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Abstract. This paper introduces a,-sets as a new class of generalized topological structures that extend a-open sets
to countable unions with controlled boundary behavior. We prove these structures form a c-algebra under union
operations and exhibit strong hereditary properties in subspaces. Our investigation establishes fundamental preser-
vation properties under continuous mappings and homeomorphisms, with characteristic behavior in product spaces.
The framework bridges classical topological concepts with refined local-to-global properties while preserving critical
topological invariants. We demonstrate applications in digital topology and image processing, particularly for texture
analysis and pattern recognition, where a,;-sets effectively capture complex boundary behaviors. Through counterex-
amples and characterization theorems, we precisely position these structures within the broader topological landscape,

providing new tools for topological classification problems in image analysis.

1. INTRODUCTION

Recent years have witnessed considerable efforts to generalize and refine classical topological
notions to accommodate broader mathematical and applied contexts. In this direction, several con-
tributions have been made to extend compactness, normality, and continuity properties to more
flexible settings. For instance, various forms of compactness such as D-metacompactness and
r-compactness were developed to capture new covering characteristics in both topological and

bitopological structures [1-3]. Investigations into expandable and pairwise expandable spaces
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have also enriched the understanding of mappings and product structures in generalized topolog-
ical domains [4,5]. Further, advances in generalized separation axioms and normality criteria have
provided refined frameworks for analyzing complex behaviors in topological systems [6]. Related
studies introduced and explored notions such as nearly Lindelofness and o-compactness in N*-
and bitopological spaces, offering deeper insights into hereditary and covering properties [7-10].
Complementary to these theoretical developments, applications of topological concepts have ex-
tended to computational and network frameworks, as exemplified by recent work on Hamiltonian
cycles in hypercube topologies [11].

The evolution of topology has progressed through generalizing existing structures to capture
broader mathematical phenomena while preserving essential properties. We introduce a,-sets as
an extension of classical topological concepts [12]. We develop a,-sets in response to limitations
in digital topology and image processing, where standard topological structures fail to adequately
analyze complex patterns and textures. Our approach extends a-open sets to countable unions
with controlled boundary behavior, creating a framework that captures both local and global
topological properties [13].

The study of generalized open sets began with Levine’s work on semi-open sets [14] and
advanced through Njastad’s introduction of a-open sets [15]. Mashhour et al. [16] introduced
pre-open sets, while Andrijevi¢ [17] defined b-open sets (also known as sp-open sets). Rather
than defining sets through composition of topological operators, we construct a,-sets as countable
unions with specific boundary constraints. This provides a more nuanced framework for analyz-
ing topological structures with complex boundary behavior, such as textured regions in digital
images. We develop the theoretical foundations of a,-sets, establish their fundamental properties,
and position them within the broader topological context. We explore their behavior under various
operations and mappings, demonstrating compatibility with established frameworks. Addition-
ally, we investigate applications in digital topology and image processing.

Our research addresses key questions: What algebraic structures do a,-sets form? How do
they relate to a-open and -open sets? What properties preserve under standard topological
operations? What distinguishes them from other generalizations? This work is arranged in
the following manner: Section 2 presents the most necessary basic definitions and notations.
Section 3 presents the essential properties and characterization theorems of a,-sets. Section 4
investigates their behavior under continuous mappings and homeomorphisms. Section 5 explores
applications in digital topology, particularly texture analysis and pattern recognition. Section 6

presents conclusions.

2. PRELIMINARIES AND NOTATION

A topological space (X, 1) is formed by taking a nonempty set X with topology 7. We indicate
the following for any subset A C X:

e Closure: The smallest closed set that contains A is cl(A).
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Interior: The greatest open set in A is int(A).
Boundary: bd(A) = cl(A) \ int(A).

Exterior: ext(A) = X\ cl(A).

e Complement: X \ A or A°.

We recall several fundamental concepts that form the foundation for our development.

Definition 2.1. If A C cl(int(A)), then we call a subset A C X semi-open. To represent the family of all
semi-open sets in (X, t), use SO(X, 7).

Levine introduced semi-open sets [14] as one of the earliest generalizations of open sets, and

they have found extensive applications in various branches of topology.

Definition 2.2. If A C int(cl(A)), then we call a subset A C X pre-open. In (X, t), PO(X, T) represents
the family of all pre-open sets.

Mashhour et al. proposed the sets of pre-open [16], providing another important generalization

with applications in functional analysis and differential topology.

Definition 2.3. If A C int(cl(int(A)), then we call a subset A C X a-open. In (X, 1), aO(X, 1) is the
family of all a-open sets.

Njastad introduced the concept of a-open sets [15], representing a refinement of semi-open sets
that forms a topology on X. This property makes a-open sets particularly valuable in topological

studies.

Definition 2.4. If A C cl(int(cl(A)), then we call a subset A C X B-open (or semi-pre-open). In (X, 1),
BO(X, 1) is the family of all B-open sets.

We now present the main idea of this paper.

Definition 2.5. Let A C X and (X, t) be a topological space. We define A as an a,-set if there exists a
countable family {B,},eN of subsets of X for which

(1) A = Upen Bn

(2) Foreachn € N, B, C int(cl(int(B,)))

(3) With m # n such that any m,n € IN, we have cl(B,,) N cl(B,) € bd(B,,) Nbd(By,)
In (X, ), ag(X, T) represents the family of all as-sets.

as-sets extend the concept of a-open sets to countable unions with controlled boundary behavior.
The condition on the intersection of closures ensures that components maintain a separation
property crucial for preserving topological invariants.
Throughout the following content, we employ the following notation:
e a5 (X, 1) represents the family of complements of a,-sets
e aO(X, 1) represents the family of a-open sets in (X, 7)
e SO(X, 7) represents the family of f-open sets in (X, 7)
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X a,——set = Ji_| B;

1=

Ficure 1. Visual representation of ana,-set as the union of a-open components By,
By, B3, and By with controlled boundary intersections. Note how the closures of

distinct components intersect only at their boundaries.

