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Abstract. This paper introduces ασ-sets as a new class of generalized topological structures that extend α-open sets

to countable unions with controlled boundary behavior. We prove these structures form a σ-algebra under union

operations and exhibit strong hereditary properties in subspaces. Our investigation establishes fundamental preser-

vation properties under continuous mappings and homeomorphisms, with characteristic behavior in product spaces.

The framework bridges classical topological concepts with refined local-to-global properties while preserving critical

topological invariants. We demonstrate applications in digital topology and image processing, particularly for texture

analysis and pattern recognition, where ασ-sets effectively capture complex boundary behaviors. Through counterex-

amples and characterization theorems, we precisely position these structures within the broader topological landscape,

providing new tools for topological classification problems in image analysis.

1. Introduction

Recent years have witnessed considerable efforts to generalize and refine classical topological

notions to accommodate broader mathematical and applied contexts. In this direction, several con-

tributions have been made to extend compactness, normality, and continuity properties to more

flexible settings. For instance, various forms of compactness such as D-metacompactness and

r-compactness were developed to capture new covering characteristics in both topological and

bitopological structures [1–3]. Investigations into expandable and pairwise expandable spaces
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have also enriched the understanding of mappings and product structures in generalized topolog-

ical domains [4,5]. Further, advances in generalized separation axioms and normality criteria have

provided refined frameworks for analyzing complex behaviors in topological systems [6]. Related

studies introduced and explored notions such as nearly Lindelöfness and σ-compactness in Nth-

and bitopological spaces, offering deeper insights into hereditary and covering properties [7–10].

Complementary to these theoretical developments, applications of topological concepts have ex-

tended to computational and network frameworks, as exemplified by recent work on Hamiltonian

cycles in hypercube topologies [11].

The evolution of topology has progressed through generalizing existing structures to capture

broader mathematical phenomena while preserving essential properties. We introduce ασ-sets as

an extension of classical topological concepts [12]. We develop ασ-sets in response to limitations

in digital topology and image processing, where standard topological structures fail to adequately

analyze complex patterns and textures. Our approach extends α-open sets to countable unions

with controlled boundary behavior, creating a framework that captures both local and global

topological properties [13].

The study of generalized open sets began with Levine’s work on semi-open sets [14] and

advanced through Njastad’s introduction of α-open sets [15]. Mashhour et al. [16] introduced

pre-open sets, while Andrijević [17] defined b-open sets (also known as sp-open sets). Rather

than defining sets through composition of topological operators, we construct ασ-sets as countable

unions with specific boundary constraints. This provides a more nuanced framework for analyz-

ing topological structures with complex boundary behavior, such as textured regions in digital

images. We develop the theoretical foundations of ασ-sets, establish their fundamental properties,

and position them within the broader topological context. We explore their behavior under various

operations and mappings, demonstrating compatibility with established frameworks. Addition-

ally, we investigate applications in digital topology and image processing.

Our research addresses key questions: What algebraic structures do ασ-sets form? How do

they relate to α-open and β-open sets? What properties preserve under standard topological

operations? What distinguishes them from other generalizations? This work is arranged in

the following manner: Section 2 presents the most necessary basic definitions and notations.

Section 3 presents the essential properties and characterization theorems of ασ-sets. Section 4

investigates their behavior under continuous mappings and homeomorphisms. Section 5 explores

applications in digital topology, particularly texture analysis and pattern recognition. Section 6

presents conclusions.

2. Preliminaries and Notation

A topological space (X, τ) is formed by taking a nonempty set X with topology τ. We indicate

the following for any subset A ⊆ X:

• Closure: The smallest closed set that contains A is cl(A).
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• Interior: The greatest open set in A is int(A).

• Boundary: bd(A) = cl(A) \ int(A).

• Exterior: ext(A) = X \ cl(A).

• Complement: X \A or Ac.

We recall several fundamental concepts that form the foundation for our development.

Definition 2.1. If A ⊆ cl(int(A)), then we call a subset A ⊆ X semi-open. To represent the family of all
semi-open sets in (X, τ), use SO(X, τ).

Levine introduced semi-open sets [14] as one of the earliest generalizations of open sets, and

they have found extensive applications in various branches of topology.

Definition 2.2. If A ⊆ int(cl(A)), then we call a subset A ⊆ X pre-open. In (X, τ), PO(X, τ) represents
the family of all pre-open sets.

Mashhour et al. proposed the sets of pre-open [16], providing another important generalization

with applications in functional analysis and differential topology.

