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Abstract. This paper presents a mathematical model for Hepatitis B virus (HBV) dynamics. The model is analyzed to

establish the existence, positivity, and uniqueness of its solutions, the derivation of the basic reproductive number (R0),

stability analysis of the disease-free equilibrium (DFE), sensitivity analysis is conducted to determine the impact of the

parameters on R0. The model is extended to include optimal control variables that represent interventions aimed at

reducing HBV transmission and minimizing associated costs. Several control strategies are presented supported by

numerical simulations and graphical results.

1. Introduction

Hebatities B Virus (HBV) is the one of the most dangerous viruses that affect human health,

causing serious disease, such as cirrhosis and liver cancer which affect the quality of the human life,

making it a major challenge to compact. HBV is transmitted through contact with infected blood

and body fluids. Effective interventions to reduce transmission such as, include raising awareness

about the disease, ensuring the careful management of blood and blood products play a big rule

in reducing the spread of the disease, also promoting vaccination, and providing treatment to

infected individuals are essential to limit the spread and reducing its serious health consequences.

Mathematical models are used to understand the dynamic of HBV transmission and guide control

strategies. Khan [2] presents a mathematical models to describe the transmission dynamic of

HBV in China, the models describes the interactions between different stages of the populations,

providing insights into the spread of HBV within population. Kamyad [3] investigates the impact
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of vaccination and treatment on the transmission dynamic of HBV. Khatun [14] discuss the virus

dynamics and provide understanding of the transmission including immune system. Elkhadir [4]

extend SEIR model by incorporating immunized class and determine the impact of vaccination

and treatment. M. Belay [7] presents a mathematical models incorporating a two dose vaccine

series, providing insights into optimal vaccine. Yousuf [15] presents a mathematical model and

provide control strategies to reduce the spreading of disease. In this study, we analyze the HBV

model and find the basic reproductive number R0, then we extend the model to optimal control

interventions including (transmission reduction, vaccination, treatment), and we use Pontagin

Maximum Principle (PMP). We balance the costs of the burden disease against the costs of inter-

ventions, to identify the most effective intervention in reducing the spread of the disease and the

total cost. We evaluated some interventions strategies: Implementing each intervention (at high

or low levels), combining two interventions while excluding the third, applying all interventions

(at high or low levels). We evaluated the effectiveness of these strategies by comparing the basic

reproduction number R0 and the total cost, with a discussion on which strategy is optimal.

2. Mathematical Formulation

We assume the total population N(t) is divided into seven compartments: Susceptible S(t),
Exposed E(t), Acute A(t), Chronic C(t), Treated T(t), Vaccinated V(t), and Recovered R(t).
Susceptible S(t): Increases through the birth of unvaccinated newborns at rate αN0(1 − β) and

vaccinated individuals for whom the vaccination failed at rate εV. It decreases as individuals

become infected through contact with Acute or Chronic cases at rate σ
N (A + C)S, transition to the

vaccinated compartment at rate γS, or die from natural causes at rate µS.

Exposed E(t): Increases as susceptible individuals become infected through contact with Acute or

Chronic cases at rate σ
N (A + C)S. It decreases as exposed individuals move to the Acute compart-

ment at rate λE or die from natural causes at rate µE
Acute A(t): Increases as exposed individuals who develop severe symptoms move to the Acute

compartment at rate λE, and decreases as Acute individuals move to the Chronic compartment at

rate δ1A, recover at rate δ2A, or die from natural causes at rate µA.

Chronic C(t): Increases as infected individuals transition from the Acute compartment at rate δ1A,

and decreases as Chronic individuals receive treatment and move to the Treated compartment at

rate ηC, die due to disease at rate dC, or die from natural causes at rate µC.

Treated T(t): Increases as Chronic individuals receive treatment and move to the Treated com-

partment at rate ηC, and decreases as Treated individuals recover and transition to the Recovered

compartment at rate ψT or die from natural causes at rate µT.

