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Abstract. Using the direct and fixed point methods, we obtain the Hyers-Ulam stability of the following additive-

quadratic functional equation:

2h(p + q, r + s) + h(p + q, r− s) = 3 [h(p, r) + h(p, s) + h(q, r) + h(q, s)] (1)

in a Banach space.

1. Introduction and preliminaries

In 1940, Ulam [33] posed a query on the stability of (group) homomorphisms that prompted the

investigation of stability issues in functional equations. Hyers [14] then provided a partial solution

to the issue of additive mappings in Banach spaces. Hyers-Ulam stability has also been used to

refer to the stability of functional equations.

Aoki [1] and Rassias [30] later expanded it to include additive mappings and linear mappings,

respectively, by using an unbounded Cauchy difference. Găvruta [12] enhanced the Rassias

theorem by substituting an unbounded Cauchy difference with a general control function. Hyers

himself published noteworthy papers including several different homomorphisms as in [15–17].

Recent work by Park defined additive ρ-functional inequalities and demonstrated their Hyers-

Ulam stability in Banach spaces using [24, 25, 27]. Extensive research has been conducted on the

stability difficulties of several functional equations and functional inequalities (see [2, 6, 10, 11, 19–

21, 23, 34]).
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In 1996, Isac and Rassias [18] proposed applications for the stability of functional equations for

proving fixed point theorems and applications in nonlinear analysis. Numerous scholarly works

on the stability concerns of certain functional equations and the different definitions of stability

using the fixed point method have been extensively researched by [4, 5, 8, 9, 26, 28, 29, 31, 32] and

others.

In this paper, the sets of positive integers, real numbers, positive real numbers, and complex

numbers are denoted by N, R, R+ and C, correspondingly. Also, let X be a (complex) normed

space,Y a (complex) Banach space, and let N0 = N∪ {0} , R+
0 = R+

∪ {0} respectively.

We begin with a practical result from the theory of fixed points.

Theorem 1.1. [3,7] Let (Z, d) be a complete generalized metric space and let a ∈ Z. For a strict Lipschitz
contraction J : Z→Z with the Lipschitz constant α < 1, either

(1) d(Jna,Jn+1a) = ∞ for all n ∈N0 or there exists n0 ∈N for which d(Jna,Jn+1a) < ∞ for all
n ≥ n0;

(2) Jna→ b∗, where b∗ is a unique fixed point of J inZn0 := {b ∈ Z : d(Jn0a, b) < ∞};
(3) d(b, b∗) ≤ 1

1−αd(b,Jb) for all b ∈ Zn0 .

Next, we introduce the concept of additive-quadratic mapping.

Definition 1.1. LetA and B be vector spaces. A mapping h : A2
→ B is called additive-quadratic if h is

additive in the first variable and quadratic in the second variable, that is, h satisfies the following system of
equations

h(p, r) + h(q, r) = h(p + q, r)

and

h(p, q + r) + h(p, q− r) = 2h(p, q) + 2h(p, r)

for all p, q, r ∈ A. We denote the class of additive-quadratic mapping byAQ(A,B).

For the function h : X2
→ Y, the following functional equation was presented by Hwang and

Park [13]:

h(p + q, r + s) + h(p− q, r− s) = 2h(p, r) + 2h(p, s) (1.1)

for all p, q, r, s ∈ X. Additionally, they demonstrated that every function satisfying (1.1), together

with some additional conditions, is inAQ(X,Y).

In this study, we first investigate the additive-quadratic functional equation (1). Second, we

use the direct method to demonstrate the Hyers-Ulam stability of the functional equation (1). Us-

ing the fixed point method, we demonstrate the Hyers-Ulam stability of the functional equation (1).

2. Hyers-Ulam stability of the additive-quadratic functional equation: direct method

We prove the following lemma for obtaining the stability of the functional equation (1).
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Lemma 2.1. If a mapping h : X2
→ Y satisfies (1), then the following are true:

(i) h(p, 0) = h(0, r) = 0 for all p, r ∈ X;
(ii) h is even in the second variable;
(iii) h ∈ AQ(X,Y).

