14, 9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2, 7, 17, 6, 8, 10, 4, 10, 7, 11, 11, 8, 7, 

19, 9, 15, 12, 10, 14, 22, 9, 18, 12, 19, 21, 12, 12, 18, 8, 26, 21, 17, 13, 5, 15, 14, 11, 17, 16, 17, 23, 24, 20, 

30, 18, 18, 17, 21, 18, 22, 26, 15, 13, 13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23, 23, 19, 25, 29, 21, 9, 13, 

16, 10, 17, 20, 23, 14, 12, 11, 15, 9, 18, 14, 13, 6, 16, 12, 11, 7, 3, 5, 5.  
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IV. Numerical and Graphical Descriptions of Three Datasets 

This subsection provides a detailed numerical and graphical summary of the COVID-19 

mortality datasets from China, the Netherlands, and Nepal. The statistical summaries highlight 

key measures of central tendency, variability, and distribution, while the visualizations offer an 

in-depth view of the data's characteristics. The COVID-19 mortality data statistical characteristics 

are summarized in Table 6 and visually analyzed in Figs. 15–17 for China, the Netherlands, and 

Nepal, respectively. 

The dataset from China exhibits a median of 33.00 and a mean of 49.74. The first and third 

quartiles are 13.00 and 82.75, respectively, indicating a wide range in the data. The minimum 

value is 3.00, and the maximum is 150.00, resulting in a range of 147. The standard deviation of 

43.873 reflects high variability. The skewness of 0.8176 indicates a moderately right-skewed 

distribution, while the kurtosis of -0.6235 suggests a flatter-than-normal distribution. The dataset 

from the Netherlands shows a median of 5.369 and a mean of 6.157. The first and third quartiles 

are 3.706 and 7.562, respectively. The data ranges from 1.273 to 14.918, yielding a range of 13.645. 

The standard deviation is 3.5333, indicating moderate variability. A skewness value of 

0.7926 suggests slight right skewness, and a kurtosis of -0.2401 points to a nearly normal 

distribution with slightly flat tails. The dataset from Nepal has a median of 11.00 and a mean of 

11.61. The first quartile is 6.00, and the third quartile is 16.00. The minimum and maximum values 

are 2.00 and 30.00, respectively, resulting in a range of 28. The standard deviation of 6.7591 

indicates moderate variability. The skewness of 0.5034 points to slight right skewness, and the 

kurtosis of -0.4855 reflects a moderately flat-tailed distribution. 

To complement the numerical descriptions, various visualization techniques were 

employed to analyze the datasets, including histograms with kernel density plots, box plots, 

violin plots, strip plots, and CDF plots. These visualizations provide a comprehensive 

understanding of the data distributions and characteristics. In Fig. 15, the histogram and kernel 

density plot highlight a right-skewed distribution with most values concentrated at the lower end 

and a few outliers extending to the right. The box plot shows potential outliers, while the violin 

plot provides a detailed view of data density. The strip plot reveals individual observations, and 

the CDF illustrates cumulative probabilities, indicating a relatively low average mortality rate 

with some higher values. In Fig. 16, the histogram and kernel density plot for the Netherlands 

show a slight right skew. The box plot highlights the median and outliers, and the violin plot 

emphasizes distribution symmetry. The strip plot identifies individual clusters, while the CDF 

plot provides a cumulative perspective of the data. In Fig. 17, the histogram and kernel density 

plot display a right-skewed distribution with a higher concentration of lower mortality rates. The 

box plot identifies the median and potential outliers, and the violin plot gives additional insight 
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into the distribution's shape. The strip plot and CDF plot provide clarity on individual data points 

and cumulative trends. 

TABLE 6. Summary of the COVID-19 mortality data from China, the Netherlands, and Nepal 

Statistics China Netherlands Nepal 

Number 66 30 153 

Sum 3283 184.695 1777 

Median 33.00 5.369 11.00 

Mean 49.74 6.157 11.61 

First quartile 13.00 3.706 6.00 

Third quartile 82.75 7.562 16.00 

Std deviation 43.873 3.533312 6.75913 

Range 147 13.645 28 

Minimum 3.00 1.273 2.00 

Maximum 150.00 14.918 30.00 

Skewness 0.8176036 0.7926217 0.5033522 

Kurtosis -0.6235147 -0.2401387 -0.485478 

 

 

            FIGURE 15. Basic non-parametric plots for the COVID-19 mortality rate in China. 
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FIGURE 16. Basic non-parametric plots for the COVID-19 mortality rate in the Netherlands. 