Vaccinated V(t): Increases as susceptible individuals receive the vaccine at rate γS, and decreases

as vaccinated individuals move to the Recovered compartment at rate εV or die from natural

causes at rate µV.

Recovered R(t): Increases as Acute individuals recover at rate δ2A and treated individuals recover
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at rate ψT. It decreases as recovered individuals die from natural causes at rate µR.

Figure 1 shows the flows of the population through the seven compartments. The following ODEs

system represents the flows of the population through the seven compartments.

dS
dt

= αN0(1− β) −
σ
N
(A(t) + C(t))S(t) − γS(t) + εV(t) − µS(t),

dE
dt

=
σ
N
(A(t) + C(t))S(t) − λE(t) − µE(t),

dA
dt

= λE(t) − δ1A(t) − δ2A(t) − µA(t),

dC
dt

= δ1A(t) − ηC(t) − dC(t) − µC(t),

dT
dt

= ηC(t) −ψT(t) − µT(t),

dV
dt

= αN0β+ γS(t) − εV(t) − µV(t),

dR
dt

= δ2A(t) +ψT(t) − µR(t),

N(t) = S(t) + E(t) + A(t) + C(t) + T(t) + V(t) + R(t).

(2.1)

with initial conditions:

{
S(0), E(0), A(0), C(0), T(0), V(0), R(0)

}
= {S0, E0, A0, C0, T0, V0, R0} (2.2)

S0, E0, A0, C0, T0, V0, R0 all are positive. The description of the parameters is given in Table 1.

Parameter Description

α Birth rate

β Vaccination coverage at birth

ε Failure probability of vaccination

γ Vaccination rate

µ Natural death rate

σ Transmission rate from Susceptible to Exposed

λ Progression rate from Exposed to Acute

δ1 Progression rate from Acute to Chronic

δ2 Recovery rate from Acute infection

d HBV induced death rate

η Treatment rate for Chronic individuals

ψ Recovery rate for Treated individuals

Table 1. The Description of the parameters
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Figure 1. HBV model Compartments

3. Analysis of theModel

3.1. Existence and Uniqueness of the Solutions.

Definition 3.1 (Lipschitz continuity). A function F : Rn
×R→ Rn is said to be Lipschitz continuous

in x if there exists a constant L > 0 such that for all x, y,

‖F(x, t) − F(y, t)‖ ≤ L‖x− y‖

Theorem 3.1 (Picard–Lindelöf Theorem). Let D ⊆ Rn
×R be an open set, and let F : D → Rn satisfy

the following conditions:

(1) F(x, t) is continuous in t on D.
(2) F(x, t) is Lipschitz continuous in x.

Then, for any initial condition xi(t0) = xi0 where (xi0, t0) ∈ D, there exists a unique solution xi(t) for the
system

dxi

dt
= Fi(xi, t), i = 1, . . . , n,

in a neighborhood of t0.

From the theorem (3.1), the system (2.1) has a unique solution since its right-hand sides

consist of linear and quadratic terms, which are continuous in t and Lipschitz continuous in

x = {S, E, A, C, T, V, R}.

3.2. Positivity of the Solutions.

Theorem 3.2. Let the initial conditions {S(0), E(0), A(0), C(0), T(0), V(0), R(0)} =

{S0, E0, A0, C0, T0, V0, R0} are positive, then S(t), E(t), A(t), C(t), T(t), V(t), and R(t) remain posi-
tive for all t > 0.
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Proof. To prove the positivity of S(t), we define

T = sup
{
t > 0 : S(τ) > 0 ∀τ ∈ [0, t]

}
. (3.1)

This means that since S(0) is positive, S(t) remains positive for all t ∈ [0, T]. In other words, T is

the maximum time up to which S(t) stays positive.

We can write the first equation in the system 2.1

dS
dt

+ P(t)S = Q(t)

where, P(t) = σ
N (A(t) + C(t)) + γ+ µ and Q(t) = αN0(1− β) + εV(t).