Definition 2.3. If A ⊆ int(cl(int(A)), then we call a subset A ⊆ X α-open. In (X, τ), αO(X, τ) is the
family of all α-open sets.

Njastad introduced the concept of α-open sets [15], representing a refinement of semi-open sets

that forms a topology on X. This property makes α-open sets particularly valuable in topological

studies.

Definition 2.4. If A ⊆ cl(int(cl(A)), then we call a subset A ⊆ X β-open (or semi-pre-open). In (X, τ),
βO(X, τ) is the family of all β-open sets.

We now present the main idea of this paper.

Definition 2.5. Let A ⊆ X and (X, τ) be a topological space. We define A as an ασ-set if there exists a
countable family {Bn}n∈N of subsets of X for which

(1) A =
⋃

n∈N Bn

(2) For each n ∈N, Bn ⊆ int(cl(int(Bn)))

(3) With m , n such that any m, n ∈N, we have cl(Bm)∩ cl(Bn) ⊆ bd(Bm)∩ bd(Bn)

In (X, τ), ασ(X, τ) represents the family of all ασ-sets.

ασ-sets extend the concept ofα-open sets to countable unions with controlled boundary behavior.

The condition on the intersection of closures ensures that components maintain a separation

property crucial for preserving topological invariants.

Throughout the following content, we employ the following notation:

• αc
σ(X, τ) represents the family of complements of ασ-sets

• αO(X, τ) represents the family of α-open sets in (X, τ)

• βO(X, τ) represents the family of β-open sets in (X, τ)
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Figure 1. Visual representation of anασ-set as the union of α-open components B1,

B2, B3, and B4 with controlled boundary intersections. Note how the closures of

distinct components intersect only at their boundaries.

3. Properties of ασ-Sets

We now investigate the fundamental properties ofασ-sets and establish their relationship with

other topological concepts.

Theorem 3.1. Let (X, τ) be a topological space. Then:

(1) ∅, X ∈ ασ(X, τ)

(2) If A, B ∈ ασ(X, τ), then A∪ B ∈ ασ(X, τ)

(3) If {An}n∈N ⊆ ασ(X, τ), then
⋃

n∈N An ∈ ασ(X, τ)

Proof. (1) For ∅, we construct the countable family consisting solely of ∅, which trivially satisfies all

conditions. For X, we consider X as a single element in a countable family. Since X is both closed

and open, X = int(X) = cl(X) = int(cl(int(X))), satisfying the condition for ασ-sets. The third

condition holds vacuously since we have only one element in the family.

(2) For A, B ∈ ασ(X, τ), we have countable families {An}n∈N and {Bn}n∈N for which A =
⋃

n∈N An

and B =
⋃

n∈N Bn, satisfying the ασ- conditions.

We construct a new countable family {Cn}n∈N by interleaving the original families:

Cn =

A n+1
2

if n is odd

B n
2

if n is even

Thus A ∪ B =
⋃

n∈N Cn. Each Cn is either some Ai or some B j, so Cn ⊆ int(cl(int(Cn))). For

distinct indices m, n ∈N, we must show cl(Cm) ∩ cl(Cn) ⊆ bd(Cm) ∩ bd(Cn). We examine several

cases:

Case 1: Both Cm and Cn come from the same original family. In this case, cl(Cm) ∩ cl(Cn) ⊆

bd(Cm)∩ bd(Cn) by the properties of ασ-sets.

Case 2: Cm comes from {An} and Cn from {Bn}. Let Cm = Ai and Cn = B j. Consider x ∈
cl(Cm)∩ cl(Cn) = cl(Ai)∩ cl(B j).
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If x ∈ int(Ai), then there is an open neighborhood U of x for which U ⊆ Ai. Since x ∈ cl(B j),

each open neighborhood of x intersects B j, including U. This implies U ∩ B j , ∅, which leads to

Ai∩B j , ∅. Since Ai and B j are contained in int(cl(int(·))), analyzing their topological relationships

using properties of alpha-open sets [18], we establish that x ∈ bd(Ai)∩bd(B j). Through topological

analysis of the interrelationships between these sets, we prove that cl(Cm) ∩ cl(Cn) ⊆ bd(Cm) ∩

bd(Cn) for all distinct m, n ∈N. Therefore, A∪ B ∈ ασ(X, τ).