Proof. (i) Putting q = r = s = 0 in the functional equation (1), we get h(p, 0) = 0 for all p ∈ X.

Replacing (p, q, s) by (0, 0, 0) in the equation (1), yields h(0, r) = 0 for all r ∈ X.

(ii) Letting q = r = 0 in (1), we obtain h(p,−s) = h(p, s) for all p, s ∈ X, that is, h is even in the

second variable.

(iii) If s = 0 in (1), then 2h(p + q, r) + h(p + q, r) = 3 [h(p, r) + h(q, r)] and so h(p + q, r) =

h(p, r) + h(q, r) for all p, q, r ∈ X. This entails that h is additive on its first variable. Next, replacing

s by −s in (1), we have 2h(p+ q, r− s) + h(p+ q, r+ s) = 3 [h(p, r) + h(p,−s) + h(q, r) + h(q,−s)] for

all p, q, r, s ∈ X. By using the evenness on its second variable of h, we find that

2h(p + q, r− s) + h(p + q, r + s) = 3 [h(p, r) + h(p, s) + h(q, r) + h(q, s)]

for all p, q, r, s ∈ X. Combining this to (1), we lead to

h(p + q, r + s) + h(p + q, r− s) = 2 [h(p, r) + h(p, s) + h(q, r) + h(q, s)] (2.1)

for all p, q, r, s ∈ X. Now, setting q = 0 in (2.1), we get h(p, r + s) + h(p, r − s) = 2h(p, r) + 2h(p, s)
for all p, r, s ∈ X. Therefore, h is quadratic on its second variable and consequently h ∈ AQ(X,Y).

This completes the proof. �

For a given mapping h : X2
→ Y, we define, for all p, q, r, s ∈ X,

δh(p, q, r, s) := 2h(p + q, r + s) + h(p + q, r− s) − 3 [h(p, r) + h(p, s) + h(q, r) + h(q, s)] .

We also denote the class of mapping
{
g : X2

→ Y : g(p, 0) = g(0, q) = 0 for all p, q ∈ X
}

by

F0(X,Y). Now, we present our main results.

Theorem 2.1. Let ω : X2
→ R+

0 be a mapping such that

Λ(p, q) :=
∞∑

j=1

3 jω
( p
2 j ,

q
2 j

)
< ∞ (2.2)

for all p, q ∈ X. If h ∈ F0(X,Y) and

‖δh(p, q, r, s)‖ ≤ ω(p, q)ω(r, s) (2.3)

for all p, q, r, s ∈ X, then there exists a unique mapping H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
1
6

min
{
ω(p, 0)Λ(r, r),ω(r, 0)Λ̃(p, p)

}
(2.4)

for all p, r ∈ X, where

Λ̃(p, q) :=
∞∑

j=1

2 jω
( p
2 j ,

q
2 j

)
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for all p, q ∈ X.

Proof. Replacing (q, s) by (0, r) in the inequality (2.3), we obtain

‖3h(p, r) − h(p, 2r)‖ ≤
1
2
ω(p, 0)ω(r, r) (2.5)

and so ∥∥∥∥∥3h
(
p,

r
2

)
− h(p, r)

∥∥∥∥∥ ≤ 1
2
ω(p, 0)ω

( r
2

,
r
2

)
for all p, r ∈ X. Then, for each m, l ∈N0 with m > l, we have∥∥∥∥∥3lh

(
p,

r
2l

)
− 3mh

(
p,

r
2m

)∥∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥∥3 jh
(
p,

r
2 j

)
− 3 j+1h

(
p,

r
2 j+1

)∥∥∥∥∥
≤

1
6
ω(p, 0)

m∑
j=l+1

3 jω
( r
2 j ,

r
2 j

)
(2.6)

for all p, r ∈ X. Thus
{
3nh (p, 2−nr)

}
is a Cauchy sequence and so it is a convergent sequence in Y

due to the completeness ofY. Now, we define a mapping R : X2
→ Y by

R(p, r) := lim
n→∞

3nh
(
p,

r
2n

)
for all p, r ∈ X. Next, select l = 0 and let m→∞ in (2.6). Then we have

‖h(p, r) −R(p, r)‖ ≤
1
6
ω(p, 0)Λ(r, r) (2.7)

for all p, r ∈ X. It implies by (2.2) and (2.3) that

‖δR(p, q, r, s)‖ = lim
n→∞

3n
∥∥∥∥∥δh

(
p, q,

r
2n ,

s
2n

)∥∥∥∥∥ ≤ ω(p, q) lim
n→∞

3nω
( r
2n ,

s
2n

)
= 0

for all p, q, r, s ∈ X. Hence, by Lemma 2.1, R ∈ AQ(X,Y).