Let ζ(t) = exp
(∫

P(t)dt
)
, then equation (??) can be written as

d
dt

(ζ(t)S(t)) = ζ(t)Q(t)

Integrating both sides from 0 to T gives

S(T)ζ(T) − S(0)ζ(0) =
∫ T

0
ζ(τ)Q(τ)dτ

S(T) =
1

ζ(T)

(
S(0)ζ(0) +

∫ T

0
ζ(τ)Q(τ)dτ

)
Since all the parameters α, β, ε,γ,µ, and σ are positive, 0 < β < 1, and S(0), ζ(0) > 0, with ζ(τ) and

Q(τ) being positive ∀τ ∈ [0, T], we have S(T) > 0 and S(T) , 0. Therefore, from the continuity

of S(t), there exists h > 0 such that S(T + h) > 0, which contradicts the assumption that T is a

supremum. Thus, S(t) is positive ∀t > 0. We can prove by the same method the positivity of the

remaining variables E, A, C, T, V, and R, which completes the proof. �

3.3. Boundedness of the Solutions. To prove the boundedness of the solutions

S(t), E(t), A(t), C(t), V(t), T(t), R(t), we consider the total population at any time t given by

N(t) = S(t) + E(t) + A(t) + C(t) + V(t) + T(t) + R(t).

Differentiating both sides, the rate of change of the total population N(t) is given by

dN
dt

=
dS
dt

+
dE
dt

+
dA
dt

+
dC
dt

+
dV
dt

+
dT
dt

+
dR
dt

.

By substituting the rates of change of each compartment and simplifying, we obtain

dN
dt

= αN0 − µN − dC.

since C(t) ≤ N(t) for all t, we can write

dN
dt
≤ αN0 − (µ+ d)N.

By integrating both sides and using the initial condition N(0) = N0, we get

N(t) ≤
αN0

µ+ d
+

(
N0 −

αN0

µ− d

)
e−(µ+d)t,
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as t→∞, N(t)→ N∞, where

N∞ =
αN0

µ+ d

Thus, N(t) is bounded above by N∞. Since each compartment S(t), E(t), A(t), C(t), T(t), V(t), R(t)
is a subset of N(t), they are also bounded. Hence, all compartments remain bounded for all t ≥ 0.

This establishes the feasible region:

Ω = {(S, E, A, C, V, T, R) ∈ R7
+ | 0 < S + E + A + C + V + T + R ≤ N∞}.

This means that once the system enters Ω, it will never leave it, ensuring that the system is

biologically and mathematically realistic.

3.4. Disease Free Equilibrium (DFE). Disease Free Equilibrium (DFE) is the state where there

are no infected individuals in the population, can be found by setting the infected compartments

E, A, C, and T to zero in the system 2.1, and solving for the remaining compartments S, V, and R.

we get:

P0 = (S0, E0, A0, C0, T0, V0, R0)

P0 =

(
αN0(ε+ (1− β)µ)
µ(γ+ ε+ µ)

, 0, 0, 0, 0,
αN0β+ γS0

ε+ µ
, 0

)
(3.2)

3.5. The basic Reproduction Number R0. : To analyze the stability of the model, we first derive

the expression for the basic reproduction number. We use the next-generation method [5]. We

define F (New infection rates) andV (Transition rates) for the infected compartments E, A, C, T as

F =


σ
N (A + C)S

0

0

0

 , V =


(λ+ µ)E

−λE + (δ1 + δ2 + µ)A
−δ1A + (η+ d + µ)C
−ηC + (ψ+ µ)T


The Jacobian matrix of F with respect to (E, A, C, T), at the disease-free equilibrium P0 is

F = J(F )
∣∣∣∣
P0

=


0 σS0

N
σS0

N 0

0 0 0 0

0 0 0 0

0 0 0 0

 =

0 a1 a2 0

0 0 0 0

0 0 0 0

0 0 0 0


Similarly, the Jacobian matrix ofVwith respect to (E, A, C, T), at the disease-free equilibrium P0 is

V = J(V)
∣∣∣∣
P0

=


λ+ µ 0 0 0

−λ δ1 + δ2 + µ 0 0

0 −δ1 η+ d + µ 0

0 0 −η ψ+ µ

 =

b1 0 0 0

b2 b3 0 0

0 b4 b5 0

0 0 b6 b7


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FV−1 =


−a1b2
b1b3

+ a2b2b4
b1b3b5

a1
b3
−

a2b4
b3b5

a2
b5

0

0 0 0 0

0 0 0 0

0 0 0 0

 .