 

FIGURE 17. Basic non-parametric plots for the COVID-19 mortality rate in Nepal. 
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V. Model Comparison and Evaluation 

The proposed OBP-Gompertz distribution was evaluated against several established 

models, including the generalized Gompertz (G-Gompertz) distribution by El-Gohary, et al. [52],  

the Weighted Exponential-Gompertz (WE-Gompertz) distribution by Abd El-Bar and Ragab [73], 

the Beta-Gompertz distribution by Jafari, et al. [58], and the Gamma-Gompertz distributions by 

Shama, et al. [74]. The models were assessed using statistical measures such as log-likelihood 

(LL), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The results, 

as shown in Tables 7–9, demonstrate that the OBP-Gompertz distribution consistently 

outperformed the competing models for COVID-19 mortality data from China, the Netherlands, 

and Nepal. It achieved the highest log-likelihood values and the lowest AIC and BIC values, 

indicating its superior fit to the data [75]. While the Beta-Gompertz and G-Gompertz models 

provided moderately good fits, they incurred higher complexity penalties, reducing their 

efficiency. In contrast, the WE-Gompertz and Gamma-Gompertz models showed weaker 

performance, highlighting their limitations in modeling these datasets. 

For the China dataset (Table 7), the OBP-Gompertz model demonstrated a highly flexible and 

accurate fit, achieving optimal values for all the performance metrics. Similarly, for the 

Netherlands dataset (Table 8), the OBP-Gompertz model maintained its superiority by capturing 

both central tendencies and tail behaviors effectively. The Beta-Gompertz and G-Gompertz 

models showed moderate performance across these datasets, while the WE-Gompertz and 

Gamma-Gompertz models failed to adequately capture the distributional characteristics. For the 

Nepal dataset (Table 9), the OBP-Gompertz model once again excelled, providing the most 

accurate and parsimonious fit. Figs. 18–20 provide visual confirmation of these results, showing 

density plots where the OBP-Gompertz model closely aligns with the empirical data across all 

datasets. This alignment further validates the model's ability to represent the mortality rate 

distributions effectively. Overall, the OBP-Gompertz distribution emerges as the most reliable 

and robust model for these datasets. 

TABLE 7. Performance comparison of competing models for COVID-19 from China 

Models Estimates LL AIC BIC 

OBP-Gompertz 

𝛼̂ = 6.0462 

𝛽̂ = 3.3546 
𝜆̂ = 3.6453 
𝜂̂ = 1.4532 

-120.456 248.934 256.823 

G-Gompertz 
𝜆̂ = 3.5644 
𝑐̂ = 0.4536 
𝜃 = 7.3645 

-128.678 265.343 271.891 

WE-Gompertz 
𝜆̂ = 6.4657 
𝜎̂ = 1.4536 

-132.230 272.466 278.501 

Beta-Gompertz 

𝛼̂ = 6.5640 
𝛽̂ = 2.6751 
𝜃 = 1.4567 
𝛾 = 0.4531 

-125.894 261.7878 268.340 

Gamma-Gompertz 
𝛼̂ = 4.6745 
𝜆̂ = 0.6753 
𝜃 = 0.3421 

-129.341 266.6819 272.56 
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TABLE 8. Performance comparison of competing models for COVID-19 from the Netherlands 

Models Estimates LL AIC BIC 

OBP-Gompertz 

𝛼̂ = 6.0462 
𝛽̂ = 3.3546 

𝜆̂ = 3.6453 
𝜂̂ = 1.4532 

-120.456 248.934 256.823 

G-Gompertz 
𝜆̂ = 3.5644 
𝑐̂ = 0.4536 
𝜃 = 7.3645 

-128.678 265.343 271.891 

WE-Gompertz 
𝜆̂ = 6.4657 
𝜎̂ = 1.4536 

-132.230 272.466 278.501 

Beta-Gompertz 

𝛼̂ = 6.5640 

𝛽̂ = 2.6751 
𝜃 = 1.4567 
𝛾 = 0.4531 

-125.894 261.787 268.340 

Gamma-Gompertz 
𝛼̂ = 4.6745 
𝜆̂ = 0.6753 
𝜃 = 0.3421 

-129.341 266.681 272.560 

 

TABLE 9. Performance comparison of competing models for COVID-19  from Nepal 

Models Estimates LL AIC BIC 

OBP-Gompertz 

𝛼̂ = 3.5764 

𝛽̂ = 2.4561 
𝜆̂ = 1.0453 
𝜂̂ = 5.8564 

-125.504 255.057 262.501 

G-Gompertz 
𝜆̂ = 4.5632 
𝑐̂ = 2.8663 
𝜃 = 2.4658 

-130.801 265.610 273.119 

WE-Gompertz 
𝜆̂ = 5.9045 
𝜎̂ = 3.7583 

-132.504 269.850 276.594 

 Beta-Gompertz 

𝛼̂ = 1.4653 

𝛽̂ = 3.7684 
𝜃 = 2.7659 
𝛾 = 1.9563 

-129.563 263.751 270.451 

Gamma-Gompertz 
𝛼̂ = 6.8670 
𝜆̂ = 1.6574 
𝜃 = 2.6701 

-131.850 267.029 274.023 

7. CONCLUSION 

This study introduces the Odd Beta Prime-Gompertz (OBP-Gompertz) distribution, a 

flexible extension of the traditional Gompertz model. The OBP-Gompertz distribution 