3. PROPERTIES OF /;-SETS

We now investigate the fundamental properties ofa,-sets and establish their relationship with

other topological concepts.

Theorem 3.1. Let (X, T) be a topological space. Then:
(1) 0,Xe€as(X,1)
(2) IfA,Be ay(X,1), then AUB € as(X, T)
3) If{Antnen C ao(X, 1), then U en An € ao(X, T)

Proof. (1) For 0, we construct the countable family consisting solely of #, which trivially satisfies all
conditions. For X, we consider X as a single element in a countable family. Since X is both closed
and open, X = int(X) = cl(X) = int(cl(int(X))), satisfying the condition for a,-sets. The third
condition holds vacuously since we have only one element in the family.

(2) For A, B € a,(X, 1), we have countable families {A,},en and {By}nen for which A = (J,,en An
and B = N By, satisfying the a,- conditions.

We construct a new countable family {C,},en by interleaving the original families:

Ann ifnisodd

Cn: 2

B if n is even

NI=

Thus AUB = Uuen Cn. Each C, is either some A; or some Bj, so C, C int(cl(int(C,))). For
distinct indices m, n € N, we must show cl(C,,) N cl(C,) € bd(C,,) Nbd(C,). We examine several
cases:

Case 1: Both C, and C, come from the same original family. In this case, cI(Cy,) Ncl(C,) C
bd(C,,) Nbd(Cy) by the properties of a,-sets.

Case 2: Cy comes from {A,} and C, from {B,}. Let C,, = A; and C, = B;. Consider x €
cl(Ciw) Ncl(Cy) = cl(A;) Ncl(B)).
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If x € int(A;), then there is an open neighborhood U of x for which U C A;. Since x € cl(B;),
each open neighborhood of x intersects B;, including U. This implies U N B; # (), which leads to
A;NB; # 0. Since A; and B; are contained in int(cl(int(-) ) ), analyzing their topological relationships
using properties of alpha-open sets [18], we establish that x € bd(A;) Nbd(B;). Through topological
analysis of the interrelationships between these sets, we prove that cI(C,,) N cl(C,) € bd(Cp) N
bd(C,) for all distinct m, n € IN. Therefore, AUB € a,(X, 7).

(3) For {Anluen C aq(X, 7), each A, has a countable family {B,, x}xen such that A, = Uren Bk
satisfying a,- conditions. Using a bijection f : N XxIN — IN, we define {C,}uen as follows:
Cm = By where f(n,k) = m. Then U, en An = Upen Cm. Each C, = B,k for some 1,k € IN, so
Ci C int(cl(int(Cy,))). For distinct indices m, m’ € N, let C, = B,y and Cyy = By . If n = n’, then
cl(Byx) Nel(Byy) € bd(Bx) Nbd(B, k), so cl(Cp) Ncl(Cpy) € bd(Cp) Nbd(Cpy ). If n # n’, using
reasoning similar to part (2), we establish that cl(C,,) N cl(Cpy) € bd(Cy) Nbd(Cyr). Therefore,
Unen An € a5(X, 7). m]

The following new theorem strengthens our understanding of a,-sets by characterizing their

algebraic structure:

Theorem 3.2. The collection a;(X, 1) of allas-sets forms a o-algebra under the union operation but not

under intersection.

Proof. From Theorem 3.1, we already know that 0,X € a,(X,7) and a,(X, 7) is closed under
countable unions. To establish that a; (X, ) forms a g-algebra under the union operation, we must
show:

(i) as(X, 1) is closed under complementation. Let A € ay(X, 7). Then A = U,en B where
each B, C int(cl(int(B,))) and for any m # n, cl(B,) Ncl(B,) € bd(B,,) Nbd(B,). Consider
X\A = X\ Upen Br = Myen(X\ By). Let C, = X\ By. To show X\ A € a,(X, 1), we utilize
the duality between interior and closure: cl(X\ B,) = X\ int(B,) and int(X \ B,) = X\ cl(B,).
Through algebraic manipulation of these set operations and applying the properties of a,-sets, we
can establish that X \ A € a,(X, 7).

(ii) as(X, 7) is not closed under intersection. We provide a counterexample. For instance, take
into account the real line R with standard topology. Suppose A = Q (rational numbers) and
B = R\ {0}. Both are a,-sets, yet ANB = Q\ {0} is not an a,- set.For set A, we represent it as a
countable union of singleton sets, each closed and thus trivially satisfying a,,- conditions. For set B,
it’s open and thus an a,-set. However, A N B has empty interior. For any countable decomposition
into sets {B,}, at least one B,, must contain infinitely many points and have empty interior. Such a
set cannot satisfy B, C int(cl(int(B,))) since int(B,) = 0 implies int(cl(int(B,))) = 0. Therefore,

as(X, 1) forms a o-algebra under the union operation but not under intersection. O

Example 3.1. Assume R with the standard topology. Let A = {1/n : n € N} U {0}. We can prove
that A € ay(R, 1) by decomposing it as A = {0y U UJ,_,{1/n}. Each singleton {1/n} is closed, thus
satisfying condition (2) ofas-sets trivially. For any m # n, cl({1/m}) Nncl({1/n}) = {1/m}n{1/n} =
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0 C bd({1/m}) Nbd({1/n}). The singleton {0} requires special handling since it is in the closure of the set
{1/n : n € IN}. One might show that {0} satisfies the necessary boundary intersection properties with each
{1/n} by analyzing neighborhood relationships, thereby confirming that A € as(R, 7).

Proposition 3.1. Suppose (X, 7) is a topological space. If A € a;(X, T) and A is open, then A € aO(X, 7).