The basic reproductive number R0 is the maximum eigenvalue of the matrix FV−1, which gives

R0 =
−a1b2

b1b3
+

a2b2b4

b1b3b5

substitute a1, a2, b1, b2, b3, b4, b5, b6 and S0, we obtain

R0 =
αλσ(ε+ µ(1− β))(d + δ1 + η+ µ)

(λ+ µ)((µ+ ε+ γ)µ)(d + η+ µ)(δ1 + δ2 + µ)
(3.3)

Theorem 3.3 (Local Stability of the Disease-Free Equilibrium). The local asymptotic stability of the
DFE is determined by the value of R0:

(1) If R0 < 1, the Disease-Free Equilibrium (P0) is locally asymptotically stable. This implies that if the
system starts close enough to the DFE, it will return to the DFE over time, meaning the disease will
die out.

(2) If R0 > 1, the Disease-Free Equilibrium (P0) is unstable. This implies that if a small number of
infectious individuals are introduced into the population, the disease will initially grow and spread,
moving the system away from the DFE.

4. Sensitivity Analysis of R0

We studied the sensitivity analysis, to show which parameters have the significant impact

(positive or negative) on the reproduction number R0.

The sensitivity index of R0 to a given parameter P, is given by the following relation:

SR0
P =

(
∂R0

∂P

) ( P
R0

)
,

or in other form,

SR0
P = P

(
∂
∂P

(lnR0)

)
,

Thus, we can evaluate the sensitivity index of R0 to each parameter as follows:

SR0
α = 1,

SR0
λ

= λ
(

1
λ −

1
λ+µ

)
= 1− λ

λ+µ ,

SR0
σ = 1,

SR0
ε = ε

(
1

ε+µ(1−β) −
1

µ+ε+γ

)
,
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SR0
µ = µ

[
1−β

ε+µ(1−β) +
1

d+δ1+η+µ
−

1
λ+µ −

1
µ −

1
µ+ε+γ −

1
d+η+µ −

1
δ1+δ2+µ

]
,

SR0
β = β

(
−µ

ε+µ(1−β)

)
,

SR0
d =

(
1

d+δ1+η+µ
−

1
d+η+µ

)
,

SR0
δ1

= δ1

(
1

d+δ1+η+µ
−

1
δ1+δ2+µ

)
,

SR0
δ2

= δ2

(
−

1
δ1+δ2+µ

)
,

SR0
η = η

(
1

d+δ1+η+µ
−

1
d+η+µ

)
,

SR0
γ = γ

(
−

1
µ+ε+γ

)
The parameter values given in Table 2 and the calculated sensitivity indices are shown in

Table 3 and Figure 2.

Parameter Meaning Value Source

α Birth rate 0.0096 [6]

β Vaccination coverage at birth 0.85 [1]

σ Transmission rate from Susceptible to Exposed 0.04 [1]

γ Vaccination rate 0.045 [1]

ε Failure probability of vaccination 0.02 [6]

µ Natural death rate 0.0096 [6]

λ Progression rate from Exposed to Acute 0.036 [1]

δ1 Progression rate from Acute to Chronic 0.2028 [1]

δ2 Recovery rate from Acute infection 3.8528 [1]

η Treatment rate for Chronic individuals 0.0936 [1]

d HBV induced death rate 0.0936 [4]

ψ Recovery rate for Treated individuals 0.05 [1]

Table 2. Estimated values of the model parameters
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Parameter Value Sensitivity Index
(
SR0