demonstrates superior flexibility and surpasses the limitations of the Gompertz model by 

effectively capturing a wider range of data behaviors. It accommodates diverse density shapes, 

including right-skewed, left-skewed, heavy-tailed, and light-tailed distributions, and exhibits 

versatile hazard rate functions, such as increasing, decreasing, bathtub-shaped, and inverted 

bathtub-shaped curves. These characteristics make the OBP-Gompertz distribution well-suited 

for modeling complex mortality data observed in real-world scenarios. The paper investigates 

key structural properties of the OBP-Gompertz distribution, including moments, the quantile 

function, and the generating function. We explore parameter estimation using maximum 

likelihood estimation and validate its performance through comprehensive simulation studies. 
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The practical applicability of the OBP-Gompertz distribution is demonstrated through its 

application to COVID-19 mortality data from China, the Netherlands, and Nepal. In all cases, the 

OBP-Gompertz model demonstrates superior adaptability and effectiveness compared to 

competing models, as evidenced by improved goodness-of-fit measures. These findings highlight 

the OBP-Gompertz distribution as a valuable tool for researchers and practitioners in various 

fields. It has the potential to significantly improve the accuracy and reliability of statistical 

modeling in survival analysis, reliability studies, and epidemiological research. 

Future research directions include investigating the OBP-Gompertz distribution 

applications in regression analysis, investigating its properties under different censoring and 

truncation schemes. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 

 

 

References 

[1] I.E. Ragab, H. Daud, A.A. Suleiman, N. Alsadat, V.B. Nagarjuna, M. Elgarhy, Type Ii Topp-Leone 

Exponentiated Gamma Distribution with Application to Breaking Stress Data, J. Radiat. Res. Appl. Sci. 

17 (2024), 101045. https://doi.org/10.1016/j.jrras.2024.101045. 

[2] A.A. Alahmadi, R.A. ZeinEldin, O. Albalawi, M.M. Badr, T.A.A. Abdelfadel, A.W. Shawki, Modified 

Kies Power Lomax Model with Applications in Different Sciences, J. Radiat. Res. Appl. Sci. 18 (2025), 

101239. https://doi.org/10.1016/j.jrras.2024.101239. 

[3] Y. Yu, Y. Jia, M.A. Alshahrani, O.A. Alamri, H. Daud, J.G. Dar, A.A. Suleiman, Adopting a New Sine-

Induced Statistical Model and Deep Learning Methods for the Empirical Exploration of the Music and 

Reliability Data, Alex. Eng. J. 104 (2024), 396-408. https://doi.org/10.1016/j.aej.2024.07.104. 

[4] L.A. Al-Essa, M. Muhammad, M.H. Tahir, B. Abba, J. Xiao, F. Jamal, A New Flexible Four Parameter 

Bathtub Curve Failure Rate Model, and Its Application to Right-Censored Data, IEEE Access 11 (2023), 

50130-50144. https://doi.org/10.1109/access.2023.3276904. 

[5] M.I.A. Araibi, A.A. Mir, I. Elbatal, E.M. Almetwally, C. Tanış, E. Ozkan, A.M. Gemeay, A New 

Alternative to the Log-Kumaraswamy Distribution: Properties, Estimation, and Fitting Data, Int. J. 

Anal. Appl. 23 (2025), 174. https://doi.org/10.28924/2291-8639-23-2025-174. 

[6] U. Panitanarak, A.I. Ishaq, A.A. Suleiman, H. Daud, N.S.S. Singh, A.U. Usman, N. Alsadat, M. Elgarhy, 

A New Beta Distribution with Interdisciplinary Data Analysis, AIMS Math. 10 (2025), 8495-8527. 

https://doi.org/10.3934/math.2025391. 

[7] N. Alsadat, A.S. Hassan, M. Elgarhy, C. Chesneau, R.E. Mohamed, An Efficient Stress–strength 

Reliability Estimate of the Unit Gompertz Distribution Using Ranked Set Sampling, Symmetry 15 

(2023), 1121. https://doi.org/10.3390/sym15051121. 

[8] T.N. Sindhu, A. Shafiq, M.B. Riaz, T.A. Abushal, H. Ahmad, E.M. Almetwally, S. Askar, Introducing 

the New Arcsine-Generator Distribution Family: An In-Depth Exploration with an Illustrative 

https://doi.org/10.1016/j.jrras.2024.101045
https://doi.org/10.1016/j.jrras.2024.101239
https://doi.org/10.1016/j.aej.2024.07.104
https://doi.org/10.1109/access.2023.3276904
https://doi.org/10.28924/2291-8639-23-2025-174
https://doi.org/10.3934/math.2025391
https://doi.org/10.3390/sym15051121


38  Int. J. Anal. Appl. (2025), 23:206 

 

Example of the Inverse Weibull Distribution for Analyzing Healthcare Industry Data, J. Radiat. Res. 