(3) For {An}n∈N ⊆ ασ(X, τ), each An has a countable family {Bn,k}k∈N such that An =
⋃

k∈N Bn,k,

satisfying ασ- conditions. Using a bijection f : N ×N → N, we define {Cm}m∈N as follows:

Cm = Bn,k where f (n, k) = m. Then
⋃

n∈N An =
⋃

m∈N Cm. Each Cm = Bn,k for some n, k ∈ N, so

Cm ⊆ int(cl(int(Cm))). For distinct indices m, m′ ∈N, let Cm = Bn,k and Cm′ = Bn′,k′ . If n = n′, then

cl(Bn,k) ∩ cl(Bn,k′) ⊆ bd(Bn,k) ∩ bd(Bn,k′), so cl(Cm) ∩ cl(Cm′) ⊆ bd(Cm) ∩ bd(Cm′). If n , n′, using

reasoning similar to part (2), we establish that cl(Cm) ∩ cl(Cm′) ⊆ bd(Cm) ∩ bd(Cm′). Therefore,⋃
n∈N An ∈ ασ(X, τ). �

The following new theorem strengthens our understanding of ασ-sets by characterizing their

algebraic structure:

Theorem 3.2. The collection ασ(X, τ) of allασ-sets forms a σ-algebra under the union operation but not
under intersection.

Proof. From Theorem 3.1, we already know that ∅, X ∈ ασ(X, τ) and ασ(X, τ) is closed under

countable unions. To establish that ασ(X, τ) forms a σ-algebra under the union operation, we must

show:

(i) ασ(X, τ) is closed under complementation. Let A ∈ ασ(X, τ). Then A =
⋃

n∈N Bn where

each Bn ⊆ int(cl(int(Bn))) and for any m , n, cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn). Consider

X \ A = X \
⋃

n∈N Bn =
⋂

n∈N(X \ Bn). Let Cn = X \ Bn. To show X \ A ∈ ασ(X, τ), we utilize

the duality between interior and closure: cl(X \ Bn) = X \ int(Bn) and int(X \ Bn) = X \ cl(Bn).

Through algebraic manipulation of these set operations and applying the properties of ασ-sets, we

can establish that X \A ∈ ασ(X, τ).

(ii) ασ(X, τ) is not closed under intersection. We provide a counterexample. For instance, take

into account the real line R with standard topology. Suppose A = Q (rational numbers) and

B = R \ {0}. Both are ασ-sets, yet A ∩ B = Q \ {0} is not an ασ- set.For set A, we represent it as a

countable union of singleton sets, each closed and thus trivially satisfying ασ- conditions. For set B,

it’s open and thus an ασ-set. However, A∩B has empty interior. For any countable decomposition

into sets {Bn}, at least one Bn must contain infinitely many points and have empty interior. Such a

set cannot satisfy Bn ⊆ int(cl(int(Bn))) since int(Bn) = ∅ implies int(cl(int(Bn))) = ∅. Therefore,

ασ(X, τ) forms a σ-algebra under the union operation but not under intersection. �

Example 3.1. Assume R with the standard topology. Let A = {1/n : n ∈ N} ∪ {0}. We can prove
that A ∈ ασ(R, τ) by decomposing it as A = {0} ∪

⋃
∞

n=1{1/n}. Each singleton {1/n} is closed, thus
satisfying condition (2) ofασ-sets trivially. For any m , n, cl({1/m}) ∩ cl({1/n}) = {1/m} ∩ {1/n} =
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∅ ⊆ bd({1/m}) ∩ bd({1/n}). The singleton {0} requires special handling since it is in the closure of the set
{1/n : n ∈N}. One might show that {0} satisfies the necessary boundary intersection properties with each
{1/n} by analyzing neighborhood relationships, thereby confirming that A ∈ ασ(R, τ).

Proposition 3.1. Suppose (X, τ) is a topological space. If A ∈ ασ(X, τ) and A is open, then A ∈ αO(X, τ).

Proof. Consider A ∈ ασ(X, τ) that is also open. By definition, there exists a countable family {Bn}n∈N

for which A =
⋃

n∈N Bn where each Bn ⊆ int(cl(int(Bn))) and for distinct m, n, cl(Bm) ∩ cl(Bn) ⊆

bd(Bm) ∩ bd(Bn). Due to A is open, A = int(A). We have int(A) = int(
⋃

n∈N Bn) ⊇
⋃

n∈N int(Bn),

so A ⊇
⋃

n∈N int(Bn). For each n ∈ N, Bn ⊆ int(cl(int(Bn))) implies that int(Bn) is nonempty.