P

)
α 0.0096 +1.0000

β 0.85 -0.3806

σ 0.04 +1.0000

γ 0.045 -0.6032

ε 0.02 +0.6647

µ 0.0096 -1.4386

λ 0.036 +0.2105

δ1 0.025 -0.3067

δ2 0.025 -0.4195

η 0.0936 -0.0536

d 0.0936 -0.0536

Table 3. Sensitivity Indices for the parameters

Figure 2. Sensitivity Indices for the Parameters

5. Optimal ControlModel

Sensitivity analysis give us insight into which parameters have the most significant impact on

the basic reproduction number R0, which represents as a measure of spreading the disease. from

this analysis we find:

• The parameter σ showed high sensitivity index (+1), this means reducing transmision rate σ

contributes to reduce R0. We introduce a control variable u1(t), where 0 ≤ u1(t) ≤ umax
1 < 1,
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represents a combination of interventions to reduce transmission, such as ( behavioral

education and awareness, blood screening and safety, safe injection practices, avoiding

the sharing of personal items with infected individuals), umax
1 is the maximum feasible

interventions. With this control the transmission rate becomes σ(1− u1(t)).
• The parameter γ showed sensitivity index (-0.6032). This means increasing vaccination

rate reduces R0. Define a control variable u2(t) where 0 ≤ u2(t) ≤ umax
2 < 1, represents the

vaccination rate applied to susceptible at time t, umax
2 is the maximum feasible vaccination.

With this, the vaccination rate becomes (γ+ u2(t)).
• The parameter δ2 showed sensitivity index (-0.4195). Which means increasing δ2 leads to

decreasing R0. Define a control variable u3(t), where 0 ≤ u3(t) ≤ umax
3 < 1 represents the

treatment rate applied to acute at time t, umax
3 is the maximum feasible treatment. With this

the treatment rate becomes δ2 + u3(t).
• The parameters such as α, ε and µ showed high sensitivity index but they are non control-

lable demographic and biological parameters.

• The parameters β, δ1, d and η, have low sensitivity index, we exclude them in optimal

control.

We aim to minimize the total cost associated with infected individuals (exposed, acute or chronic)

together with the cost of interventions u1, u2 and u3 over the time interval [0, T]. Thus, the objective

is to minimize the function:

J(u1, u2, u3) =

∫ T

0
[w2A(t) + w3C(t) + w1E(t)

+
B1

2
u1(t)2 +

B2

2
u2(t)2 +

B3

2
u3(t)2

]
dt

(5.1)

Where, w1, w2 and w3 represent the weights of the cost per infected individual in year in Exposed,

Acute, and Chronic stages respectively. B1, B2, and B3 represent the weights of the costs of the

interventions (transmission reduction effort costs, treatment cost, vaccination costs respectively).

Minimize the function 5.1 subject to the population dynamics given by the system 2.1 with

consider of inserting optimal control variables,

dS
dt

= αN0(1− β) −Λ(t)S(t) − (γ+ u2(t))S(t) + εV(t) − µS(t)

dE
dt

= Λ(t)S(t) − λE(t) − µE(t)

dA
dt

= λE(t) − δ1A(t) − (δ2 + u3(t))A(t) − µA(t)

dC
dt

= δ1A(t) − ηC(t) − dC(t) − µC(t) (5.2)

dT
dt

= ηC(t) −ψT(t) − µT(t)

dV
dt

= αN0β+ (γ+ u2(t))S(t) − εV(t) − µV(t)
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dR
dt

= (δ2 + u3(t))A(t) +ψT(t) − µR(t)

N(t) = S(t) + E(t) + A(t) + C(t) + T(t) + V(t) + R(t)

where,

Λ(t) =
σ(1− u1(t))

N(t)
(A(t) + C(t)) (5.3)

6. Solution of the Optimal Control Problem

To find the optimal control u∗1(t), u∗2(t), u∗3(t), associated with the optimal solution

S∗(t), E∗(t), A∗, C∗, T∗, V∗, R∗ we apply the Pontryagin Maximum Principle (PMP) [], to derive the

necessary conditions of optimality.