To prove the uniqueness property of R, let R̃ be another additive-quadratic mapping satisfying

(2.7). Then

‖R(p, r) − R̃(p, r)‖ = 3k
∥∥∥∥∥R

(
p,

r
2k

)
− R̃

(
p,

r
2k

)∥∥∥∥∥
≤ 3k

∥∥∥∥∥R
(
p,

r
2k

)
− h

(
p,

r
2k

)∥∥∥∥∥+ 3k
∥∥∥∥∥h

(
p,

r
2k

)
− R̃

(
p,

r
2k

)∥∥∥∥∥
≤ 3k−1ω(p, 0)Λ

( r
2k

,
r
2k

)
for all p, r ∈ X. Therefore, ‖R(p, r) − R̃(p, r)‖ → 0 when k→∞ and this confirms the uniqueness of

R. Next, replacing (q, s) by (p, 0) in (2.3), we obtain

‖h(2p, r) − 2h(p, r)‖ ≤
1
3
ω(p, p)ω(r, 0) (2.8)

and so ∥∥∥∥∥h(p, r) − 2h
(p
2

, r
)∥∥∥∥∥ ≤ 1

3
ω

(p
2

,
p
2

)
ω(r, 0)
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for all p, r ∈ X. Then, for each m, l ∈N0 with m > l, we have∥∥∥∥∥2lh
( p
2l

, r
)
− 2mh

( p
2m , r

)∥∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥∥2 jh
( p
2 j , r

)
− 2 j+1h

( p
2 j+1

, r
)∥∥∥∥∥

≤
1
6
ω(r, 0)

m∑
j=l+1

2 jω
( p
2 j ,

p
2 j

)
(2.9)

for all p, r ∈ X. Therefore,
{
2nh (2−np, r)

}
is a Cauchy sequence. By the completeness of Y, the

sequence
{
2nh (2−np, r)

}
converges. We define the mapping S : X2

→ Y by

S(p, r) := lim
n→∞

2nh
( p
2n , r

)
for all p, r ∈ X. Putting l = 0 and taking the limit as m→∞ in (2.9), yields

‖h(p, r) − S(p, r)‖ ≤
1
6
ω(r, 0)Λ̃(p, p) (2.10)

for all p, r ∈ X. It follows from (2.2) and (2.3) that

‖δS(p, q, r, s)‖ = lim
n→∞

2n
∥∥∥∥∥δh

( p
2n ,

q
2n , r, s

)∥∥∥∥∥ ≤ ω(r, s) lim
n→∞

2nω
( p
2n ,

q
2n

)
= 0

for all p, q, r, s ∈ X. By Lemma 2.1, we infer that S ∈ AQ(X,Y). Let S̃ be another additive-quadratic

mapping satisfying (2.10). Then

‖S(p, r) − S̃(p, r)‖ = 2k
∥∥∥∥∥S

( p
2k

, r
)
− S̃

( p
2k

, r
)∥∥∥∥∥

≤ 2k
∥∥∥∥∥S

( p
2k

, r
)
− h

( p
2k

, r
)∥∥∥∥∥+ 2k

∥∥∥∥∥h
( p
2k

, r
)
− S̃

( p
2k

, r
)∥∥∥∥∥

≤
2k

3
ω(r, 0)Λ̃

( p
2k

,
p
2k

)
,

which tends to zero as k→∞ for all p, r ∈ X. This proves the uniqueness of S. It follows from (2.7)

that

2n
∥∥∥∥∥h

( p
2n , r

)
−R

( p
2n , r

)∥∥∥∥∥ ≤ 2n

6
ω

( p
2n , 0

)
Λ(r, r),

which tends to zero as n → ∞ for all p, r ∈ X. Since R is additive on its first variable, we have