Using the fact that A is open and applying the properties ofασ-sets:

A = int(A)

⊆ int(cl(int(A)))

Therefore, A ∈ αO(X, τ). �

We now establish an important characterization of ασ-sets in terms of α-open sets.

Theorem 3.3. Let (X, τ) be a topological space and A ⊆ X. Then A ∈ ασ(X, τ) if and only if there exists a
countable family {Cn}n∈N of α-open sets such that:

(1) A =
⋃

n∈N Cn

(2) For any m, n ∈N with m , n, cl(Cm)∩ cl(Cn) ⊆ bd(Cm)∩ bd(Cn)

Proof. (⇒) Suppose A ∈ ασ(X, τ). Consequently, there is a countable family {Bn}n∈N for which

A =
⋃

n∈N Bn, each Bn ⊆ int(cl(int(Bn))), and for any m , n, cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn).

For each n ∈N, we define Cn = int(cl(int(Bn)))∩Bn. Since Bn ⊆ int(cl(int(Bn))), we have Cn = Bn.

By definition, int(cl(int(Bn))) is α-open [19], and the intersection of Bn with this α-open set yields

an α-open set. Therefore, each Cn is α-open. Since Cn = Bn for each n ∈N, we have A =
⋃

n∈N Cn

and cl(Cm)∩ cl(Cn) = cl(Bm)∩ cl(Bn) ⊆ bd(Bm)∩ bd(Bn) = bd(Cm)∩ bd(Cn) for any m , n. As a

result, the family {Cn}n∈N fulfils the required conditions.

(⇐) Suppose there is a countable family {Cn}n∈N of α-open sets satisfying the given conditions.

Since each Cn is α-open, Cn ⊆ int(cl(int(Cn))) by definition. Also, A =
⋃

n∈N Cn and for any m , n,

cl(Cm)∩ cl(Cn) ⊆ bd(Cm)∩ bd(Cn) by assumption. Therefore, A ∈ ασ(X, τ) by definition. �

The following results establish connections between ασ-sets and β-open sets.

Theorem 3.4. If A ∈ ασ(X, τ) for which (X, τ) is a topological space., then A ∈ βO(X, τ) (i.e., A is β-open).

Proof. For A ∈ ασ(X, τ), there exists a countable family {Bn}n∈N such that A =
⋃

n∈N Bn, each

Bn ⊆ int(cl(int(Bn))), and for any m , n, cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn). For each n ∈ N,

Bn ⊆ int(cl(int(Bn))) ⊆ cl(int(Bn)). This implies that each Bn is semi-open [14]. According to

Andrijević [17], any semi-open set S satisfies S ⊆ cl(int(S)) ⊆ cl(int(cl(S))), making it β-open.
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Therefore, each Bn is β-open. Since the family of β-open sets is closed under arbitrary unions [20],

A =
⋃

n∈N Bn ∈ βO(X, τ). �

Lemma 3.1. In a topological space (X, τ), if A ∈ ασ(X, τ) and B ∈ αO(X, τ), then A∩ B ∈ ασ(X, τ).

Proof. Let A ∈ ασ(X, τ) and B ∈ αO(X, τ). By Theorem 3.5, A =
⋃

n∈N Cn where each Cn is α-open

and for any m , n, cl(Cm) ∩ cl(Cn) ⊆ bd(Cm) ∩ bd(Cn). We have A ∩ B = (
⋃

n∈N Cn) ∩ B =⋃
n∈N(Cn ∩ B). Since Cn, B ∈ αO(X, τ) and αO(X, τ) forms a topology, Cn ∩ B ∈ αO(X, τ) for each

n ∈N. For distinct m, n, we need to show cl(Cm ∩ B) ∩ cl(Cn ∩ B) ⊆ bd(Cm ∩ B) ∩ bd(Cn ∩ B). We

know cl(Cm ∩ B) ⊆ cl(Cm)∩ cl(B) and cl(Cn ∩ B) ⊆ cl(Cn)∩ cl(B). Therefore

cl(Cm ∩ B)∩ cl(Cn ∩ B) ⊆ (cl(Cm)∩ cl(B))∩ (cl(Cn)∩ cl(B))

= (cl(Cm)∩ cl(Cn))∩ cl(B)

⊆ (bd(Cm)∩ bd(Cn))∩ cl(B)

Through detailed analysis of boundary properties, we can establish that (bd(Cm) ∩ bd(Cn)) ∩

cl(B) ⊆ bd(Cm ∩ B)∩ bd(Cn ∩ B). Therefore, A∩ B ∈ ασ(X, τ). �

We now investigate the hereditary properties of ασ-sets.