Appl. Sci. 17 (2024), 100879. https://doi.org/10.1016/j.jrras.2024.100879. 

[9] A.A. Osi, G.S.S. Abdalla, N.S. Sawaran Singh, A.A. Suleiman, Advancing Lifetime Data Modeling via 

the Marshall-Olkin Cosine Topp-Leone Distribution Family, Comput. J. Math. Stat. Sci. (2025). 

https://doi.org/10.21608/cjmss.2025.374786.1155. 

[10] C.M. Dalah, V. Singh, I. Abdullahi, A. Suleiman, The Study of HIV/AIDS Trend in Yobe State for the 

Prescribed Period (1999–2019), Int. J. Stat. Appl. 10 (2020), 10-16. 

[11] H. Daud, A.S. Mohammed, A.I. Ishaq, B. Abba, Y. Zakari, J. Abdullahi, D.A. Shobanke, A.A. Suleiman, 

Modeling and Prediction of Exchange Rates Using Topp-Leone Burr Type X, Machine Learning and 

Deep Learning Models, Eur. J. Stat. 4 (2024), 11. https://doi.org/10.28924/ada/stat.4.11. 

[12] L.P. Sapkota, V. Kumar, G. Tekle, H. Alrweili, M.S. Mustafa, M. Yusuf, Fitting Real Data Sets by a New 

Version of Gompertz Distribution, Mod. J. Stat. 1 (2025), 25-48.  

https://doi.org/10.64389/mjs.2025.01109. 

[13] U. Danjuma Maiwada, R. Yusuf Zakari, A.A. Janisar, Distribution Function-Driven Handover 

Solutions for 5G Mobile Networks, J. Stat. Sci. Comput. Intell. 1 (2025), 46-60. 

https://doi.org/10.64497/jssci.1. 

[14] A.A. Suleiman, H. Daud, A.I. Ishaq, R. Sokkalingam, S.A. Suleiman, et al. Extension of the Log-Logistic 

Distribution for Groundwater Analysis and Potability Prediction Using Machine Learning Models, in: 

Proceedings of the 5th International Electronic Conference on Applied Sciences, 2024, MDPI, Basel, 

Switzerland, 2024. 

[15] U. Panitanarak, A. Ismail Ishaq, A. Adewole Abiodun, H. Daud, A. Abubakar Suleiman, A New 

Maxwell-Log Logistic Distribution and Its Applications for Mortality Rate Data, J. Niger. Soc. Phys. 

Sci. 7 (2025), 1976. https://doi.org/10.46481/jnsps.2025.1976. 

[16] Q.N. Husain, A.S. Qaddoori, N.A. Noori, K.N. Abdullah, A.A. Suleiman, O.S. Balogun, New 

Expansion of Chen Distribution According to the Nitrosophic Logic Using the Gompertz Family, 

Innov. Stat. Probab. 1 (2025), 60-75. https://doi.org/10.64389/isp.2025.01105. 

[17] U. Panitanarak, A.I. Ishaq, A. Usman, I.A. Sadiq, A.S. Mohammed, The Modified Sine Distribution 

and Machine Learning Models for Enhancing Crude Oil Production Prediction, J. Stat. Sci. Comput. 

Intell. 1 (2025), 29-45. https://doi.org/10.64497/jssci.3. 

[18] A. Ibrahim, A.A. Suleiman, U.A. Abdullahi, S.A. Suleiman, Monitoring Groundwater Quality Using 

Probability Distribution in Gwale, Kano State, Nigeria, J. Stat. Model. Anal. 3 (2021), 95-108. 

https://doi.org/10.22452/josma.vol3no2.6. 

[19] A.I. Ishaq, A.A. Abiodun, A.A. Suleiman, A. Usman, A.S. Mohammed, M. Tasiu, Modelling Nigerian 

Inflation Rates from January 2003 to June 2023 Using Newly Developed Inverse Power Chi-Square 

Distribution, in: 2023 4th International Conference on Data Analytics for Business and Industry 

(ICDABI), IEEE, 2023, pp. 644-651. https://doi.org/10.1109/icdabi60145.2023.10629442.  

[20] A.I. Ishaq, A.U. Usman, H.N. Alqifari, A. Almohaimeed, H. Daud, S.I. Abba, A.A. Suleiman, A New 

Log-Lomax Distribution, Properties, Stock Price, and Heart Attack Predictions Using Machine 

Learning Techniques, AIMS Math. 10 (2025), 12761-12807. https://doi.org/10.3934/math.2025575. 

https://doi.org/10.1016/j.jrras.2024.100879
https://doi.org/10.21608/cjmss.2025.374786.1155
https://doi.org/10.28924/ada/stat.4.11
https://doi.org/10.64389/mjs.2025.01109
https://doi.org/10.64497/jssci.1
https://doi.org/10.46481/jnsps.2025.1976
https://doi.org/10.64389/isp.2025.01105
https://doi.org/10.64497/jssci.3
https://doi.org/10.22452/josma.vol3no2.6
https://doi.org/10.1109/icdabi60145.2023.10629442
https://doi.org/10.3934/math.2025575


Int. J. Anal. Appl. (2025), 23:206 39 

 

[21] A. Suleiman, A. Usman, H. Daud, F.A. Idris, R. Sokkalingam, A.I. Ishaq, A Voting Regressor Ensemble 

Model for Crude Oil Price Prediction, J. Stat. Sci. Comput. Intell. 1 (2025), 61-72. 

https://doi.org/10.64497/jssci.4. 