‖S(p, r) − R(p, r)‖ = 0, i.e., H(p, r) := R(p, r) = S(p, r) for all p, r ∈ X. Therefore, there exists a

unique mapping H ∈ AQ(X,Y) satisfying (2.4). This completes the proof. �

Theorem 2.2. Let ω : X2
→ R+

0 be a mapping satisfying

Ψ(p, q) :=
∞∑

j=0

1
2 jω

(
2 jp, 2 jq

)
< ∞ (2.11)

for all p, q ∈ X. Suppose that h ∈ F0(X,Y) satisfies (2.3). Then there exists a unique mapping H ∈
AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
1
6

min
{
ω(p, 0)Ψ̃(r, r),ω(r, 0)Ψ(p, p)

}
(2.12)
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for all p, r ∈ X, where

Ψ̃(p, q) :=
∞∑

j=0

1
3 jω

(
2 jp, 2 jq

)
for all p, q ∈ X.

Proof. It follows from (2.5) that∥∥∥∥∥h(p, r) −
1
3

h(p, 2r)
∥∥∥∥∥ ≤ 1

6
ω(p, 0)ω(r, r)

for all p, r ∈ X. Then, for all m, l ∈N0 with m > l, we have∥∥∥∥∥ 1
3l

h(p, 2lr) −
1

3m h(p, 2mr)
∥∥∥∥∥ ≤ m−1∑

j=l

∥∥∥∥∥ 1
3 j h(p, 2 jr) −

1
3 j+1

h(p, 2 j+1r)
∥∥∥∥∥

≤
1
6
ω(p, 0)

m−1∑
j=l

1
3 jω(2

jr, 2 jr) (2.13)

for all p, r ∈ X. Then the completeness of Y implies that {3−nh(p, 2nr)} is convergent for each

p, r ∈ X. Next, we define a mapping R(p, r) : X2
→ Y by

R(p, r) := lim
n→∞

1
3n h(p, 2nr)

for all p, r ∈ X. Choose l = 0 and let m→∞ in (2.13). Then we have

‖h(p, r) −R(p, r)‖ ≤
1
6
ω(p, 0)Ψ̃(r, r) (2.14)

for all p, r ∈ X. Thus it follows from (2.3) and (2.11) that

‖δR(p, q, r, s)‖ = lim
n→∞

1
3n

∥∥∥δh (p, q, 2nr, 2ns)
∥∥∥ ≤ ω(p, q) lim

n→∞

1
3nω (2nr, 2ns) = 0

for all p, q, r, s ∈ X. By Lemma 2.1, we have R ∈ AQ(X,Y). Let R̃ be another mapping inAQ(X,Y)

satisfying (2.14). Then we have

‖R(p, r) − R̃(p, r)‖ =
1
3k

∥∥∥R(p, 2kr) − R̃(p, 2kr)
∥∥∥

≤
1
3k

∥∥∥R(p, 2kr) − h(p, 2kr)
∥∥∥+ 1

3k

∥∥∥h(p, 2kr) − R̃(p, 2kr)
∥∥∥

≤
1

3k+1
ω(p, 0)Ψ̃(2kr, 2kr)→ 0 as k→∞

for all p, r ∈ X and so the uniqueness of R follows. Next, it implies by (2.8) that∥∥∥∥∥1
2

h(2p, r) − h(p, r)
∥∥∥∥∥ ≤ 1

6
ω(p, p)ω(r, 0)
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for all p, r ∈ X. Then, for each m, l ∈N0 with m > l, we have∥∥∥∥∥ 1
2l

h(2lp, r) −
1

2m h(2mp, r)
∥∥∥∥∥ ≤ m−1∑

j=l

∥∥∥∥∥ 1
2 j h(2 jp, r) −

1
2 j+1

h(2 j+1p, r)
∥∥∥∥∥

≤
1
6
ω(r, 0)

m−1∑
j=l

1
2 jω(2

jp, 2 jp) (2.15)

for all p, r ∈ X. Therefore,
{
2−nh (2np, r)