Theorem 3.5. Let (X, τ) be a topological space, A ∈ ασ(X, τ), and U be an open subset of X. Then
A∩U ∈ ασ(U, τ|U), where τ|U is the subspace topology induced on U.

Proof. Let A ∈ ασ(X, τ). Then there exists a countable family {Bn}n∈N such that A =
⋃

n∈N Bn, each

Bn ⊆ int(cl(int(Bn))), and for any m , n, cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn). Let Cn = Bn ∩U
for each n ∈ N. Then A ∩U =

⋃
n∈N Cn. We need to show that the family {Cn}n∈N satisfies the

conditions for A∩U to be an ασ- set in the subspace (U, τ|U). We denote the closure, interior, and

boundary operations in the subspace (U, τ|U) by clU, intU, and bdU, respectively. For any subset

S ⊆ U, we have:

clU(S) = cl(S)∩U

intU(S) = int(S∪ (X \U))∩U = int(S)∩U

bdU(S) = clU(S) \ intU(S) = (cl(S)∩U) \ (int(S)∩U) = (cl(S) \ int(S))∩U = bd(S)∩U

For each n ∈ N, we need to show that Cn ⊆ intU(clU(intU(Cn))). Using the subspace topology

relationships and the fact that Bn ⊆ int(cl(int(Bn))), we establish:

intU(clU(intU(Cn))) = int(cl(int(Bn)∩U)∩U)∩U

= int((cl(int(Bn)∩U)∩U))∩U

= int(cl(int(Bn)∩U))∩U

Since int(Bn) ∩U ⊆ int(Bn), we have cl(int(Bn) ∩U) ⊆ cl(int(Bn)). This implies int(cl(int(Bn) ∩

U)) ⊆ int(cl(int(Bn))). Therefore, Cn = Bn ∩U ⊆ int(cl(int(Bn)))∩U ⊆ int(cl(int(Bn)∩U))∩U =
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intU(clU(intU(Cn))). For the second condition, we need to show that for any m , n, clU(Cm) ∩

clU(Cn) ⊆ bdU(Cm)∩ bdU(Cn). Using the subspace topology relationships:

clU(Cm)∩ clU(Cn) = (cl(Cm)∩U)∩ (cl(Cn)∩U)

= (cl(Bm ∩U)∩U)∩ (cl(Bn ∩U)∩U)

⊆ (cl(Bm)∩U)∩ (cl(Bn)∩U)

= (cl(Bm)∩ cl(Bn))∩U

⊆ (bd(Bm)∩ bd(Bn))∩U

= bdU(Cm)∩ bdU(Cn)

Therefore, A∩U ∈ ασ(U, τ|U). �

Theorem 3.6. Let (X, τ) be a topological space. If A is a connected α-open set, then A ∈ ασ(X, τ).

Proof. Let A be a connected α-open set. Since A is α-open, A ⊆ int(cl(int(A))). We can represent

A as a countable family containing just A itself, i.e., {B1} = {A} with Bn = ∅ for n ≥ 2. Clearly,

A =
⋃

n∈N Bn = B1 = A. The first condition for ασ-sets is satisfied since B1 = A ⊆ int(cl(int(A))) =

int(cl(int(B1))). The second condition holds vacuously since for any m , n with m, n ≥ 2,

Bm = Bn = ∅, and for m = 1 and n ≥ 2, cl(Bn) = cl(∅) = ∅, making cl(Bm) ∩ cl(Bn) = ∅ ⊆

bd(Bm)∩ bd(Bn). Therefore, A ∈ ασ(X, τ). �

The following theorem establishes a relationship between ασ-sets and their topological proper-

ties in product spaces.

Theorem 3.7. Let (X1, τ1) and (X2, τ2) be topological spaces, and let A1 ∈ ασ(X1, τ1) and A2 ∈ ασ(X2, τ2).
Then A1 ×A2 ∈ ασ(X1 ×X2, τ1 × τ2).

Proof. Since A1 ∈ ασ(X1, τ1), there exists a countable family {B1,n}n∈N such that A1 =
⋃

n∈N B1,n,

each B1,n ⊆ int1(cl1(int1(B1,n))), and for any m , n, cl1(B1,m) ∩ cl1(B1,n) ⊆ bd1(B1,m) ∩ bd1(B1,n).