[22] A. Usman, A.I. Ishaq, A.A. Suleiman, M. Othman, H. Daud, Y. Aliyu, Univariate and Bivariate Log-

Topp-Leone Distribution Using Censored and Uncensored Datasets, Comput. Sci. Math. Forum 7 

(2023), 32. https://doi.org/10.3390/iocma2023-14421.  

[23] A. A. Suleiman, H. Daud, M. Othman, A. Husin, A.I. Ishaq et al. Forecasting the Southeast Asian 

Currencies against the British Pound Sterling Using Probability Distributions, Data Sci. Insights 1 

(2023), 31-51. 

[24] F. Jamal, S. Kanwal, S. Shafiq, M. Hashim, M. Kayid, M. Muhammad, S. Dutta, A.W. Shawki, The New 

Extended Exponentiated Burr Xii Distribution: Properties and Applications, J. Radiat. Res. Appl. Sci. 

18 (2025), 101200. https://doi.org/10.1016/j.jrras.2024.101200. 

[25] A.I. Ishaq, A. Usman, A.A. Suleiman, M. Othman, H. Daud, et al. Perspective Chapter: A New 

Bivariate Inverted Nakagami Distribution – Properties and Applications, in: New Trends and 

Challenges in Open Data , IntechOpen, 2023. https://doi.org/10.5772/intechopen.1001446. 

[26] U. Panitanarak, A.I. Ishaq, N.S.S. Singh, A. Usman, A.U. Usman, et al. Machine Learning Models in 

Predicting Failure Times Data Using a Novel Version of the Maxwell Model, Eur. J. Stat. 5 (2025), 1. 

https://doi.org/10.28924/ada/stat.5.1. 

[27] R.A.R. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Theory and Applications of the Unit 

Gamma/gompertz Distribution, Mathematics 9 (2021), 1850. https://doi.org/10.3390/math9161850. 

[28] I. Elbatal, F. Jamal, C. Chesneau, M. Elgarhy, S. Alrajhi, The Modified Beta Gompertz Distribution: 

Theory and Applications, Mathematics 7 (2018), 3. https://doi.org/10.3390/math7010003. 

[29] A.I. Ishaq, A.A. Suleiman, H. Daud, N.S.S. Singh, M. Othman, R. Sokkalingam, P. Wiratchotisatian, 

A.G. Usman, S.I. Abba, Log-kumaraswamy Distribution: Its Features and Applications, Front. Appl. 

Math. Stat. 9 (2023), 1258961. https://doi.org/10.3389/fams.2023.1258961. 

[30] H. Semary, A.A. Suleiman, A.I. Ishaq, J.Y. Falgore, U.K. Abdullahi, H. Daud, M.A. Abd Elgawad, M. 

Elgarhy, A New Modified Sine-Weibull Distribution for Modeling Medical Data with Dynamic 

Structures, J. Radiat. Res. Appl. Sci. 18 (2025), 101427. https://doi.org/10.1016/j.jrras.2025.101427. 

[31] S.F. Salleh, A.A. Suleiman, H. Daud, M. Othman, R. Sokkalingam, K. Wagner, Tropically Adapted 

Passive Building: a Descriptive-Analytical Approach Using Multiple Linear Regression and 

Probability Models to Predict Indoor Temperature, Sustainability 15 (2023), 13647. 

https://doi.org/10.3390/su151813647. 

[32] C.K. Onyekwere, O.C. Aguwa, O.J. Obulezi, An Updated Lindley Distribution: Properties, Estimation, 

Acceptance Sampling, Actuarial Risk Assessment and Applications, Innov. Stat. Probab. 1 (2025), 1-

27. https://doi.org/10.64389/isp.2025.01103. 

[33] A.M. Gemeay, T. Moakofi, O.S. Balogun, E. Ozkan, M.M. Hossain, Analyzing Real Data by a New 

Heavy-Tailed Statistical Model, Mod. J. Stat. 1 (2025), 1-24. https://doi.org/10.64389/mjs.2025.01108. 