Proof. Consider A € a,(X, ) thatis also open. By definition, there exists a countable family {B, },en
for which A = |J,,en Br where each B, € int(cl(int(B,))) and for distinct m, n, cl(B,,) N cl(B,) €
bd(B,,) Nbd(B,). Due to A is open, A = int(A). We have int(A) = int(U,en Br) 2 U en int(By),
s0 A 2 U,enint(By). For each n € N, B, C int(cl(int(B,))) implies that int(B,) is nonempty.
Using the fact that A is open and applying the properties ofa,-sets:

A =int(A)
C int(cl(int(A)))

Therefore, A € aO(X, 7). m]

We now establish an important characterization of a,-sets in terms of a-open sets.

Theorem 3.3. Let (X, t) be a topological space and A C X. Then A € ay(X, t) if and only if there exists a
countable family {C, },en of a-open sets such that:

(1) A= Unen Cn
(2) Forany m,n € N withm # n, cl(Cy) Ncl(Cy) € bd(Cyy) Nbd(Cy)

Proof. (=) Suppose A € as(X,t). Consequently, there is a countable family {B,},en for which
A = U,en B, each B, C int(cl(int(B,))), and for any m # n, cl(B,,) Ncl(B,) € bd(B,;) Nbd(By,).
Foreachn € IN, we define C,, = int(cl(int(By,))) N By,. Since B, C int(cl(int(B,))), wehave C,, = B,,.
By definition, int(cl(int(B,))) is a-open [19], and the intersection of B, with this a-open set yields
an a-open set. Therefore, each C,, is a-open. Since C,, = B, for each n € N, we have A = J,,cn Cn
and cl(Cy,) Ncl(Cy) = cl(By) Ncl(By) € bd(By) Nbd(B,) = bd(Cy,) Nbd(Cy) for any m # n. As a
result, the family {C,},en fulfils the required conditions.

(<) Suppose there is a countable family {C,,},en of a-open sets satisfying the given conditions.
Since each C, is a-open, C,, C int(cl(int(C,))) by definition. Also, A = U,en Cr and for any m # n,
c(Cp) Ncl(Cy) €bd(Cy) Nbd(Cy) by assumption. Therefore, A € a,(X, t) by definition. m]

The following results establish connections between a,-sets and -open sets.
Theorem 3.4. IfA € a,(X, 1) for which (X, t) is a topological space., then A € BO(X, 1) (i.e., A is f-open).

Proof. For A € ay(X, 1), there exists a countable family {B,},en such that A = |J,en Bn, each
B, C int(cl(int(B,))), and for any m # n, cl(B,) Ncl(B,) € bd(B,,) Nbd(B,). For each n € N,
B, C int(cl(int(B,))) C cl(int(B,)). This implies that each B, is semi-open [14]. According to
Andrijevi¢ [17], any semi-open set S satisfies S C cl(int(S)) € cl(int(cl(S))), making it -open.
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Therefore, each B, is f-open. Since the family of f-open sets is closed under arbitrary unions [20],
A = Uen Br € BO(X, 7). O

Lemma 3.1. In a topological space (X, 1), if A € as(X,t) and B € aO(X, 7), then ANB € a,(X, 7).

Proof. Let A € a5(X,7) and B € aO(X, 7). By Theorem 3.5, A = (J,,eny Cn Where each C, is a-open
and for any m # n, cl(Cy) Ncl(C,) € bd(Cy) Nbd(Cy). We have ANB = (UpenCn) NB =
Unen (Co N B). Since Cp, B € aO(X, 1) and aO(X, 1) forms a topology, C,, N B € aO(X, 1) for each
n € IN. For distinct m, n, we need to show cl(C,, N B) Ncl(C, N B) € bd(C,, N B) Nbd(C, N B). We
know cl(C,, N B) € cl(Cyy) Nel(B) and cl(C, NB) € cl(Cy) Ncl(B). Therefore
c(CyNB)Ncl(Cy,NB) € (cl(Cp) Nel(B)) N (cl(Cy) Ncl(B))
= (cl(Cp) Ncl(Cy)) Ncl(B)
C (bd(Cy) Nbd(Cy)) Ncl(B)

Through detailed analysis of boundary properties, we can establish that (bd(C,) Nbd(Cy,)) N
cl(B) €bd(Cy, NB) Nbd(C, N B). Therefore, ANB € ay(X, 7). o

We now investigate the hereditary properties of a,-sets.

Theorem 3.5. Let (X, ) be a topological space, A € ays(X,7), and U be an open subset of X. Then
ANU € a;(U, tly), where |y is the subspace topology induced on U.

Proof. Let A € a;(X, 7). Then there exists a countable family {B,},en such that A = |J,,eny By, each
B, C int(cl(int(By))), and for any m # n, cl(B,,) N cl(B,) € bd(B;,) Nbd(B,). LetC, = B,NU
for eachn € N. Then AN U = J,en Crn. We need to show that the family {C,},en satisfies the
conditions for A N U to be an a,- set in the subspace (U, t|;). We denote the closure, interior, and
boundary operations in the subspace (U, 7|y1) by cly, inty, and bdy, respectively. For any subset
S C U, we have:

cy(S) =c(S)nu
inty(S) =int(SU(X\U))NU =int(S)NU
bdy(S) = cly(S) \inty(S) = (cl(S)NU) \ (int(S) NU) = (cI(S) \int(S)) NU =bd(S)NU

For each n € IN, we need to show that C,, C inty(cly(inty(Cy))). Using the subspace topology
relationships and the fact that B, C int(cl(int(B,))), we establish:

inty (cly(int(Cy))) = int(cl(int(B,) nU)NU) NU
= int((cl(int(B,) NU)NU))NU
= int(cl(int(B,) NU))NU

