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Abstract. (Ultra) filters in Sheffer stroke BL-algebras based on the Jun’s | f,—fuzzy set are studied. The concept of (ultra)
(e, e)—]g-fuzzy filters in Sheffer stroke BL-algebras is introduced, and various fundamental properties are investigated.
Characterizations of (€, e)-]‘ls/—fuzzy filters are discussed, and the relationship between the fuzzy filter and the (€,

e)—]‘}’;—fuzzy filter is considered. The conditions for the (€, e)—]i’;—fuzzy filter to become ultra are explored.

1. INTRODUCTION

The fuzzy setis introduced by Zadeh [22], and it is an extremely useful mathematical framework
for expressing and manipulating uncertainty and ambiguity in data with applications such as
decision-making, pattern recognition, image processing, control systems, data mining, expert
systems, natural language processing, risk assessment, and decision analysis. Along with the
expansion or generalization of fuzzy sets, various types of fuzzy sets have emerged and are being
applied in various fields. (see [1,3,9-11,17,21]). Jun [4] introduced a new type of fuzzy set
called J' (;,-fuzzy set by introducing the J-operator in relation to the existing fuzzy set, and applied
it to BCK-algebras and BCl-algebras (see also [18]). The Sheffer operation (or Sheffer stroke)is a
logical operation in Boolean algebra, and it is equivalent to negation of the conjunction operation
(AND) in classical logic. It can be observed that the Sheffer stroke is applied in various ways
(see [2,6-8,12-15,19]). Jun-Yang-Roh ( [5]) applied the ]g-fuzzy set to Sheffer stroke BL-algebras.

In this paper, we apply Jun’s ]g—fuzzy set to the (ultra) filter of Sheffer stroke BL-algebras.
We introduce the concept of an (ultra) (g, e)-]@-fuzzy filter in Sheffer stroke BL-algebras, and
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investigate several properties. We discuss characterizations of (€, €)-] g-fuzzy filters. We consider
the relationship between the fuzzy filter and the (€, €)- ]g—fuzzy filter. We explore the conditions
for the (€, €)-J g-fuzzy filter to become ultra.

2. PRELIMINARIES

Definition 2.1 ( [20]). Let A := (D, |) be a groupoid. Then the operation | is said to be Sheffer operation
or Sheffer stroke if it satisfies:

(s1) a6 = ba,

(s2) (ala)|(alb) = q,

(s3) al((ble)I(ble)) = ((alb)l(alb))lc,

(s4) (al((ala)I(bIb)))I(al((ala)I(blb))) =
forall a,b,ceD.

Definition 2.2 ([12]). Analgebra (X,V, A,,0,1) of type (2,2,2,0,0) is called a Sheffer stroke BL-algebra
(briefly, SsBL-algebra) if it satisfies:

(SBLO1) (X, V, A, 0, 1) is a bounded lattice,

(SBL02) (X, |) is a groupoid with the Sheffer stroke |,

(SBL03) (Ya,b € X) (a Ab = (al(al(b]b)))I(al(al(D]b)))),

(SBL04) (Ya,b € X) ((al(b|b)) V (bl(ala)) = 1)
where 1 = 0|0 is the greatest element and 0 = 1|1 is the least element of X.

The SsBL-algebra (X, V, A, |, 0, 1) is simply denoted by X.

Proposition 2.1 ( [12]). Every SsBL-algebra X satisfies:

al(ala) =1, (2.1)
1|(ala) = q, (2.2)
al(11) =1, (2.3)
a <x bif and only if a|(b|b) =1 (24)
{ (al(al(010))) I (al(al(010))) <x o, 25)
(al(al(b[b)))I(al(al(bIb))) <x D,
aVv b = (a|(bb))|(bb), (2.6)
al((bl(cle))I(Bl(cle))) = (al(blb))I((al(clc))I(al(clc))), (2.7)
(al(0[b))I(bfb) = (bl(ala))l(ala), (2.8)
((al(blb))[(blb))I(blb) = al(blb) (2.9)

forall a,b,ce X.
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Definition 2.3 ([12]). A filter of X is defined to be a nonempty subset D of X that satisfies:
(Va,be X)(a,be D = (ab)|(ab) € D), (2.10)
(Va,beX)(aeD,a<xb = beD). (2.11)
Lemma 2.1 ( [12]). A nonempty subset D of X is a filter of X if and only if the following is true.
1eD, (2.12)
(Va,be X)(aeD, a|(bp) e D = beD,). (2.13)
Definition 2.4 ([12]). A filter D of X is said to be ultra if it satisfies:

(VaeX)(aeDoralaeD). (2.14)

Lemma 2.2 ( [12]). A filter D of X is ultra if and only if the following is true

(Va,beX)(avbeD = ae€DorbeD). (2.15)

Definition 2.5 ([12]). A fuzzy filter of X is defined to be a fuzzy set O in X that satisfies:

(Vae X)(6(a) <08(1)), (2.16)
(Va,b € X)(d(b) > min{d(a), d(al(b[b))}). (2.17)
Given a,b € [0,1], we use the notations a Vb and a A b instead of max{a, b} and minf{a, b},

respectively.

The complement of a fuzzy set 0 in a set X, written by 0¢, is defined by
0:X—[0,1], b—>1-08(b)).

A fuzzy set 0 in a set X of the form

f 0,1] if b=na,
o(v):— (€01 ifo=a
0 if b#aq,

is said to be a fuzzy point with support a and value f and is denoted by a;.
For a fuzzy set 0 in a set X, we say that a fuzzy point a; is
(i) contained in 8, denoted by a; € 8, (see [16]) if 3(a) > 1.
(ii) quasi-coincident with &, denoted by a; ¢ 8, (see [16]) if 5(a) + £ > 1.
If a; ¢  is not established for a € {€, g}, it is denoted by a; a 0.
Given f € (0,1] and a fuzzy set 8 in a set X, consider the following sets

(0,))e :=={aeX|aqed}and (§,f), :=fae X | a;q0}

which are called the level set and the g-set of & related to f, respectively, in X.
In [4], Jun introduced a new type of fuzzy sets generated by the J-operator in the closed interval

[0,1]. We display the basic notions about the J9-fuzzy sets.
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We use the notation I instead of the closed interval [0, 1]. Let < be the order relation in I?> defined

as follows:
YV (k,7), (i, ]) e P) (k1)< (i,j) © k<i r<j)
Consider a binary operation Jy in I given as follows:
Jy: P =1, (ko) (1-k)A(1-0).

We will call this binary operation [y the J-operator in I (see [4]).
Let X be a set. Given a fuzzy set 0 in X and 6 € I, let §; be a mapping defined by

s : X =1, x> Jy(0(x),0).
It is clear that 05 is a fuzzy set in X determined by the J-operator and 6. So we can say that d; is
the J9-fuzzy set of & in X (see [4]).
Let O be a fuzzy setin X, 6 € [and f € I'\ {0}. Given a ]g-fuzzy set 05, we consider the sets:
65(6, E) = {x eX | ]y(é(x),é) < E},
3s(q,f) :={x e X | Jy(8(x),0) <1-1,
which is called the Ye-set and Y-set of 85, respectively, related to f. We call f the level degree of 3.
3. (ULtra) (€, E)-](;/-FILTERS

In what follows, let X be an SsBL-algebra and 05 be the ]g-fuzzy set of a fuzzy set 0 in X, where
0 € I'\ {0, 1}, unless otherwise specified.
Given a fuzzy point x; and a fuzzy set 0 in X, we say that
o x; € Jsif Jy(0(x),0) <f,
e x;q0;sif Jy(d(x),0) +E<1,
For every a € {€, g}, if x;a 05 is not true, we denote it as xy @ 0.