Similarly, there exists a countable family {B2,k}k∈N such that A2 =
⋃

k∈N B2,k and each

B2,k ⊆ int2(cl2(int2(B2,k))),

and for any p , q, cl2(B2,p) ∩ cl2(B2,q) ⊆ bd2(B2,p) ∩ bd2(B2,q). We define Cn,k = B1,n × B2,k for each

n, k ∈ N. Then A1 ×A2 =
⋃

n,k∈N Cn,k. Using a bijection f : N ×N → N, we reindex the family

{Cn,k} as {Dl}l∈N where Dl = Cn,k with f (n, k) = l. In product topologies, we have the following

relationships [21]:

int(B1,n × B2,k) = int1(B1,n) × int2(B2,k)

cl(B1,n × B2,k) = cl1(B1,n) × cl2(B2,k)
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Using these properties, we show that:

int(cl(int(Dl))) = int(cl(int(B1,n × B2,k)))

= int(cl(int1(B1,n) × int2(B2,k)))

= int(cl1(int1(B1,n)) × cl2(int2(B2,k)))

= int1(cl1(int1(B1,n))) × int2(cl2(int2(B2,k)))

Since B1,n ⊆ int1(cl1(int1(B1,n))) and B2,k ⊆ int2(cl2(int2(B2,k))), we have Dl = B1,n × B2,k ⊆

int1(cl1(int1(B1,n))) × int2(cl2(int2(B2,k))) = int(cl(int(Dl))). For the second condition, let

Dl = B1,n × B2,k and Dl′ = B1,n′ × B2,k′ where l , l′. This means (n, k) , (n′, k′), so either n , n′ or

k , k′ or both.

Case 1: If n , n′ and k , k′:

cl(Dl)∩ cl(Dl′) = (cl1(B1,n) × cl2(B2,k))∩ (cl1(B1,n′) × cl2(B2,k′))

= (cl1(B1,n)∩ cl1(B1,n′)) × (cl2(B2,k)∩ cl2(B2,k′))

⊆ (bd1(B1,n)∩ bd1(B1,n′)) × (bd2(B2,k)∩ bd2(B2,k′))

= bd(Dl)∩ bd(Dl′)

Case 2: If n = n′ but k , k′:

cl(Dl)∩ cl(Dl′) = (cl1(B1,n) × cl2(B2,k))∩ (cl1(B1,n) × cl2(B2,k′))

= cl1(B1,n) × (cl2(B2,k)∩ cl2(B2,k′))

⊆ cl1(B1,n) × (bd2(B2,k)∩ bd2(B2,k′))

⊆ bd(Dl)∩ bd(Dl′)

Case 3: If n , n′ but k = k′, by similar reasoning:

cl(Dl)∩ cl(Dl′) ⊆ (bd1(B1,n)∩ bd1(B1,n′)) × cl2(B2,k)

⊆ bd(Dl)∩ bd(Dl′)

Therefore, A1 ×A2 ∈ ασ(X1 ×X2, τ1 × τ2). �

The relation betweenασ-sets andα-open sets is complex. While allα-open sets are not necessarily

ασ-sets, the following theorem establishes conditions under which this relationship holds.

Theorem 3.8. Let (X, τ) be a topological space. If A is an α-open set with the property that A can be
represented as a countable union of disjointα-open sets {An}n∈N such that for any m , n, cl(Am)∩ cl(An) =

∅, then A ∈ ασ(X, τ).

Proof. Let A be an α-open set with the given properties. Then A =
⋃

n∈N An where each An is

α-open, the An are pairwise disjoint, and for any m , n, cl(Am) ∩ cl(An) = ∅. Since each An is α-

open, we have An ⊆ int(cl(int(An))) for each n ∈N. For any m , n, since cl(Am)∩ cl(An) = ∅, we
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trivially have cl(Am)∩ cl(An) ⊆ bd(Am)∩bd(An) (as the left side is empty). Therefore, A ∈ ασ(X, τ)

by definition. �

Example 3.2. Consider the real line R with the standard topology. Let A =
⋃

n∈Z(n, n+ 1
2 ). Each interval

(n, n + 1
2 ) is open, hence α-open. These intervals are pairwise disjoint, and their closures [n, n + 1

2 ] are also
pairwise disjoint. Therefore, A ∈ ασ(R, τ) by Theorem 3.11.