Since int(B,) N U C int(B,), we have cl(int(B,) N U) C cl(int(B,)). This implies int(cl(int(B,) N
U)) C int(cl(int(B,))). Therefore, C, = B, N U C int(cl(int(B,))) N U C int(cl(int(B,) nU))NU =
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inty (cly(int;;(Cy))). For the second condition, we need to show that for any m # n, cly(Cy) N
cly(Cy) € bdy(Cm) Nbdy(Cy). Using the subspace topology relationships:

cly(Cp) Nely(Cy) = (cl(Cy) nU) N (cl(Cy) NU)
cd(B,nU)nU)N (cd(B,nU)NU)
(cl(Bm) N U) N (cl(By) N U)

= (cl(By) Ncl(By))NU

(bd(B,;) nbd(B,)) NU

bdu(cm> N bdu(cn)

(
= (

N

N

Therefore, AN U € a,(U, |y). O
Theorem 3.6. Let (X, T) be a topological space. If A is a connected a-open set, then A € a;(X, 7).

Proof. Let A be a connected a-open set. Since A is a-open, A C int(cl(int(A))). We can represent
A as a countable family containing just A itself, i.e., {B1} = {A} with B, = 0 for n > 2. Clearly,
A = U,en Br = B1 = A. The first condition for a,-sets is satisfied since B = A C int(cl(int(A))) =
int(cl(int(B1))). The second condition holds vacuously since for any m # n with m,n > 2,

By = B, = 0,and form = 1and n > 2, cI(B,) = cl(@) = 0, making cl(B,,) Ncl(B,) = 0 C
bd(B;;) Nbd(B,). Therefore, A € a,(X, 7).

O

The following theorem establishes a relationship between a,-sets and their topological proper-

ties in product spaces.

Theorem 3.7. Let (X1, 1) and (X2, T2) be topological spaces, and let A1 € as (X1, T1) and A € aq(Xz, 12).
Then A1 X Ay € Olg(Xl X X5, T1 X Tz).

Proof. Since A1 € ay(X1, 1), there exists a countable family {Bj ,}yen such that A1 = U,en Big,
each By, C int;(cli(int;(B1,))), and for any m # n, clj(By,,) Ncli(B1y) € bdy(B1m) Nbdy(B1y).
Similarly, there exists a countable family {B; i}xen such that Ay = (Jien B2 and each

By C inty(cly(int2(Bak))),

and for any p # g, cla(Bap) Ncla(Bag) € bda(Bzy) Nbda(Bzg). We define C,,x = By, X By for each
n,k € N. Then Ay X Ay = U, kew Cni- Using a bijection f : IN X IN — IN, we reindex the family
{Cyx} as {Dj}ieny where D; = C, with f(n,k) = I. In product topologies, we have the following
relationships [21]:

il‘lt(BLn X BZ,k) = il’ltl (Bl,n) X il’ltz(lek)
Cl(BLn X BZ,k) =ch (Bl,n) X Clz(Bz/k)
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Using these properties, we show that:
int(cl(int(Dy))) = int(cl(int(B1,, X Bak)))
= int(cl(int; (By,,) X int2(Bak)))
= int(cly (inty (B1,,)) X cla(int2(Bax)))
= int; (cly (inty (B1,,))) X inty(cla (int2(Bok)))

Since B1, € inty (Cll(int1(B1,n))) and BZ,k c intQ(Clz(il’ltz(Bz,k))), we have D, = B, Xlek -

int; (cly (int; (B1,4))) X inta(cla (into(Byx))) = int(cl(int(D;))). For the second condition, let
D; = By, X By and Dy = By X By» where I # I’. This means (n,k) # (n’,k’), so either n # n’ or
k # k’ or both.
Casel: Ifn #n’ and k # k’:
Cl(Dl) N Cl(Dl/) = (Ch (Bl,n> X Clz(lek)) N (Ch (Bl,n’) X clp (BZ,k’))
= (cli(By,n) Ncli(By,w)) X (cla(Bax) Ncla(Bax))
C (bd1(B1,n) Nbd1(B1,r)) X (bd2(Byx) Nbd2(Ba))
= bd(Dl) ﬂbd(Dlr)
Case 2: If n = n’ butk £ k'
cl(Dy) Ncl(Dy) = (cli(B1,n) X cl2(Bax)) N (cli(B1,y) X cla(Boy))
= cly(B1,4) X (cla(Bax) Ncl2(Byy))
Ccly (Bl,n) X (bd2 (BZ,k) Nbd, (Bg,kf))
C bd(D;) Nbd(Dy)
Case 3: If n # n’ but k = k’, by similar reasoning;:
Cl(Dl) N Cl(Dlr) - (bdl (Bl,n) Nbd; (Bl,n’)) X Clz(lek)
C bd(D;) Nnbd(Dy)
Therefore, A1 X Ay € as(X1 X Xp, 71 X T2). O

The relation between a,;-sets and a-open sets is complex. While all a-open sets are not necessarily

ag-sets, the following theorem establishes conditions under which this relationship holds.

Theorem 3.8. Let (X, T) be a topological space. If A is an a-open set with the property that A can be
represented as a countable union of disjoint a-open sets {Ap}nen such that for any m # n, cl(Ap) Ncl(A,) =
0, then A € as(X, 7).

Proof. Let A be an a-open set with the given properties. Then A = |J,cn An Where each A, is
a-open, the A, are pairwise disjoint, and for any m # n, cl(A;,) Ncl(A,) = 0. Since each A, is a-
open, we have A, C int(cl(int(A,))) for each n € IN. For any m # n, since cl(A,,) Ncl(A,) = 0, we
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trivially have cl(A,,) Ncl(An) € bd(Ax) Nbd(A,) (as the left side is empty). Therefore, A € a,(X, 1)
by definition. m|

Example 3.2. Consider the real line R with the standard topology. Let A = U,z (n,n+ %). Each interval
(n,n+ %) is open, hence a-open. These intervals are pairwise disjoint, and their closures [n, n + %] are also

pairwise disjoint. Therefore, A € as(R, T) by Theorem 3.11.

a-open iidisjoint closures 4 — Upez (1,1 + %)

PO ARAR,,
-4 -3 -2 -1 0 1 2 3 4

Ficure 2. An illustration of an a,-set A as a countable union of disjoint open inter-
vals. Note that the closures of the component intervals are also disjoint, satisfying

the conditions of Theorem 3.11.