We can observe that
0s(€,f) :={xe X |x; €8s} and 0s(q, f) := {x € X | x7q 8s}.
Definition 3.1. A fuzzy set & in X is called a | fuzzy filter of X if it satisfies:
(Vx € X)(Jy(0(1),6) < Jx(0(x),0)), (3.1)
(Vx,y € X)(Jy(8(y),0) < Jy(8(x),0) V Jy(6(xl(yly)), 5))- (32)

Example 3.1. Consider a set X := {19, 11,14, 1p,1c, 14, e, 15} with the Hasse diagram, the Sheffer stroke |, and
binary operations V and A given by Figure 1, Table 1, Table 2 and Table 3, respectively.
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Ficure 1. Hasse Diagram

1
Id lf
<>,
1

TasLE 1. Cayley table of the Sheffer stroke |

Il ta w 2 14 1 1f 1

Io|ltT 11 11 1 I 11 11 1N
g | 1 Zf n 1 Zf Zf 11 Zf
Iy |1 11 e 11 L 11 Lo 1
el 1 11 Iy 11 g 1lg 1y
g1 Zf le 11 1 lf e 1
le | 1 Zf n 1 lf Iy g 1

n|n Zf le 13 1o 1 1 11

TasLE 2. Cayley table of the binary operation Vv

Vit g 1 1c 1g 1 Iy n

|l 1g lp 1o 13 1 lf 51
g |lg 1o Ig le I e 11 1
|y 13 Iy lf g 11 lf 51
le | e e If e 11 1o lIf (51
gy g 13y 11 1y 11 11 11
le | 1lg 1o 11 1o 11 1o 11 11
Zf Zf 5] lf lf n n Zf 11
ninnh n 11 n n 11 11 11
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TasLe 3. Cayley table of the binary operation A

Nl 15 Iy 1c 1 1 If 1

Iop |l 10 1o 190 o 19 19 1o
gl 15 190 19 15 15 190 14
Iy |lo o Ip o Iy o Ip 1y
e |10 10 1 I 19 1o 1o 1¢
lgllo Ig Ip o lg g 1p 13
e |10 Ig 190 1o 1g 1o 1o 1

lf o 1 I 1o 1 1 lf lf

il g p 1o 13 1 Zf 51

Then (X, V, A, |, 10, 11) is an SsBL-algebra (see [12]). Define a fuzzy set & in X as follows:

0.74 if x =1,
059 if x =1y,
048 if x € {1,,1,},
0.36 otherwise.

0:X—-[0,1], x>

If we take 6 := 0.44, then the ]i’;fuzzy set Os of 0 is given by Table 4.

TabLE 4. Tabular representation of 0

weX 10 1 I Ie 14 le 1f 1
ds(w) 0.64 0.52 0.64 0.64 0.41 0.52 0.64 0.26

Then dis a ]f,—fuzzy filter of X for 6 = 0.44.
Theorem 3.1. A fuzzy set 0 in Xisa ]g-fuzzy filter of X if and only if the following conditions are valid.
0s(e,f) 20 = 1€ 0s(€,1), (3.3)
(Vx,y € X)(VE,5 € I\ {0})(x; € 85, xI(yly)s € Os + Ypys € Os)- (3.4)

Proof. Assume that §is a ]g—fuzzy filter of X. Letx,y € Xand },§ € I\ {0}. If 85(€, f) # 0, then there
exists a € 05(€,f), and so Jy(0(a),8) < L. It follows from (3.1) that Jy(8(1),6) < Jy(d(a),0) <
Hence 1 € 8s(€,f). Let x; € 85 and x|(yly)s € 8s. Then Jy(8(x),6) < Fand Jy(d(xl(yly)),6) < 5.
Thus Jy(8(y),6) < Jy(6(x),8) V Jy(8(xl(yly)),d) < Vv §, and so yp s € 0s. This proves (3.4).
Conversely, suppose that § satisfies (3.3) and (3.4) for all x, y € X and £,§ € I\ {0}. If (3.1) is not
valid, then there exists b € X and f € I'\ {0} such that Jy(5(1),6) > > Jy(5(b),6). Then b € d5(€, ),
and so 1 € 85(€, ) by (3.3). This is a contradiction. Hence (3.1) is valid. Suppose that (3.2) is not
valid. Then Jy(3(b),0) > § > Jy(d(a),8) V Jy(0(al(b[b)),6) for some a,b € X and § € I\ {0}. Then
a € 95(€,8) and a|(bJb) € §5(€,5), that is, as € &5 and a|(b[b); € Js. But bs € ds which shows that 6
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does not satisfy (3.4). This is a contradiction, and thus (3.2) is valid. Therefore 0 is a ]g-fuzzy filter
of X. O