Pontryagin Maximum Principle (PMP):
The Pontryagin Maximum Principle (PMP) provides necessary conditions for optimality in control

problems. Consider a control system described by

dxi

dt
= fi(t, xi, u j), xi(0) = xi0, ,

where, xi(t), i = {1, ..., n} are the state vectors, and u j(t), j = {1, ..., m} are the control variables in

a bounded and closed intervals U, then to find the optimal control u∗j(t) associated with the state

vectors x∗i (t), that minimize the objective function

J(u j) =

∫ T

0
L(t, xi, u j)dt

there exist a continuous costate vectors λi(t) such that the following conditions are satisfied:

(1) The state variables x∗i (t) and the costate variables λi(t) must satisfies the system:

dx∗i
dt

=
∂H
∂λi

and
dλi

dt
= −

∂H
∂xi

(6.1)

(2) The control u∗j(t) minimizes the Hamiltonian H almost everywhere, so

∂H
∂u j

∣∣∣∣∣∣
u j=u∗j

= 0 (6.2)

(3) A transversality conditions

λi(T) = 0, (6.3)

where H is the Hamiltonian function defined as

H(t, xi, u j,λi) = L(t, xi, u j) + λi fi(t, xi, u j)

Applying PMP in our model, the objective is to minimize the cost function 5.1, subject to the system

5.2. we can write the Hamiltonian function as:

H = w2A + w3C + w1E +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3

+ λ1 (αN0(1− β) −ΛS− u2S + εV − µS)
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+ λ2 (ΛS− λE− µE)

+ λ3 (λE− δ1A− (δ2 + u3)A− µA)

+ λ4 (δ1A− ηC− dC− µC)

+ λ5 (ηC−ψT − µT)

+ λ6 (αN0β+ (γ+ u2)S− εV − µV)

+ λ7 ((δ2 + u3)A +ψT − µR) (6.4)

(1) The The costate variables λi system is given by:

dλ1

dt
= −

∂H
∂S

,
dλ2

dt
= −

∂H
∂E

,
dλ3

dt
= −

∂H
∂A

,
dλ4

dt
= −

∂H
∂C

,

dλ5

dt
= −

∂H
∂T

,
dλ6

dt
= −

∂H
∂V

,
dλ7

dt
= −

∂H
∂R

which gives:

dλ1

dt
=

(
Λ −

ΛS
N

)
(λ1 − λ2) + (γ+ u2 + µ)λ1 − (γ+ u2)λ6,

dλ2

dt
= −w1 + (λ+ µ)λ2 − λλ3 +

ΛS
N

(λ2 − λ1),

dλ3

dt
= −w2 −

(
σ(1− u1)

N
−

Λ
N

)
S(λ2 − λ1)

+ (δ1 + δ2 + u3 + µ)λ3 − δ1λ4 − (δ2 + u3)λ7,

dλ4

dt
= −w3 −

(
σ(1− u1)

N
−

Λ
N

)
S(λ2 − λ1)

+ (η+ d + µ)λ4 − ηλ5,

dλ5

dt
= (ψ+ µ)λ5 −ψλ7 +

ΛS
N

(λ2 − λ1),

dλ6

dt
= −ελ1 + (ε+ µ)λ6 +

ΛS
N

(λ2 − λ1),

dλ7

dt
= µλ7 +

ΛS
N

(λ2 − λ1),

(6.5)

Here, we compute the partial derivative of Λ with respect to each variable S, E, A, C, T, V
and R as follows:
∂Λ
∂S = ∂

∂S

[
σ(1−u1)(A+C)

N

]
= −

σ(1−u1)(A+C)
N2 = −Λ

N ,

∂Λ
∂E = ∂

∂E

[
σ(1−u1)(A+C)

N

]
= −Λ

N ,

∂Λ
∂A = ∂

∂A

[
σ(1−u1)(A+C)

N

]
=

Nσ(1−u1)−σ(1−u1)(A+C)
N2 =

σ(1−u1)
N −

Λ
N ,

∂Λ
∂C = ∂

∂C

[
σ(1−u1)(A+C)