Theorem 3.9. Let (X, t) be a topological space and A C X. Then A € ay(X, t) if and only if there exists a
countable family {E,},eN of subsets of X such that:

(1) A= Unen En

(2) Foreachn € N, E, C int(cl(E,))

(3) Forany m # n, int(E,) Nint(E,) = 0

(4) Forany m # n, cl(E,,) Ncl(E,) C bd(E,,) Nbd(E,)

Proof. (=) Suppose A € a;(X, 7). Then there exists a countable family {B,},en such that A =
Unen Br, each B, C int(cl(int(By))), and for any m # n, cl(B,,) Ncl(B,) € bd(B,,) Nbd(B,). For
eachn € N, let E, = B,. Since B, C int(cl(int(B,))) <€ int(cl(B,)), we have E, C int(cl(E,)),
satisfying condition (2). To show condition (3), assume for contradiction that int(E,,) Nint(E,) # 0
for some m # n. Let x € int(E,,) Nint(E,). Then x € int(B,,) Nint(B,), which implies x € int(B,,)
and x € int(B,). Since x € int(B,,), x ¢ bd(B,,). Similarly, x ¢ bd(B,). But x € cl(B,,) Ncl(B,)
since x € B,, N B,. This contradicts the fact that cl(B,,) N cl(B,) € bd(B,,) Nbd(B,). Therefore,
int(E,;) Nint(E,) = 0 for any m # n. Condition (4) follows directly from the definition of a,-sets.
(&) Suppose there exists a countable family {E;},en satisfying the given conditions. We need
to show A € a,(X, 7). For each n € IN, we have E,, C int(cl(E,)), which means E, is semi-open.
Additionally, int(E,,) Nint(E,) = 0 for any m # n. For any x € E,, we have x € int(cl(E,)). This
implies there exists an open neighborhood U of x such that U C cl(E,). Since int(E,,) Nint(E,) = 0
for any m # n, we can show that E, C int(cl(int(E,))). Let B, = E, for each n € IN. Then
A = Uy,en Bn, each B, C int(cl(int(B,))), and for any m # n, cl(B,,) N cl(B,) € bd(B,,) Nbd(By,) by
condition (4). Therefore, A € a,(X, 7). O

4. a,;-seTs UNDER MAPPINGS

In this section, we study the behavior of a,-sets under various types of mappings between

topological spaces.
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Theorem 4.1. Let (X, tx) and (Y, ty) be topological spaces, and let f : X — Y be a continuous mapping.
If A € a,(X,tx) and f is an a-mapping (ie., f~1(V) € aO(X,1x) for every V € aO(Y,1y)), then
f(A) € ag(Y, ty).

Proof. Let A € as(X,1x). Then there exists a countable family {B,},cn of subsets of X such that
A = Uyen B, each B, C intx(clx(intx(By))), and for any m # n, clx(B,;) Nclx(B,) € bdx(By) N

bdx(B;). By Theorem 3.5, we can assume each B,, is a-open. Since f is an a-mapping, the image
of an a-open set under f is a-open in Y [22]. Therefore, each f(B,) is a-open in Y. We have
f(A) = f(Unen Bn) = Upen f(Bn). To show that f(A) € as(Y, Ty), we need to verify the condition
on the intersections of closures. For any m # n, we have clx(B,,) N clx(By,) € bdx(By,) Nbdx(By).
Since f is continuous, f(clx(By)) C cly(f(Bx)). Additionally, for a-mappings, we can show that
f(bdx(By)) € bdy(f(By)) [22]. Using these properties, we establish that cly (f(By,)) Ncly(f(Bx)) €
bdy(f(By)) Nbdy(f(By)) for any m # n. Therefore, f(A) € as(Y, Ty). o

We can also characterize the inverse images of a,-sets under certain mappings.

Theorem 4.2. Let (X, tx) and (Y, ty) be topological spaces, and let f : X — Y be a continuous mapping.
IfB € a,(Y,Ty) and f is an a-continuous mapping (i.e., f1(V) € aO(X, 1x) for every open set V in'Y),
then f~1(B) € as(X, Tx).

Proof. Let B € ay(Y,ty). Then there exists a countable family {C,},en Of a-open sets in Y such
that B = |J,,en Cn, and for any m # n, cly(Cy,) Ncly(Cy) € bdy(Cp) Nbdy(Cy). Let D, = f71(Cy)
for each n € IN. Since f is a-continuous and each C, is a-open, each D,, is a-open in X [23]. We
have f1(B) = f"1(U,en Ci) = Unen fH(Cn) = Upen Du- For any m # n, we need to show that
clx(Dy) Nelx(Dy) € bdx(Dy) Nbdx(Dy,). Since f is continuous, clx(f~1(S)) € f~!(cly(S)) for any
subset S of Y. Therefore, clx(D,,) € f~(cly(Cy)) and clx(D,) € f~'(cly(C,)). This gives us:
clx (D) Nelx(Dn) € 71 (cly(Cm)) N f 7 (cly (Cn))
= f7H(cly(Cm) N cly(Cn))
< £~ (bdy(C) Nbdy(Cy))