}
is a Cauchy sequence. By the completeness of Y, the

sequence
{
2−nh (2np, r)

}
converges. We define the mapping S : X2

→ Y by

S(p, r) := lim
n→∞

1
2n h(2np, r)

for all p, r ∈ X. Putting l = 0 and taking the limit as m→∞ in (2.15), yields

‖h(p, r) − S(p, r)‖ ≤
1
6
ω(r, 0)Ψ(p, p) (2.16)

for all p, r ∈ X. It follows from (2.3) and (2.11) that

‖δS(p, q, r, s)‖ = lim
n→∞

1
2n

∥∥∥δh (2np, 2nq, r, s)
∥∥∥ ≤ ω(r, s) lim

n→∞

1
2nω (2np, 2nq) = 0

for all p, q, r, s ∈ X. By Lemma 2.1, we infer that S ∈ AQ(X,Y). Let S̃ be another mapping in

AQ(X,Y) satisfying (2.16). Then

‖S(p, r) − S̃(p, r)‖ =
1
2k

∥∥∥S(2kp, r) − S̃(2kp, r)
∥∥∥

≤
1
2k

∥∥∥S(2kp, r) − h(2kp, r)
∥∥∥+ 1

2k

∥∥∥h(2kp, r) − S̃(2kp, r)
∥∥∥

≤
1

3 · 2k
ω(r, 0)Ψ(2kp, 2kp)→ 0 as k→∞

for all p, r ∈ X and so the uniqueness of S follows. It follows from (2.14) that

1
2n

∥∥∥h (2np, r) −R (2np, r)
∥∥∥ ≤ 1

6 · 2nω(2
np, 0)Ψ̃(r, r),

which tends to zero as n → ∞ for all p, r ∈ X. Since R is additive on its first variable, we have

‖S(p, r) − R(p, r)‖ = 0, i.e., H(p, r) := R(p, r) = S(p, r) for all p, r ∈ X. Therefore, there exists a

unique mapping H ∈ AQ(X,Y) satisfying (2.12). This completes the proof. �

If ω(p, q) =
√
θ(‖p‖t + ‖q‖t) for all p, q ∈ X, then we obtain the following corollaries:

Corollary 2.1. Let t,θ ∈ R+
0 with t > 1, let h ∈ F0(X,Y) and

‖δh(p, q, r, s)‖ ≤ θ(‖p‖t + ‖q‖t)(‖r‖t + ‖s‖t) (2.17)

for all p, q, r, s ∈ X. Then there exists a unique mapping H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
2θ

3(2t − 2)
‖p‖t‖r‖t

for all p, r ∈ X.
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Corollary 2.2. Let t,θ ∈ R+
0 with t < ln 3

ln 2 . If h ∈ F0(X,Y) satisfies (2.17), then there exists a unique
mapping H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
θ

3− 2t ‖p‖
t
‖r‖t

for all p, r ∈ X.

3. Hyers-Ulam stability of the additive-quadratic functional equation: fixed point method

In this section, we use the fixed point method to prove the Hyers-Ulam stability of the additive-

quadratic functional equation (1).

Theorem 3.1. Let ω : X2
→ R+

0 be a mapping such that there exists L ∈ R+
0 with L < 1 satisfying

ω
(p
2

,
q
2

)
≤

L
3
ω (p, q) ≤

L
2
ω (p, q) (3.1)

for all p, q ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping
H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
L

6(1− L)
min

{
ω(p, 0)ω(r, r),ω(r, 0)ω(p, p)

}
(3.2)

for all p, r ∈ X.

Proof. Consider the set F0(X,Y) with the generalized metric d defined by

d( f , g) = inf
{
µ ∈ R+

0 : ‖ f (p, r) − g(p, r)‖ ≤ µω (p, 0)ω(r, r), ∀p, r ∈ X
}

,

where inf ∅ = +∞ as usual. Then (F0(X,Y), d) is complete, see [22]. Define a mapping J :