In the sense of Theorem 3.1, the | g-fuzzy filter may also be called the (€, €)- ]g—fuzzy filter.

Corollary 3.1. A fuzzy set d in X is an (€, €)- ]g—fuzzy filter of X if and only if the nonempty Y-set
0s(€, f) is a filter of X for all T € I\ {0}.

Proposition 3.1. Every (€, €)- ]‘5 -fuzzy filter O of X satisfies:
2; € 05, (21)s € 0 + (((xl (Yly)I(wIy))I(x1x) )bvs € Os, (3.5)
where q = ((yl(x1x)|(yl(x|x))) forall x,y,z € X and £,5 € I \ {0}.

Proof. Let x,y,z € X and £§ € I\ {0} be such that z; € J; and (zlq); € 8; where q =
((yl(xlx))I(yl(xlx))). Then (zI((yl(xlx))I(yl(xlx))))s € 85, and so

(AW (xx) Jvs = (((l () )1 (xlx) )1 (x1x) s
= (yl(xlx))pvs € 65
by (2.8), (2.9) and (3.4). This completes the proof. m|

Proposition 3.2. Every (€, €)-]9-fuzzy filter & of X satisfies:

zj € 0y, (zlp)s € 85 F ((xI(yly))I(yly))svs € S5, (3.6)
where p = (((yl(xIx))(xlx))I((yl(x|x))I(xIx))) for all x, y,z € X and £,5 € I\ {0}.
Proof. Letx,y,z € X and 7,5 € I\ {0}. If z; € 3, and (zlp)s € O, then

(I (e DIy () (yly))))s

= (2I(((yl(xlx) )1 ()1 ((yl(xlx) ) (x1x) ) )s

= (lp)s € 05
by (2.8). It follows from (3.4) that ((x|(yly))I(yly))zs € Os. O
Proposition 3.3. Every (€, €)-]9-fuzzy filter & of X satisfies:

(Vx,y € X) (Jy(8(x V (xlx)),0) = J¥(5(1),0)). (3.7)
Proof. Let & be an (€, €)-J0-fuzzy filter of X. Then
Jy(8(x v (xlx)), 6) = Jy (d((xl((xlx)I(xlx)))I((x]x)I(x]x))), 0)

(xlx)lx), )

for all x € X by (s1), (s2), (2.1) and (2.6). O
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Proposition 3.4. Every (€, €)-]9-fuzzy filter & of X satisfies:

o[ G < 3z € 8,
(3 EX)[ - (A ) ) s € B ) 58
e x) [ () AED)))r € B, (K(yly))s € B ) oo

F (x (ZIZ))tVs € 66
(

Proof. Let x,y,z € X be such that (z|((yl(x]x))|(yl(xlx)))); € 85 and zs € 5. Then

)

(NI ly)(xlx) ) avs = (((ylCxlx))I(xlx) )1 (xlx) )pvs = (yI(xlx) )gys € Os

by (2.8), (2.9) and (3.4). Hence (3.8) is valid. If (x|((yl(zlz))I(yl(zlz)))); € s and (x|(yly))s € 05, then
((x(yly)I((xl (z12))1(x(z12))) )r = (xI((yI(zl2))I(¥l(z]2))))s € 85

by (2.7), and so (x|(z|z) )zs € Os by (3.4). Hence (3.9) is valid. ]
Lemma 3.1. A fuzzy set 0 in X is an (€, e)-]g-fuzzyﬁlter of X if and only if it satisfies:

A((yl(zl2)I(yl(zl))) =1 = _
Jy(6(2),0) < Jy(6(x),0) v J¥(6(y),0)
Proof. Assume that & is an (€, 6)—]5Y—fuzzy filter of X, and let x,y,z € X be such that
x((l(z12))I(¥l(2lz))) = 1. Then
Jy(6(x),6) = Jy(0(x),0) v J¥(6(1),0)
= Jy(0(x),0) v Jy (0 (xl((yl(2l2))I(yl(zlz)))), 6)
> Jy(8(yl(zlz)), 0),

(Vx,y,z € X) (3.10)

by (3.1) and (3.2), and so
J¥(6(2),0) < Jy(8(y),6) v Jy(6(¥l(zlz)), 0)
< Jy(8(x),0) v Jy(6(y),6)

by (3.2).
Conversely, suppose the condition (3.10) is valid. Using (2.3) induces

x| ((xl(111))1(xl(111))) =1
for all x € X. It follows from (3.10) that
Jr(8(1),0) < Jy(8(x),0) V Jy(8(x),0) = Jy(8(x),0).
For every x,y € X, we have

x| (G ly ) wly)I (A () (wly))) =
by the combination of (s1), (s3) and (2.1). Hence

Jy(8(y), 0) < Jy(6(x),0) V Jx(3(xl(yly)), 0)
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by (3.10). Therefore 0 is an (€, €)- ]5Y-fuzzy filter of X. m|
Theorem 3.2. A fuzzy set 8 in X is an (€, €)-J3~fuzzy filter of X if and only if it satisfies:
x; € 05, Ys € 05 + ((x)1(x|y))#vs € Os, (3.11)
X<x Y, X €05+ Yy € 0s (3.12)
forall x,y € Xandt,5 € I\ {0}.

Proof. Let x,y € X and £, € I\ {0}. Suppose that & is an (€, €)-J}-fuzzy filter of X. Suppose that
x <x y and x; € 85. Then x|(y|ly) = 1 by (2.4), and Jy(3(x),6) < f. Hence

by (3.1) and (3.2). Thus y; € 05, which shows that (3.12) is valid. Let x; € 05 and ys € 05. Then
Jy(8(x),0) < tand Jy(0(y),0) <§. If we take a := (x|y), then

x|((yl((ala)l(ala)))I(¥I((ala)l(ala))))

— x((YI0)I(yIa) = (a)la = al(ala) = 1

by (s1), (s2), (s3) and (2.1). It follows from Lemma 3.1 that

Ty (B((xy)l(xly)), 6) = Jy(8(ala),6) < Jy(8(x),6) v J¥(8(y),0) S EVS,

that is, ((x|y)|(xly))zvs € 05 and (3.11) is valid.

Conversely, suppose that 0 satisfies (3.11) and (3.12). If (3.1) is false, then Jy(3(1),0) > >
Jy(8(b),0) for some b € X. Hence b; € §5. Since b < 1 by (2.3) and (2.4), it follows from (3.12)
that 1; € 8s. Thus Jy(8(1),0) < I, a contradiction. Therefore Jy(8(1),6) < Jy(8(x),6) for all x € X.
Suppose that

Jy(8(y), 0) > Jy(6(x),0) V Jx(3(xl(yly)), 0)

for some x,y € X. If we take 5 := Jy(0(x),0) V Jy(0(xl(yly)),0), then x5 € ds and x|(yly)s € Os.
Hence ((x|(x|(yly)))I(xI(xI(yly))))s € ds by (3.11), and so ys € 05 by (2.5) and (3.12). Hence
Jy(0(y),0) <5 =Jy(d(x),0) vV Jy(0(xl(yly)),0) Therefore 0 is an (€, e)-]g-fuzzy filter of X. m]

Theorem 3.3. If a fuzzy set 0 in X satisfies 8(x) < & for all x € X, then it is an (€, €)-JS~fuzzy filter of X.
Proof. This is straightforward. O

Let 0 be a fuzzy set in X. If there exists b € X such that 8(b) > 9, then 6 may not be an (€,

E)-]‘;-fuzzy filter of X as seen in the following example.
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Example 3.2. Consider the SsBL-algebra (X, V, A, |, 19, 11) in Example 3.1. Let 0 be a fuzzy set in X
defined by Table 5.