N

]
=

Nσ(1−u1)−σ(1−u1)(A+C)
N2 =

σ(1−u1)
N −

Λ
N ,

∂Λ
∂T = ∂

∂T

[
σ(1−u1)(A+C)

N

]
= −

σ(1−u1)(A+C)
N2 = −Λ

N ,

∂Λ
∂V = ∂

∂V

[
σ(1−u1)(A+C)

N

]
= −

σ(1−u1)(A+C)
N2 = −Λ

N ,
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∂Λ
∂R = ∂

∂R

[
σ(1−u1)(A+C)

N

]
= −

σ(1−u1)(A+C)
N2 = −Λ

N .

(2) The optimal control u∗j(t) must minimize the Hamiltonian H at each time t. This conditions

is given by ∂H
∂u j

= 0.

∂H
∂u1

= B1u1 + (λ1 − λ2)
(
σ
N
(A + C)S

)
= 0 =⇒ u∗1 =

1
B1

(λ1 − λ2)
σS(A + C)

N
(6.6)

∂H
∂u2

= B2u2 + λ1(−S) + λ6S = 0 =⇒ u∗2 =
S
B2

(λ1 − λ6) (6.7)

∂H
∂u3

= B3u3 + λ3(−A) + λ7A = 0 =⇒ u∗3 =
A
B3

(λ3 − λ7) (6.8)

Since the controls are bounded, u j ∈ [0, umax
j ], the optimal controls are given by:

u∗1(t) = max
(
0, min

(
umax

1 ,
1

B1
(λ1(t) − λ2(t))

σS(t)(A(t) + C(t))
N(t)

))
(6.9)

u∗2(t) = max
(
0, min

(
umax

2 ,
S(t)
B2

(λ1(t) − λ6(t))
))

(6.10)

u∗3(t) = max
(
0, min

(
umax

3 ,
A(t)
B3

(λ3(t) − λ7(t))
))

(6.11)

(3) The transversality conditions are:

λi(T) = 0, i ∈ {1, 2, 3, 4, 5, 6, 7} (6.12)

7. Numerical Solution

Solving the system 5.2 of state equations forward in time from 0 to T with initial conditions 2.2,

coupled with the system 6.5 of costate equations backward in time from T to 0 with boundary

conditions 6.12, this coupled problem is solved numerically by Forward-Backward Sweep Method

(FBSM), to find the optimal controls u j, j = {1, 2, 3}, with the corresponding state variables

S(t), E(t), A(t), C(t), T(t), V(t) and R(t).

Steps of the Forward Backward Sweep Method (FBSM).

Step 1: Initialization:
- Choose an initial guess for the controls u(0)

j (t) = 0, j = {1, 2, 3}

- State the maximum iterations (Max), set the iteration index k = 0 and the convergence

tolerance Tol.
Step 2: Forward Sweep:

Using the current controls solve the sate equation forward in time from t = 0 to t = T
using Runge Kutta method (RK4).

Step 3: Backward Sweep:
Solve the costate equation with the computed state variables and the current controls

backward in time from t = T tp t = 0 using Runge Kutta method (RK4).
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Step 4: Update Control:
Update the control using the optimality condition:

u(k+1)
j (t) = u∗j, where

(
∂H
∂u j

= 0
)

.

Step 5: Check the Convergence: If

‖u(k+1)
− u(k)

‖ < Tol,

then stop, otherwise, increase k and repeat from Step 2.

Description Target group Weighted Cost

w1
Basic tests,

Monitoring without symptoms.
Exposed 0.1

w2
Medical visits,

Initial diagnosis
Acute 0.5

w3 Regular laboratory monitoring Chronic 1

B1

Awareness campaigns,

blood screening,

and preventive procedures

Susceptible 0.5

B2 Enhancing Vaccination coverage Susceptible 0.5

B3
Short term treatment,

Long term treatment
Acute and Chronic 1

Table 4. Disease costs and interventions costs

8. Results and Discussion

In this section, we present the numerical results based on the following:

(1) The initial total population N0 = 106.