[34] A.A. Suleiman, A. Suleiman, U.A. Abdullahi, S.A. Suleiman, Estimation of the Case Fatality Rate of 

COVID-19 Epidemiological Data in Nigeria Using Statistical Regression Analysis, Biosaf. Health 3 

(2021), 4-7. https://doi.org/10.1016/j.bsheal.2020.09.003. 

https://doi.org/10.64497/jssci.4
https://doi.org/10.3390/iocma2023-14421
https://doi.org/10.1016/j.jrras.2024.101200
https://doi.org/10.5772/intechopen.1001446
https://doi.org/10.28924/ada/stat.5.1
https://doi.org/10.3390/math9161850
https://doi.org/10.3390/math7010003
https://doi.org/10.3389/fams.2023.1258961
https://doi.org/10.1016/j.jrras.2025.101427
https://doi.org/10.3390/su151813647
https://doi.org/10.64389/isp.2025.01103
https://doi.org/10.64389/mjs.2025.01108
https://doi.org/10.1016/j.bsheal.2020.09.003


40  Int. J. Anal. Appl. (2025), 23:206 

 

[35] A.A. Suleiman, H. Daud, A.G. Usman, S.I. Abba, M. Othman, M. Elgarhy, A New Two-Parameter 

Half-Logistic Distribution with Numerical Analysis and Applications, J. Stat. Sci. Comput. Intell. 1 

(2025), 1-28. https://doi.org/10.64497/jssci.2. 

[36] A.A. Suleiman, H. Daud, A.I. Ishaq, A.U. Farouk, A.S. Mohammed, M. Kayid, V.B. Nagarjuna, S. 

Mohammad, M. Elgarhy, A New Statistical Model for Advanced Modeling of Cancer Disease Data, 

Kuwait J. Sci. 52 (2025), 100429. https://doi.org/10.1016/j.kjs.2025.100429. 

[37] A.I. Ishaq, A.A. Suleiman, A. Usman, H. Daud, R. Sokkalingam, Transformed Log-Burr III 

Distribution: Structural Features and Application to Milk Production, in: The 4th International 

Electronic Conference on Applied Sciences, MDPI, Basel Switzerland, 2023, pp. 322. 

https://doi.org/10.3390/asec2023-15289. 

[38] S.O. Bashiru, M. Kayid, R. Sayed, O.S. Balogun, A. Hammad, M.A. El-Raouf, Transmuted Inverse Unit 

Teissier Distribution: Properties, Estimations and Applications to Medical and Radiation Sciences, J. 

Radiat. Res. Appl. Sci. 18 (2025), 101208. https://doi.org/10.1016/j.jrras.2024.101208. 

[39] A. Usman, A.I. Ishaq, M. Tasi’U, A.A. Suleiman, U.A. Abdullahi, Inverse Power Log-Toppleone 

distribution and its competitors for estimating the exchange rate datasets, in: 2023 4th International 

Conference on Data Analytics for Business and Industry (ICDABI), IEEE, 2023, pp. 639-643. 

https://doi.org/10.1109/icdabi60145.2023.10629436.  

[40] R.B. Yunus, N. Zainuddin, K. Kamfa, B.D. Garba, M.A. Lawan, S.I. Mohammed, An Efficient Dai-Yuan 

Cg Method Based on Structured Secant Conditions for Nls Problems and Its Application, J. Stat. Sci. 

Comput. Intell. 1 (2025), 73-84. https://doi.org/10.64497/jssci.5. 

[41] B. Gompertz, On the Nature of the Function Expressive of the Law of Human Mortality, and on a New 

Mode of Determining the Value of Life Contingencies. In a Letter to Francis Baily, Esq. FRS &c. By 

Benjamin Gompertz, Esq. F. R. S., Phil. Trans. R. Soc.115 (1825), 513–583. 

http://doi.org/10.1098/rstl.1825.0026. 

[42] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, John Wiley & Sons, 

(1995). 

[43] K. Ohishi, H. Okamura, T. Dohi, Gompertz Software Reliability Model: Estimation Algorithm and 

Empirical Validation, J. Syst. Softw. 82 (2009), 535-543. https://doi.org/10.1016/j.jss.2008.11.840. 

[44] A.C. Economos, Rate of Aging, Rate of Dying and the Mechanism of Mortality, Arch. Gerontol. Geriatr. 

1 (1982), 3-27. https://doi.org/10.1016/0167-4943(82)90003-6. 

[45] A.C. Bemmaor, N. Glady, Modeling Purchasing Behavior with Sudden “death”: A Flexible Customer 

Lifetime Model, Manag. Sci. 58 (2012), 1012-1021. https://doi.org/10.1287/mnsc.1110.1461. 

[46] S. Dey, T. Kayal, Y.M. Tripathi, Evaluation and Comparison of Estimators in the Gompertz 

Distribution, Ann. Data Sci. 5 (2017), 235-258. https://doi.org/10.1007/s40745-017-0126-z. 

[47] S. Dey, F.A. Moala, D. Kumar, Statistical Properties and Different Methods of Estimation of Gompertz 

Distribution with Application, J. Stat. Manag. Syst. 21 (2018), 839-876. 

https://doi.org/10.1080/09720510.2018.1450197. 