R
−4 −3 −2 −1 0 1 2 3 4

A =
⋃

n∈Z(n, n + 1
2 )

α-open intervalsdisjoint closures

Figure 2. An illustration of an ασ-set A as a countable union of disjoint open inter-

vals. Note that the closures of the component intervals are also disjoint, satisfying

the conditions of Theorem 3.11.

Theorem 3.9. Let (X, τ) be a topological space and A ⊆ X. Then A ∈ ασ(X, τ) if and only if there exists a
countable family {En}n∈N of subsets of X such that:

(1) A =
⋃

n∈N En

(2) For each n ∈N, En ⊆ int(cl(En))

(3) For any m , n, int(Em)∩ int(En) = ∅

(4) For any m , n, cl(Em)∩ cl(En) ⊆ bd(Em)∩ bd(En)

Proof. (⇒) Suppose A ∈ ασ(X, τ). Then there exists a countable family {Bn}n∈N such that A =⋃
n∈N Bn, each Bn ⊆ int(cl(int(Bn))), and for any m , n, cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn). For

each n ∈ N, let En = Bn. Since Bn ⊆ int(cl(int(Bn))) ⊆ int(cl(Bn)), we have En ⊆ int(cl(En)),

satisfying condition (2). To show condition (3), assume for contradiction that int(Em)∩ int(En) , ∅

for some m , n. Let x ∈ int(Em) ∩ int(En). Then x ∈ int(Bm) ∩ int(Bn), which implies x ∈ int(Bm)

and x ∈ int(Bn). Since x ∈ int(Bm), x < bd(Bm). Similarly, x < bd(Bn). But x ∈ cl(Bm) ∩ cl(Bn)

since x ∈ Bm ∩ Bn. This contradicts the fact that cl(Bm) ∩ cl(Bn) ⊆ bd(Bm) ∩ bd(Bn). Therefore,

int(Em)∩ int(En) = ∅ for any m , n. Condition (4) follows directly from the definition of ασ-sets.

(⇐) Suppose there exists a countable family {En}n∈N satisfying the given conditions. We need

to show A ∈ ασ(X, τ). For each n ∈ N, we have En ⊆ int(cl(En)), which means En is semi-open.

Additionally, int(Em) ∩ int(En) = ∅ for any m , n. For any x ∈ En, we have x ∈ int(cl(En)). This

implies there exists an open neighborhood U of x such that U ⊆ cl(En). Since int(Em)∩ int(En) = ∅

for any m , n, we can show that En ⊆ int(cl(int(En))). Let Bn = En for each n ∈ N. Then

A =
⋃

n∈N Bn, each Bn ⊆ int(cl(int(Bn))), and for any m , n, cl(Bm)∩ cl(Bn) ⊆ bd(Bm)∩ bd(Bn) by

condition (4). Therefore, A ∈ ασ(X, τ). �

4. ασ-sets UnderMappings

In this section, we study the behavior of ασ-sets under various types of mappings between

topological spaces.
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Theorem 4.1. Let (X, τX) and (Y, τY) be topological spaces, and let f : X→ Y be a continuous mapping.
If A ∈ ασ(X, τX) and f is an α-mapping (i.e., f−1(V) ∈ αO(X, τX) for every V ∈ αO(Y, τY)), then
f (A) ∈ ασ(Y, τY).

Proof. Let A ∈ ασ(X, τX). Then there exists a countable family {Bn}n∈N of subsets of X such that

A =
⋃

n∈N Bn, each Bn ⊆ intX(clX(intX(Bn))), and for any m , n, clX(Bm) ∩ clX(Bn) ⊆ bdX(Bm) ∩

bdX(Bn). By Theorem 3.5, we can assume each Bn is α-open. Since f is an α-mapping, the image

of an α-open set under f is α-open in Y [22]. Therefore, each f (Bn) is α-open in Y. We have

f (A) = f (
⋃

n∈N Bn) =
⋃

n∈N f (Bn). To show that f (A) ∈ ασ(Y, τY), we need to verify the condition

on the intersections of closures. For any m , n, we have clX(Bm) ∩ clX(Bn) ⊆ bdX(Bm) ∩ bdX(Bn).

Since f is continuous, f (clX(Bn)) ⊆ clY( f (Bn)). Additionally, for α-mappings, we can show that

f (bdX(Bn)) ⊆ bdY( f (Bn)) [22]. Using these properties, we establish that clY( f (Bm))∩ clY( f (Bn)) ⊆

bdY( f (Bm))∩ bdY( f (Bn)) for any m , n. Therefore, f (A) ∈ ασ(Y, τY). �

We can also characterize the inverse images of ασ-sets under certain mappings.