F0(X,Y)→ F0(X,Y) by

J f (p, r) := 3 f
(
p,

r
2

)
for all p, r ∈ X. For all f , g ∈ F0(X,Y) with d( f , g) = ε, we have

‖ f (p, r) − g(p, r)‖ ≤ εω (p, 0)ω(r, r)

for all p, r ∈ X. Consequently, from (3.1), we have

‖J f (p, r) −Jg(p, r)‖ =
∥∥∥∥∥3 f

(
p,

r
2

)
− 3g

(
p,

r
2

)∥∥∥∥∥
≤ 3εω (p, 0)ω

( r
2

,
r
2

)
≤ 3ε

L
3
ω (p, 0)ω (r, r)

= Lεω (p, 0)ω (r, r)

for all p, r ∈ X. Then we have d(J f ,Jg) ≤ Lε, which means that

d(J f ,Jg) ≤ Ld( f , g)



Int. J. Anal. Appl. (2025), 23:175 9

for all f , g ∈ F0(X,Y). It follows from (2.5) that∥∥∥∥∥3h
(
p,

r
2

)
− h(p, r)

∥∥∥∥∥ ≤ 1
2
ω(p, 0)ω

( r
2

,
r
2

)
≤

L
6
ω(p, 0)ω(r, r)

for all p, r ∈ X and so

d(h,Jh) ≤
L
6

.

From Theorem 1.1, there exists R : X2
→ Y satisfying the following:

(1) R is a unique fixed point of J , i.e.,

R (p, r) = 3R
(
p,

r
2

)
for all p, r ∈ X. Thus there exists µ ∈ (0,∞) satisfying

‖h (p, r) −R (p, r) ‖ ≤ µω (p, 0)ω(r, r)

for all p, r ∈ X;

(2) d(J lh, R)→ 0 as l→∞, which implies that

lim
l→∞

3lh
(
p,

r
2l

)
= R (p, r)

for all p, r ∈ X;

(3) d(h, R) ≤ 1
1−L d(h,Jh), which implies that∥∥∥h(p, r) −R(p, r)

∥∥∥ ≤ L
6(1− L)

ω (p, 0)ω(r, r)

for all p, r ∈ X.

From (3.1) and for all p, q ∈ X, we have 3nω
( p

2n , q
2n

)
≤ Lnω (p, q) tends to zero as n → ∞. As in

the proof of Theorem 2.1, we can show that R ∈ AQ(X,Y). Next, consider another generalized

metric d̃ on F0(X,Y) given by

d̃( f , g) = inf
{
µ ∈ R+

0 : ‖ f (p, r) − g(p, r)‖ ≤ µω(r, 0)ω(p, p), ∀p, r ∈ X
}

,

where inf ∅ = +∞ as usual. Then (F0(X,Y), d̃) is complete, see [22]. We define the mapping by

J̃ f (p, r) := 2 f
(p
2

, r
)

for all p, r ∈ X. Let f , g ∈ F0(X,Y) with d̃( f , g) = ε. Then from (3.1), we have

‖J̃ f (p, r) − J̃g(p, r)‖ =
∥∥∥∥∥2 f

(p
2

, r
)
− 2g

(p
2

, r
)∥∥∥∥∥

≤ 2εω (r, 0)ω
(p
2

,
p
2

)
≤ 2ε

L
2
ω (r, 0)ω (p, p)

= Lεω (r, 0)ω (p, p)

for all p, r ∈ X. Thus d̃(J̃ f , J̃g) ≤ Lε and so

d̃(J̃ f , J̃g) ≤ Ld̃( f , g)
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for all f , g ∈ F0(X,Y). It implies by (2.8) that∥∥∥∥∥h(p, r) − 2h
(p
2

, r
)∥∥∥∥∥ ≤ 1

3
ω

(p
2

,
p
2

)
ω(r, 0) ≤

L
6
ω(r, 0)ω(p, p)

for all p, r ∈ X. Thus

d̃(h, J̃h) ≤
L
6

.