TasLe 5. Tabular representation of &

weX 10 1 1 Ie 14 le 1f ]
d(w) 0.59 0.48 0.41 0.38 0.27 0.34 0.48 0.63

If we take & := 0.47, then &(w) > 6 for w € {19, 14,15, 11}. We can observe that
Jy(8(1c),0.47) = Jy(0.38,0.47) = 0.53 £ 0.52
= Jy(0.48,0.47) A Jy(5(0.48,0.47)
= Jy(8(1a),0.47) A ]y (8(tal(1clic)), 0.47).
Hence & is not an (€, €)-J3-fuzzy filter of X.
Theorem 3.4. Every fuzzy filter is an (€, €)-J3-fuzzy filter.
Proof. Let & be a fuzzy filter of X. Then &°(1) < 3°(x) and
0°(y) =1-06(y) <1-min{d(x),d(xI(yly))}
= max{1-0(x),1-0(x|(yly))}
= 0°(x) v O°(xl(yly))
for all x,y € X. Hence Jy(3(1),8) = 8°(1) A (1=6) < 8°(x) A (1=5) = Jy(d(x),5) and
Jy(8(y),6) = 0°(y) A (1-6) < (6°(x) V& (xl(yly))) A (1-0)
= (0°(x) A (1-0)) v (6°(xl(yly)) A (1-0))
= Jy(8(x),0) v Jy(8(xI(yly)), )
for all x, y € X. Therefore 0 is an (€, €)-]%-fuzzy filter of X. O

The converse of Theorem 3.4 may not be true as seen in the following example.

Example 3.3. Consider the SsBL-algebra (X, V, A, |, 19, 11) in Example 3.1, and define a fuzzy set & in X
by Table 6.

TabLE 6. Tabular representation of &

weX 10 1 1p Ie 14 1p 1f 1
d(w) 0.23 0.52 0.28 0.34 0.68 0.52 0.23 0.73

Then § is an (€, e)—]@—fuzzyﬁlter of X for 6 := 0.51. But 9 is not a fuzzy filter of X since d(1,) = 0.28 #
0.34 = min{0(zc), O(1cl(2pl1p) )}
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In the sense of Theorem 3.4 and Example 3.3, we know that the (€, e)-]g-fuzzy filter is a
generalization of the fuzzy filter.
Given a fuzzy set 0 in X, consider the following condition:

(Vx € X) (Jy(8(x),0) = J¥(8(1),0) or Jy(d(xlx),6) = Jy(6(1),0)) - (3.13)

We can see that there is an (€, €)- jg-fuzzy filter & of X that does not meet the condition (3.13).
In fact, if we get the (€, €)-J9-fuzzy filter 8 of X for & = 0.44 in Example 3.1, then Jy(3(1,),6) #
]Y<6(11)/ 6) * ]Y(a(lallu)/ 5)

Definition 3.2. An (€, e)—]‘;—fuzzy filter O of X is said to be ultra if it satisfies the condition (3.13).
Example 3.4. Consider the SsBL-algebra (X, V, A, |, 19, 11) in Example 3.1, and define a fuzzy set & in X

by Table 7.

TasLE 7. Tabular representation of &

weX 10 1 1p I 14 1, 1f 1
d(w) 0.33 0.77 0.33 0.33 0.77 0.77 0.33 0.77

For every 6 € I\{0,1}, we know that Jy(0(1),0) = Jy(0(14),0) = Jy(8(1.),6) = 0.33A (1-0) =
J¥(8(11),0), and Jy(8(1ol0),6) = 0.33 A (1=06) = J¥(6(11),0), Jy(8(wlp),0) = Jy(3(ze),6) = 0.33 A
(1-0) = Jy(8(11),6), Jy(8(iclec), 6) = Jy(0(1a),6) = 0.33 A (1-0) = Jy(6(nn),0) and Jy(8(1flis),0) =
Jy(0(1a),6) = 033 A (1=06) = Jy(8(11),6). Hence & is an ultra (€, €)-JS-fuzzy filter of X.