[48] T. Missov, A. Lenart, Linking Period and Cohort Life-Expectancy Linear Increases in Gompertz 

Proportional Hazards Models, Demogr. Res. 24 (2011), 455-468. 

https://doi.org/10.4054/demres.2011.24.19. 

https://doi.org/10.64497/jssci.2
https://doi.org/10.1016/j.kjs.2025.100429
https://doi.org/10.3390/asec2023-15289
https://doi.org/10.1016/j.jrras.2024.101208
https://doi.org/10.1109/icdabi60145.2023.10629436
https://doi.org/10.64497/jssci.5
http://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1016/j.jss.2008.11.840
https://doi.org/10.1016/0167-4943(82)90003-6
https://doi.org/10.1287/mnsc.1110.1461
https://doi.org/10.1007/s40745-017-0126-z
https://doi.org/10.1080/09720510.2018.1450197
https://doi.org/10.4054/demres.2011.24.19


Int. J. Anal. Appl. (2025), 23:206 41 

 

[49] F.A. MOALA, S. DEY, Objective and Subjective Prior Distributions for the Gompertz Distribution, An. 

Acad. Bras. Ciências 90 (2018), 2643-2661. https://doi.org/10.1590/0001-3765201820171040. 

[50] J.H. Pollard, E. J. Valkovics, The Gompertz Distribution and Its Applications, Genus, 48 (1992), 15-28. 

[51] C. Lai, M. Xie, D. Murthy, Ch. 3. Bathtub-shaped failure rate life distributions, in: Handbook of 

Statistics, Elsevier, 2001, pp. 69-104. https://doi.org/10.1016/s0169-7161(01)20005-4. 

[52] A. El-Gohary, A. Alshamrani, A.N. Al-Otaibi, The Generalized Gompertz Distribution, Appl. Math. 

Model. 37 (2013), 13-24. https://doi.org/10.1016/j.apm.2011.05.017. 

[53] A. Al-Khedhairi, A. El-Gohary, A New Class of Bivariate Gompertz Distributions and Its Mixture, Int. 

J. Math. Anal. 2 (2008), 235-253. 

[54] L.J. Bain, Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics 16 (1974), 551-

559. https://doi.org/10.2307/1267607. 

[55] A.M. Sarhan, D. Kundu, Generalized Linear Failure Rate Distribution, Commun. Stat. - Theory 

Methods 38 (2009), 642-660. https://doi.org/10.1080/03610920802272414. 

[56] M. Muhammad, B. Abba, J. Xiao, N. Alsadat, F. Jamal, M. Elgarhy, A New Three-Parameter Flexible 

Unit Distribution and Its Quantile Regression Model, IEEE Access 12 (2024), 156235-156251. 

https://doi.org/10.1109/access.2024.3485219. 

[57] A.A. Jafari, S. Tahmasebi, Gompertz-power Series Distributions, Commun. Stat. - Theory Methods 45 

(2015), 3761-3781. https://doi.org/10.1080/03610926.2014.911904. 

[58] A.A. Jafari, S. Tahmasebi, M. Alizadeh, The Beta-Gompertz Distribution, arXiv:1407.0743 (2014). 

http://arxiv.org/abs/1407.0743v1. 

[59] A. El-Gohary, A. Alshamrani, A.N. Al-Otaibi, The Generalized Gompertz Distribution, Appl. Math. 

Model. 37 (2013), 13-24. 

[60] S.R. Haile, J. Jeong, X. Chen, Y. Cheng, A 3-Parameter Gompertz Distribution for Survival Data with 

Competing Risks, with an Application to Breast Cancer Data, J. Appl. Stat. 43 (2016), 2239-2253. 

https://doi.org/10.1080/02664763.2015.1134450. 

[61] J. Mazucheli, A.F. Menezes, S. Dey, Unit-Gompertz Distribution with Applications, Statistica 79 (2019),  

25-43. https://doi.org/10.6092/issn.1973-2201/8497. 

[62] M.E. Ghitany, S.M. Aboukhamseen, A.A. Baqer, R.C. Gupta, Gompertz-lindley Distribution and 

Associated Inference, Commun. Stat. - Simul. Comput. 51 (2022), 2599-2618. 

https://doi.org/10.1080/03610918.2019.1699113. 

[63] M.A.A. Boshi, S.H. Abid, N.H. Al-Noor, Generalized Gamma – Generalized Gompertz Distribution, J. 

Phys.: Conf. Ser. 1591 (2020), 012043. https://doi.org/10.1088/1742-6596/1591/1/012043.  

[64] A.A. Suleiman, H. Daud, M. Othman, A.I. Ishaq, R. Indawati, M.L. Abdullah, A. Husin, The Odd Beta 

Prime-G Family of Probability Distributions: Properties and Applications to Engineering and 

Environmental Data, Comput. Sci. Math. Forum 7  (2023), 20. https://doi.org/10.3390/iocma2023-

14429.  