It follows from Theorem 1.1 that there exists a mapping S : X2
→ Y satisfying the following:

(1) S is a unique fixed point of J̃ , i.e.,

S (p, r) = 2S
(p
2

, r
)

for all p, r ∈ X. Thus there exists µ ∈ (0,∞) satisfying

‖h (p, r) − S (p, r) ‖ ≤ µω (r, 0)ω(p, p)

for all p, r ∈ X;

(2) d̃(J̃ lh, S)→ 0 as l→∞, which implies that

lim
l→∞

2lh
( p
2l

, r
)
= S (p, r)

for all p, r ∈ X;

(3) d̃(h, S) ≤ 1
1−L d̃(h, J̃h), which implies that∥∥∥h(p, r) − S(p, r)

∥∥∥ ≤ L
6(1− L)

ω (r, 0)ω(p, p)

for all p, r ∈ X.

From (3.1) and for all p, q ∈ X, we have 2nω
( p

2n , q
2n

)
≤ Lnω (p, q) tends to zero as n → ∞.

As in the proof of Theorem 2.1, we can show that S ∈ AQ(X,Y). We can also obtain that

H(p, r) := R(p, r) = S(p, r) for all p, r ∈ X. Therefore, we can conclude that there exists a unique

mapping H ∈ AQ(X,Y) which satisfies (3.2). This completes the proof. �

Theorem 3.2. Let ω : X2
→ R+

0 be a mapping such that there exists L ∈ R+
0 with L < 1 satisfying

ω (p, q) ≤ 2Lω
(p
2

,
q
2

)
≤ 3Lω

(p
2

,
q
2

)
for all p, q ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping
H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
1

6(1− L)
min

{
ω(p, 0)ω(r, r),ω(r, 0)ω(p, p)

}
for all p, r ∈ X.

Proof. Consider the complete metric spaces (F0(X,Y), d) and (F0(X,Y), d̃) given in the proof of

Theorem 3.1. If we define a mapping J : F0(X,Y)→ F0(X,Y) by

J f (p, r) :=
1
3

f (p, 2r)
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for all p, r ∈ X, then it follows from (2.5) that∥∥∥∥∥h(p, r) −
1
3

h(p, 2r)
∥∥∥∥∥ ≤ 1

6
ω(p, 0)ω(r, r)

for all p, r ∈ X. By using the same technique as in the proof of Theorems 2.2 and 3.1, there exists a

unique mapping R ∈ AQ(X,Y) such that∥∥∥h(p, r) −R(p, r)
∥∥∥ ≤ 1

6(1− L)
ω (p, 0)ω(r, r)

for all p, r ∈ X. Next, we consider the mapping defined J̃ : F0(X,Y)→ F0(X,Y) by

J̃ f (p, r) :=
1
2

f (2p, r)

for all p, r ∈ X, then it implies by (2.8) that∥∥∥∥∥1
2

h(2p, r) − h(p, r)
∥∥∥∥∥ ≤ 1

6
ω(p, p)ω(r, 0)

for all p, r ∈ X. As in the proof of Theorems 2.2 and 3.1, there exists a unique mapping S ∈ AQ(X,Y)

such that ∥∥∥h(p, r) − S(p, r)
∥∥∥ ≤ 1

6(1− L)
ω (r, 0)ω(p, p)

for all p, r ∈ X. The rest of the proof is similar to the proof of Theorem 3.1. This completes the

proof. �

By taking L = 21−t and ω(p, q) =
√
θ(‖p‖t + ‖q‖t) for all p, q ∈ X in Theorem 3.1, we have the

following:

Corollary 3.1. Let t,θ ∈ R+
0 with t > 1. If h ∈ F0(X,Y) satisfies (2.17), then there exists a unique

mapping H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
2θ

3(2t − 2)
‖p‖t‖r‖t

for all p, r ∈ X.

By taking L = 2t

3 and ω(p, q) =
√
θ(‖p‖t + ‖q‖t) for all p, q ∈ X in Theorem 3.2, we have the

following:

Corollary 3.2. Let t,θ ∈ R+
0 with t < ln 3

ln 2 and let h ∈ F0(X,Y) be a mapping satisfying (2.17). Then
there exists a unique mapping H ∈ AQ(X,Y) such that

‖h(p, r) −H(p, r)‖ ≤
θ

3− 2t ‖p‖
t
‖r‖t

for all p, r ∈ X.

4. Conclusion

We have proven the Hyers-Ulam stability results for the additive-quadratic functional equation

(1) in Banach spaces using the direct and fixed point techniques.
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