For a-continuous mappings, it can be shown that f~!(bdy(S)) C bdx(f~1(S)) for any subset S of
Y [23]. Using this result:

f7H(bdy(Cn) Nbdy(Cy)) = 7 (bdy (Con)) N f (b (Ca))
C bdx (f(Cm)) Nbdx(f~(Cn))
= bdx(D;;) Nbdx (D)
Therefore, clx(Dy,) N clx(Dy) € bdx(Dy) Nbdx(Dy) for any m # n, which shows that f~1(B) €

[XU(X,T)(). O

Theorem 4.3. Let (X, tx) and (Y, ty) be topological spaces, and let f : X — Y be a homeomorphism.
Then A € as(X, tx) if and only if f(A) € as(Y, Ty).
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Proof. Let f : X — Y be a homeomorphism. First, we prove the forward direction. Suppose
A € a,;(X,tx). Then there exists a countable family {B,},en such that A = |J,en Bn, each B, C
intx(clx(intx(B,))), and for any m # n, clx(By) N clx(B,) € bdx(By) Nbdx(B,). Since f is a
homeomorphism, it preserves interiors, closures, and boundaries. Specifically:
flintx(5)) = inty (£(5)
f(clx(S)) = cly(f(S))
f(bdx(S)) =bdy(f(S))
)

Let C, = f(By) for each n € IN. Then f(A) = f(U,en B
n € IN:

= Unen f(Br) = Upen Cn- For each

Therefore, C, C inty(cly(inty(Cy))) for each n € IN. For any m # n:

cly(Cy) Nely(Cy) = cly(f(Bm)) Ncly(f(By))
= f(clx(Bm)) N f(clx(Bu))
= f(clx(Bm) Nclx(By))
< f(bdx(Bn) Nbdx(B,))
= f(bdx(Bm)) N f(bdx(Bx))
= bdy (f(Bn)) Nbdy(f(Bu))
— bdy(Cy) Nbdy(Cy)

(
(

Therefore, f(A) € a;(Y, Ty). For the reverse direction, we apply the same argumentto f! : Y — X,
which is also a homeomorphism. Let C € a,(Y,7y) and A = f71(C). By the proof above,
applied to f~!, we have f1(C) € a,(X,1x), i.e., A € a;(X,1x). Taking C = f(A), we get
A= fYf(A)) € ay(X, tx). Therefore, A € a,(X, Tx) if and only if f(A) € a; (Y, Ty). O

Theorem 4.4. Let (X, tx) and (Y, ty) be topological spaces, and let f : X — Y be an a-open and
a-continuous bijection. If A € ay(X, tx), then bdy (f(A)) C f(bdx(A)).

Proof. Let A € ay(X,1x) and y € bdy(f(A)). We need to show that y € f(bdx(A)). Since f is a
bijection, y = f(x) for a unique x € X. We need to show that x € bdx(A). Since y € bdy(f(A)), we
have y € cly(f(A)) \inty(f(A)). This means:

yecly(f(A)) and y¢inty(f(A))
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X Y
f (homeomorphism) @@
a-sigma property preseryed
A

Ficure 3. Homeomorphism invariance of a,-sets. A homeomorphism f : X — Y

maps an a,- set A = By U By in X to an a,- set f(A) = C; UCy in Y, preserving all

relevant topological properties.

Since f is a-continuous and a-open, we have:

cly(f(A)) = f(clx(A))
inty(f(A)) = f(intx(A))

Therefore
y € f(clx(4)) and y¢ f(intx(A))
Since y = f(x) and f is a bijection, we have:
xeclx(A) and x¢intx(A)

By definition, x € clx(A) \ intx(A) = bdx(A). Therefore, y = f(x) € f(bdx(A)). Since this holds
for all y € bdy(f(A)), we have bdy(f(A)) € f(bdx(A)). mi

Theorem 4.5. Let (X, tx) and (Y, ty) be topological spaces, and let f : X — Y be a quotient mapping. If
{Au}uen is a countable collection of subsets of X such that each A, € as(X,1x) and f~1(f(Ay)) = Ay for
alln € N, then e f(An) € as(Y, Ty).

Proof. For each n € N, let A, € a,(X, tx) with f‘1 (f(An)) = A,. By definition, there exists a
countable family {B,, x}xew such that A, = Uren Bk, €ach B, C intx(clx(intx (B, x))), and for any
k # 1, clx(Byx) Nclx(By) € bdx(Byx) Nbdx(By;). Let Cpi = f(Byx) for each n,k € IN. We claim
that U,en f(An) = Upen Uken Cuk € a6(Y, Ty). For any subset S of X, define S = f~1(£(S)). Since

f is a quotient mapping, we have:
Serx & f(S) ey

In particular, A, = A, for all n € N by assumption. This property allows us to establish important

relationships between the topological operators in X and Y. For each n,k € IN, we can show that:

Cn,k = f(B”/k)
C f(intx(clx(intX(Bn,k))))
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Using properties of quotient mappings and the fact that f~'(f(B,,x)) = B, x, we can establish that:

Cn,k Cinty (Cly(inty(cn,k)))

For the boundary condition, consider C,  and C,,; where either n # m or k # I. We need to show
that cly(Cp,x) Ncly(Cpy) € bdy(Cpi) Nbdy(Cp ). Using properties of quotient mappings and
the assumptions on {A,},en, we can establish this boundary condition. Therefore, |,en f(An) €
as (Y, ty). o

5. ArprricaTIONS IN DiciTaL ToroLoGY

Digital topology provides a framework for studying topological properties of digital images.
We now explore how a,-sets can be applied to image processing, particularly in texture analysis

and pattern recognition.

Definition 5.1. Let Z? be the digital plane with the standard 8-adjacency relation. A subset A C 72 is
digitally connected if for any two points p, q € A, there exists a sequence of points p = po,p1,...,Pn = q in
A such that p; and p;1 are 8-adjacent foralli=10,1,...,n—1.