We explore conditions for an (€, E)—]‘;—fuzzy filter to be ultra.

Theorem 3.5. An (€, €)-]%-fuzzy filter & of X is ultra if and only if it satisfies:

Jr(6(x),0) # Jy(6(1),0) =

Py € 16y, 8) = 1 (3(1),5)

(3.14)

Proof. Assume that @ is an ultra (€, €)-]9-fuzzy filter of X. Let x,y € X be such that Jy(3(x),6) #
Jx(8(1),6). Then Jy(8(xlx),5) = Jy(3(1),0) by (3.13). Since (xIx)I((xl(yly))I(xI(yly))) = 1 by (s1),

(s3), (2.1) and (2.3), it follows from (3.2) that
J¥(6(1),0) = J¥(8(1),0) v J¥(5(1),0)
= Jy(8(xlx),0) v Ty (3((xlx)I((xI (yly))(x1(yly)))), 6)
> Jy(8(xl(yly)), 6)-

The combination of this and (3.1) induces Jy(8(x|(yly)),6) = Jy(0(1),9).
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Conversely, let 8 be an (€, €)-J9-fuzzy filter of X satisfying (3.14). Suppose that Jy(8(x),0) #
Jy(8(1),06) for all x € X. Then Jy(8(1]1),6) # Jy(8(1),6), and so

Jy(6(xlx),6) = Jy(6(1I((xlx)l(xlx)), 0)
= Jy(0(((xlx)I(xlx))[1), 0)
= Jy(8(xl1),0)
= Jy(8(xl((111)I(1[1))), 6)
= Jy(0(1),0)
by (s1), (s2), (2.2) and (3.14). Therefore 0 is an ultra (€, €)-J{ 0 -fuzzy filter of X. O

Theorem 3.6. An (€, €)-]%-fuzzy filter & of X is ultra if and only if it satisfies:
(Yx,y € X) (Jy(0(x V'y),0) 2 Jy(0(x),0) v J¥(8(y),0)) - (3.15)

Proof. Assume that 9 is an ultra (€, e)—]‘;—fuzzy filter of X. For every x,y € X, if Jy(8(x),0) =
Jy(8(1),06) or Jy(d(x),0) = Jy(8(1),0), then

Jy(8(xVy),0) = Jy(8(1),0) = J¥(8(x),6) v Jy((y), ).
Suppose that Jy(8(x),8) # Jy(6(1),0) and Jy(8(x),8) # Jy(8(1),6). Then Jy(8(xl(yly)),0) =

Jy(8(1),0) and Jy(d(yl(x|x)),0) = Jy(8(1),6) by Theorem 3.5. Hence
Jy(6(xVy),0) = J¥(6(1),0) vV Jy(8(x V y),0)
= Jy(8(xl(yly)), 0) v Ty (8((xI(yly))I(¥ly)), 0)
= Jy(6(y),0)

by (2.6), (3.1) and (3.2). Similarly, we get Jy(d(xV y),8) > Jy(d(x),6). Thus Jy(d(xV y),0) >
Jy(8(x),6) v Jy(8(y),0).
Conversely, let d be an (€, €)-] 0 y-fuzzy filter of X satisfying (3.15). Then
Jx(8(1),06) = Jy(8(xl(xlx)), 0)
= Jy (8((xl ( ()  (xlx) )1 ((xlx) (xlx) ) ), 6)
= Jy(0(x V (xx)),0)
2 Jy(6(x),0) v Jy(d(xlx), 0)

by (s2), (2.1), (2.6) and (3.15). It follows from (3.1) that Jy(d(x),0) = Jy(0(1),0) or Jy(d(xlx),0) =
Jy(8(x),6). Therefore 8 is an ultra (€, €)-J}-fuzzy filter of X. o

(
(

Theorem 3.7. A fuzzy set & in X is an ultra (€, €)- ]f,—fuzzy filter of X if and only if the nonempty Y e-set
0s (€, F) is an ultra filter of X for all f € I\ {0}.