(2) The initial values:

{E0, A0, C0, T0, V0, R0} = {1000, 500, 100, 100, 0, βN0},

S0 = N0 − E0 −A0 −C0 − T0 −V0 −R0.

(3) Parameter values are given in Table 2.

(4) The maximum allowable values for the control interventions are:

umax
1 = 0.7, umax

2 = 0.4, umax
3 = 0.5.

(5) The weighted costs w1, w2, w3 and B1, B2, B3 are provided in Table 4.
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Figure 3. Dynamics of Susceptible with and without control

Figure 4. Dynamics of Exposed with and without control

Figure 5. Dynamics of Acute with and without control
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Figure 6. Dynamics of Chronic with and without control

Figure 7. Dynamics of Treated with and without control

Figure 8. Dynamics of Vaccinated with and without control
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Figure 9. Dynamics of Recovered with and without control

Figure 10. Optimal variables u1(t), u2(t), and u3(t)

Figure 11. Dynamic of Susceptible under Different Strategies
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Figure 12. Dynamics of Exposed under Different Strategies

Figure 13. Dynamics of Acute under Different Strategies

Figure 14. Dynamics of Chronic under Different Strategies
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Figure 15. Dynamics of Treated under Different Strategies

Figure 16. Dynamics of Vaccinated under Different Strategies

Figure 17. Dynamics of Recovered under Different Strategies
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The table below summarizes the different intervention strategies, associated with the basic re-

production number R0, the burden costs, and the control costs in different values of the control

variables.

Strategy Description and Control Values (u1, u2, u3) R0

S1 No Interventions (0, 0, 0) 0.171622329

S2 Transmission Reduction Only (umax
1 , 0, 0) 0.051486699

S3 Vaccination Only (0, umax
2 , 0) 0.026976455

S4 Treatment Only (0, 0, umax
3 ) 0.018278575

S5 S2 and S3 (umax
1 , umax

2 , 0) 0.008092937

S6 S2 and S4 (umax
1 , 0, umax

2 ) 0.005483573

S7 S3 and S4 (0, umax
2 , umax

3 ) 0.002873118

S8 S2, S3 and S4 (all maximum) (umax
1 , umax

2 , umax
3 ) 0.000861935

S9 Optimal controls computed by (PMP) (u∗1, u∗2, u∗3) 0.002873118

Table 5. Effects of different intervention strategies on the basic reproductive num-

ber R0.

Strategy Burden Cost Control Cost Total Cost

S1: No interventions 20760 0 20760

S2: Transition Reduction only 18138 24 18163

S3: Vaccination only 17811 8 17819

S4: Treatment only 4210 25 4235

S5: S2 and S3 17382 32 17415

S6: S2 and S4 4153 50 4203

S7: S3 and S4 4156 33 4189

S8: S2, S3 and S4 4137 57 4195

S9: Optimal values computed (u∗i ) 4156 33 4189

Table 6. Comparison of intervention strategies with associated costs.

9. Conclusion

This study presents a mathematical model for analyzing the transmission dynamics of the Hep-

atitis B Virus (HBV) and evaluating the effectiveness of three intervention strategies: transmission

reduction, vaccination, and treatment. Mathematical analysis establish the existence and unique-

ness of the solutions, derived the basic reproduction number R0, and analyzed the stability of the

disease-free equilibrium.

Numerical simulations were conducted to assess the impact of various intervention strategies,
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including individual interventions, pairwise combinations, and a combination of all three inter-

ventions. Table 5 summarizes the results of each strategy on the basic reproductive number R0.

The results show the combination of all the three interventions at maximum value of the control

variables give the minimum value of R0 (Strategy S8), followed by the optimal control strategy

(S9), which yields the same R0 as the combined vaccination and treatment strategy (S7). Table 6

shows the results of the weighted disease burden costs and intervention costs. Strategy (S1), which

represents no interventions gives the highest total cost. Strategy (S7) which represents treatment

and vaccination at maximum value of controls, also strategy (S9) which represents the optimal

values of the controls which computed by PMP, give the same lowest total cost.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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