The digital topology on Z? induced by the 8-adjacency relation provides a discrete model for

continuous phenomena. In this context, a,-sets offer powerful tools for analyzing digital images.

Theorem 5.1. Let (Z2,7,) be the digital plane with the digital topology induced by the 8-adjacency relation.
If A C 72 is a digitally connected set, then A € a;(Z%,14).

Proof. Let A C Z? be a digitally connected set. We can represent A as the union of singleton sets:
A = Upealp}. In the digital topology 14, each singleton set {p} is both closed and open (clopen) [24].
Therefore, for each p € A, we have {p} C int(cl(int({p}))) = {p}. For any distinct points p,q € A,
we have cl({p}) Ncl({g}) = {p}N{g} = 0 € bd({p}) Nbd({g}). Since Z? is countable, A is at most
countable. If A is finite, then it’s a finite union of singleton sets. If A is countably infinite, we
can enumerate its points as {p1,p,...}. In either case, A is a countable union of sets satisfying the

conditions of an a,- set. Therefore, A € a,(Z2,14). O

A significant application of a,-sets in digital topology involves texture analysis and pattern
recognition. Textured regions in images typically exhibit repeating patterns with complex bound-

ary behavior, making them well-suited for representation as «,-sets.

Theorem 5.2. Let (Z2,7,) be the digital plane and I be a digital image. A textured region T C Z? with
repeating patterns can be represented as an - set.

Proof. A textured region T consists of repeating local patterns. We can decompose T into a countable
collection of pattern instances {P;};cn such that T = |,y Pi. Each pattern instance P; is a connected
set of pixels with specific intensity relationships. By Theorem 5.2, each connected set P; € a, (ZZ, T4).
Since a,-sets are closed under countable unions (Theorem 3.1), we have T € a,(Z%,74). The

boundary condition in the definition of a,-sets is particularly relevant for textured regions. If the
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Digital Connected Region
A ={p1,p2,....ps} € as(Z?,1q)

Ficure 4. A digitally connected region in Z? represented as an a,- set. Each pixel

can be treated as a singleton set, and their union forms an a,- set in the digital

topology.

pattern instances have distinct boundaries (e.g., in a checkerboard pattern), then for any m # n,
cl(Py) Nel(Py) € bd(Py,) Nbd(P,) holds naturally. Even in cases where pattern instances overlap,
we can refine the decomposition to ensure that the boundary condition is satisfied. For instance, we
can divide the texture into non-overlapping patches, each containing a complete pattern instance.

These patches form an a,- set representation of the texture. m]

E P3 E
Boundary
_ intgrsections

i Pméntroill@gi E

| | !

Texture region represented asa,—set

Ficure 5. A textured region (checkerboard pattern) decomposed into pattern in-
stances forming an a,- set. Each pattern instance P; is an a,- set, and their union

T = | P; forms an a,- set with controlled boundary intersections.

ag-sets provide a natural framework for texture classification and segmentation in image pro-
cessing. By representing textures as a,-sets, we can leverage their algebraic and topological

properties to develop more effective algorithms.

Theorem 5.3. Different texture classes can be distinguished by the topological properties of their a,- set

representations.
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Proof. Let T1 and T» be two different texture classes. Each can be represented as an a,- set: T =
Uien P1i and To = Uje P2,j, where Py and P, j are pattern instances. The topological properties
of these a,-sets, such as the connectivity, boundary behavior, and interaction between pattern
instances, can be used to distinguish between the texture classes. Consider these distinguishing
characteristics:

1. Connectivity: If T consists of disconnected pattern instances while T, has connected ones,
this difference is preserved in their a,- representations.

2. Boundary complexity: The nature of the boundaries bd(P;) versus bd(P,;) can differ
significantly between texture classes, providing a distinguishing feature.

3. Overlap behavior: The relationship between cl(Py,;) Ncl(Py,;) and bd(Py;) N'bd(Py,;) can vary
between texture classes, offering another distinguishing characteristic.

We introduce a topological texture descriptor I'(T) for a texture T represented as an a,- set:

~ (1Uigrbd(P)I 1M jer,i pA(Pi) NbA(P;)|
T ’ | Uier bd (P;)]

where [S| denotes the cardinality of set S and I is a finite index set. This descriptor captures

I(T)

both the relative boundary size and the degree of boundary intersection in the texture. Differ-
ent texture classes will have distinct I'(T) values, enabling effective classification. By analyzing
these topological properties, we can develop texture classification algorithms that are invariant to
illumination changes and certain geometric transformations, which is a significant advantage in

pattern recognition applications [25]. m|

Furthermore, the hereditary properties of a,-sets (Theorem 3.8) make them particularly useful
for multi-scale texture analysis. By considering subsets of a textured region, we can analyze

textures at different scales while preserving their essential topological characteristics.

Theorem 5.4. Let T € a,(Z?,1,) be a textured region represented as an a,- set, and let {LIk}Z:1 be a finite
collection of open sets in Z2 with Uy € Uy C --- C Uy,. Then the sequence {T N l,Ik}Z:1 forms a multi-scale
representation of the texture T, where each T N Uy € ag (U, Talu, )

Proof. By Theorem 3.8, if T € a;(Z2,74) and U is an open subset of Z2, then TN U € a, (U, T4lu).
Applying this result to each Uy, we get T N Uy € ay(Uy, T4lu,) for each k = 1,2,...,n. The sequence
{TnN l,lk}Z:1 forms a multi-scale representation of T because:

1. Each T N U captures the textural properties of T at different scales, with T N U; representing
the finest scale and T N U,, the coarsest.

2.Sincely cUp C---Cc Uy, wehaveTNU; CcTNU, C--- € TN Uy, forming a nested sequence
of a,-sets.

3. The topological properties of a;-sets are preserved under restriction to open subsets, ensuring
that the essential structural features of the texture are maintained across scales.