Proof. Assume that 0 is an ultra (€, e)—]‘;—fuzzy filter of X. Letf € I'\ {0} and x,y € X be such
that x V iy € 0s(€,f). Then Jy(6(x),0) V Jy(6(y),0) < Jy(8(xVy),d) < and so Jy(d(x),6) < for
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Jy(8(y),0) < E. This shows that x € ds(€, ) or y € 85(€,f). Hence 85(€, f) is an ultra filter of X by
Lemma 2.2 and Corollary 3.1.

Conversely, suppose that the nonempty Ye-set 85 (€, f) is an ultra filter of X for all f € I'\ {0}. Then
dis an (€, €)-J9-fuzzy filter of X by Corollary 3.1. Let f := Jy(8(x V y),8) <. Thenx V y € 85(€, ),
and so x € 8s(€,f) or y € 8s5(€,f) by Lemma 2.2. Hence Jy(6(x),6) < F = Jy(6(xV y),d) or
Jy(8(y),8) < f=Jy(d(xVy),0), and thus

Jy(6(x),0) v J¥(8(y),0) < Jy(6(x V y),0).

It follows from Theorem 3.6 that d is an ultra (€, €)- ]g-fuzzy filter of X. m]

Theorem 3.8. If 8 is an (€, €)-]3-fuzzy filter of X, then the nonempty Yg-set 85(q, ) of 05 is a filter of X
forall T € T\ {0}. Moreover, if & is ultra, then so is 8s(q, f).

Proof. Suppose that & be an (€, €)-J)-fuzzy filter of X. Let € I'\ {0} be such that 8;(q, ) # 0. Then
there exists a € 35(g, f), and so Jy(8(a),d) < 1 —£ Using (3.1), we have Jy(8(1),0) < Jy(8(a),0) <
1 — Fwhich implies that 1 € 85(g, f). Letx, y € X be such that x € 8;5(g, ) and x|(yly) € 85(q, ). Then
Jy(8(x),6) <1—*Fand Jy(8(xl(yly)),0) < 1—F It follows from (3.2) that

Jy(8(y),0) < Jy(8(x),0) V Jy(8(xl(yly)),0) <1-E

Hence y € 05(q, f), which shows that 85(g, f) is a filter of X by Lemma 2.1. Suppose 0 is ultra. If
xVy € ds(q,f), then

Jy(8(x),6) V Jy(8(y),0) < Jy(d(xVy),d) <11

by Theorem 3.6. Hence Jy(0(x),6) <1—For Jy(d(y),0) <1—F, thatis, x € s5(q,f) or y € ds(q, ).
Therefore 35(g, f) is an ultra filter of X Lemma 2.2. m]

4. CONCLUSIONS

To develop a new type of fuzzy set, Jun introduced the concept of the J-operator in unit interval
[0,1], and then formed a | ‘;—fuzzy set. He (together with Yang and Roh) applied it to the subalgebras
and ideals of BCK/BClI-algebras and to the quasi-subalgebras of Sheffer stroke BL-algebras. In this
paper, we have studied filter theory in Sheffer stroke BL-algebras with the ]g—fuzzy set. We have
introduced the concept of an (ultra) (g, €)-J' 3—fuzzy filter in Sheffer stroke BL-algebras, and have
investigated various fundamental properties. We have discussed characterizations of (€, €)- ]3-
fuzzy filters, and have considered the relationship between the fuzzy filter and the (€, €)-J g-fuzzy
filter. We have explored the conditions for the (€, €)-] g-fuzzy filter to become ultra.

Based on the ideas and results of this paper, we will apply the ]g—fuzzy set to several logical

algebras. We will also explore the possibility of fusion with soft sets.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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