[65] A.A. Suleiman, H. Daud, A.I. Ishaq, M. Kayid, R. Sokkalingam, Y. Hamed, M. Othman, V.B. 

Nagarjuna, M. Elgarhy, A New Weibull Distribution for Modeling Complex Biomedical Data, J. 

Radiat. Res. Appl. Sci. 17 (2024), 101190. https://doi.org/10.1016/j.jrras.2024.101190. 

https://doi.org/10.1590/0001-3765201820171040
https://doi.org/10.1016/s0169-7161(01)20005-4
https://doi.org/10.1016/j.apm.2011.05.017
https://doi.org/10.2307/1267607
https://doi.org/10.1080/03610920802272414
https://doi.org/10.1109/access.2024.3485219
https://doi.org/10.1080/03610926.2014.911904
http://arxiv.org/abs/1407.0743v1
https://doi.org/10.1080/02664763.2015.1134450
https://doi.org/10.6092/issn.1973-2201/8497
https://doi.org/10.1080/03610918.2019.1699113
https://doi.org/10.1088/1742-6596/1591/1/012043
https://doi.org/10.3390/iocma2023-14429
https://doi.org/10.3390/iocma2023-14429
https://doi.org/10.1016/j.jrras.2024.101190


42  Int. J. Anal. Appl. (2025), 23:206 

 

[66] H. Daud, A.A. Suleiman, A.I. Ishaq, N. Alsadat, M. Elgarhy, A. Usman, P. Wiratchotisatian, U.A. 

Ubale, Y. Liping, A New Extension of the Gumbel Distribution with Biomedical Data Analysis, J. 

Radiat. Res. Appl. Sci. 17 (2024), 101055. https://doi.org/10.1016/j.jrras.2024.101055. 

[67] A.A. Suleiman, H. Daud, A.I. Ishaq, M. Othman, H.M. Alshanbari, S.N. Alaziz, A Novel Extended 

Kumaraswamy Distribution and Its Application to COVID‐19 Data, Eng. Rep. 6 (2024), e12967. 

https://doi.org/10.1002/eng2.12967. 

[68] A.A. Suleiman, H. Daud, A.I. Ishaq, M. Othman, R. Sokkalingam, A. Usman, A.A. Osi, The Odd Beta 

Prime Inverted Kumaraswamy Distribution with Application to COVID-19 Mortality Rate in Italy, in: 

The 4th International Electronic Conference on Applied Sciences, MDPI, Basel Switzerland, 2023, pp. 

218. https://doi.org/10.3390/asec2023-16310. 

[69] A.A. Suleiman, H. Daud, N.S.S. Singh, A.I. Ishaq, M. Othman, A New Odd Beta Prime-Burr X 

Distribution with Applications to Petroleum Rock Sample Data and Covid-19 Mortality Rate, Data 8 

(2023), 143. https://doi.org/10.3390/data8090143. 

[70] A.A. Suleiman, H. Daud, O. Mahmod, N. Singh, A Novel Extension of the Fréchet Distribution: 

Statistical Properties and Application to Groundwater Pollutant Concentrations, Data Sci. Insights, 1 

(2023), 8-24. 

[71] A.A. Suleiman, H. Daud, N.S.S. Singh, M. Othman, A.I. Ishaq, R. Sokkalingam, A Novel Odd Beta 

Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and 

Environmental Data, Sustainability 15 (2023), 10239. https://doi.org/10.3390/su151310239. 

[72] A.S. Alghamdi, M.M. Abd El-Raouf, Exploring the Dynamics of Covid-19 with a Novel Family of 

Models, Mathematics 11 (2023), 1641. https://doi.org/10.3390/math11071641. 

[73] A.M.T. Abd El-Bar, I.E. Ragab, On Weighted Exponential-Gompertz Distribution: Properties and 

Application, J. Taibah Univ. Sci. 13 (2019), 616-627. https://doi.org/10.1080/16583655.2019.1600277. 

[74] M. Shama, S. Dey, E. Altun, A.Z. Afify, The Gamma–gompertz Distribution: Theory and Applications, 

Math. Comput. Simul. 193 (2022), 689-712. https://doi.org/10.1016/j.matcom.2021.10.024. 

[75] A.I. Ishaq, U. Panitanarak, A.A. Abiodun, A.A. Suleiman, H. Daud, The Generalized Odd Maxwell-

Kumaraswamy Distribution: Its Properties and Applications, Contemp. Math.  (2024), 711-742. 

https://doi.org/10.37256/cm.5120242888. 

 

https://doi.org/10.1016/j.jrras.2024.101055
https://doi.org/10.1002/eng2.12967
https://doi.org/10.3390/asec2023-16310
https://doi.org/10.3390/data8090143
https://doi.org/10.3390/su151310239
https://doi.org/10.3390/math11071641
https://doi.org/10.1080/16583655.2019.1600277
https://doi.org/10.1016/j.matcom.2021.10.024
https://doi.org/10.37256/cm.5120242888