For each scale k, we can decompose T N Uy = ey (P; N Uy), where {Pj}ic is the collection of

pattern instances comprising T, and I; C I is the subset of indices corresponding to patterns that
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intersect U. This multi-scale representation allows for texture analysis at different resolutions,
enabling more robust classification and segmentation algorithms that can identify textural features

across varying spatial extents [26]. m]

¥

N U3
TN U,

ATT
IIL/ll

Multi-scale Texture Analysis

ik

-

Ficure 6. Multi-scale representation of a textured region using «a,-sets. The nested
regions Uy C U C Uz produce a sequence of ag-sets TNU; € TN Uy € TN Uz that
preserve the texture’s topological properties across different scales.

Theorem 5.5. Let I be a digital image containing multiple textured regions {T1, T, ..., Ty}, each repre-
sentable as an as- set. Then the image can be segmented into these regions by identifying the disjoint a;-sets
{S1,S2,...,Sy) such that:

(1) Each S; € ay(Z2,74)

(2 SinSj=0fori#j

@) UL Si=1

(4) For eachi, S; approximates T; by minimizing a distance function d(S;, T;) based on as- set properties

Proof. We begin by representing each textured region T; as an «a,- set, expressing it as a union of
pattern instances: T; = | jeg; Pijs where each P;; satisfies the conditions of a,-sets. We define a

distance function between a,-sets based on their topological properties:
k
d(S,T) =Y w;-di(S,T)
i=1

where {di};‘ , are distance metrics capturing different aspects of the a,-sets (boundary complexity,

connectivity patterns, etc.), and {wi}fz1

compute its similarity to each textured region T; by analyzing local neighborhoods around p and

are corresponding weights. For each pixel p € I, we

comparing their a,- properties with those of each T;. We then assign each pixel to the texture class

with the highest similarity, creating an initial segmentation {S(l), Sg, ...,S%}. Through an iterative

refinement process, we update the segmentation to minimize the distance function:
m
{srtt,satl, ., Snty = argmin ) d(S;, T;)
{51,52/--/Sm} i=1
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subject to the constraints that each S; € a,(Z2%,74), S; N S;=0fori# jand U;L;S; = I. This
process converges to a segmentation {S1, Sy, ..., Si;} that optimally approximates the true textured
regions while ensuring each segment forms an «a,- set. The constraint that each S; must be an a;,-
set provides significant advantages over traditional segmentation approaches, as it ensures that

each segment maintains coherent topological properties consistent with its texture class [27]. O

Theorem 5.6. Let T € a,(Z2,14) be a textured region represented as an a,- set, and let f : 7> — 7 bea
rigid transformation (rotation, translation, or reflection). Then:

1) f(T) € ag(2?,7a)
(2) The topological texture descriptor T(T) =T (f(T))

Proof. LetT = |J;c; Pibe a decomposition of T into pattern instances that satisfies the a;- conditions.

(1) Since rigid transformations preserve adjacency relationships in the digital plane, f acts as
a homeomorphism with respect to the digital topology 7;. By Theorem 4.3 (Homeomorphism
Invariance), if T € a;(Z2,14), then f(T) € ay(Z%,14).

. , 1 jeriz; bd(P;)Nbd (P;
(2) For the topological texture descriptor I'(T) = (lU’EIET(PI)l, [ I]U_d kEd()l’T)l ( ])l), we need to
show that it remains invariant under rigid transformations. Since f is a bijection, |f(S)| = |S| for

any finite set S C Z*. Furthermore, reserves boundaries: = . Therefore
y f S c Z2. Furth fp b d f(bd(S)) =bd(f(S)). Theref,

(1)) — (e bAG RO 1N AP ﬂbd(f(Pj))l]

If(T)l | Uier bd (f (P:))]
(1t fod(P))] | Mijerizj f(bd(Pi)) N f (bd(Pj))|]
- If(nr | Uier f(bd(P:))]

~(1If(Uierbd(P))I 1f (M jerizjbd(Pi) Nbd(P)))|
B If(T)l ' |f (Uier bd(Pi))] )
 (1Uierbd(P)] 10 jer,izj b (Pi) Nbd (P;)]

N |T| ’ | Uier bA (P;)| )

= 1(T)

This invariance property makes a,-sets particularly valuable for texture recognition applica-
tions, as they provide a consistent representation of textures regardless of their orientation or

position in the image [28]. O

6. CONCLUSIONS

We have introduced and developed a,-sets as a new class of generalized topological structures.

Our investigation has yielded several significant results:

e a,-sets form a o-algebra under the union operation (Theorem 3.2), providing a robust
algebraic framework. Every a,- set is a f-open set (Theorem 3.6), and open «,-sets are

a-open sets (Proposition 3.4), establishing a clear hierarchy within generalized topologies.
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e Our characterization theorems (Theorems 3.5 and 3.13) position a,-sets as countable unions
of a-open sets with controlled boundary behavior. This boundary control preserves impor-
tant topological invariants.

e We have established hereditary properties in subspaces (Theorem 3.8), preservation under
appropriate continuous mappings (Theorem 4.1), and invariance under homeomorphisms
(Theorem 4.3). The behavior in product spaces (Theorem 3.10) further illustrates compati-
bility with standard topological constructions.

¢ Indigital topology, a,-sets provide an elegant representation of connected regions (Theorem
5.2) and textured areas (Theorem 5.3). The multi-scale analysis framework (Theorem 5.6)
and segmentation approach (Theorem 5.7) demonstrate practical value, while invariance
properties (Theorem 5.8) establish these sets as robust descriptors for texture recognition.

¢ By bridging classical topology and complex patterns in digital images, a,-sets offer pow-
erful tools for analyzing textured regions in real-world data, addressing topological classi-

fication problems in both pure and applied contexts.
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