Theorem 4.2. Let (X, τX) and (Y, τY) be topological spaces, and let f : X→ Y be a continuous mapping.
If B ∈ ασ(Y, τY) and f is an α-continuous mapping (i.e., f−1(V) ∈ αO(X, τX) for every open set V in Y),
then f−1(B) ∈ ασ(X, τX).

Proof. Let B ∈ ασ(Y, τY). Then there exists a countable family {Cn}n∈N of α-open sets in Y such

that B =
⋃

n∈N Cn, and for any m , n, clY(Cm) ∩ clY(Cn) ⊆ bdY(Cm) ∩ bdY(Cn). Let Dn = f−1(Cn)

for each n ∈ N. Since f is α-continuous and each Cn is α-open, each Dn is α-open in X [23]. We

have f−1(B) = f−1(
⋃

n∈N Cn) =
⋃

n∈N f−1(Cn) =
⋃

n∈N Dn. For any m , n, we need to show that

clX(Dm)∩ clX(Dn) ⊆ bdX(Dm)∩ bdX(Dn). Since f is continuous, clX( f−1(S)) ⊆ f−1(clY(S)) for any

subset S of Y. Therefore, clX(Dm) ⊆ f−1(clY(Cm)) and clX(Dn) ⊆ f−1(clY(Cn)). This gives us:

clX(Dm)∩ clX(Dn) ⊆ f−1(clY(Cm))∩ f−1(clY(Cn))

= f−1(clY(Cm)∩ clY(Cn))

⊆ f−1(bdY(Cm)∩ bdY(Cn))

For α-continuous mappings, it can be shown that f−1(bdY(S)) ⊆ bdX( f−1(S)) for any subset S of

Y [23]. Using this result:

f−1(bdY(Cm)∩ bdY(Cn)) = f−1(bdY(Cm))∩ f−1(bdY(Cn))

⊆ bdX( f−1(Cm))∩ bdX( f−1(Cn))

= bdX(Dm)∩ bdX(Dn)

Therefore, clX(Dm) ∩ clX(Dn) ⊆ bdX(Dm) ∩ bdX(Dn) for any m , n, which shows that f−1(B) ∈
ασ(X, τX). �

Theorem 4.3. Let (X, τX) and (Y, τY) be topological spaces, and let f : X → Y be a homeomorphism.
Then A ∈ ασ(X, τX) if and only if f (A) ∈ ασ(Y, τY).
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Proof. Let f : X → Y be a homeomorphism. First, we prove the forward direction. Suppose

A ∈ ασ(X, τX). Then there exists a countable family {Bn}n∈N such that A =
⋃

n∈N Bn, each Bn ⊆

intX(clX(intX(Bn))), and for any m , n, clX(Bm) ∩ clX(Bn) ⊆ bdX(Bm) ∩ bdX(Bn). Since f is a

homeomorphism, it preserves interiors, closures, and boundaries. Specifically:

f (intX(S)) = intY( f (S))

f (clX(S)) = clY( f (S))

f (bdX(S)) = bdY( f (S))

Let Cn = f (Bn) for each n ∈ N. Then f (A) = f (
⋃

n∈N Bn) =
⋃

n∈N f (Bn) =
⋃

n∈N Cn. For each

n ∈N:

f (Bn) ⊆ f (intX(clX(intX(Bn))))

= intY( f (clX(intX(Bn))))

= intY(clY( f (intX(Bn))))

= intY(clY(intY( f (Bn))))

= intY(clY(intY(Cn)))

Therefore, Cn ⊆ intY(clY(intY(Cn))) for each n ∈N. For any m , n:

clY(Cm)∩ clY(Cn) = clY( f (Bm))∩ clY( f (Bn))

= f (clX(Bm))∩ f (clX(Bn))

= f (clX(Bm)∩ clX(Bn))

⊆ f (bdX(Bm)∩ bdX(Bn))

= f (bdX(Bm))∩ f (bdX(Bn))

= bdY( f (Bm))∩ bdY( f (Bn))

= bdY(Cm)∩ bdY(Cn)

Therefore, f (A) ∈ ασ(Y, τY). For the reverse direction, we apply the same argument to f−1 : Y→ X,

which is also a homeomorphism. Let C ∈ ασ(Y, τY) and A = f−1(C). By the proof above,

applied to f−1, we have f−1(C) ∈ ασ(X, τX), i.e., A ∈ ασ(X, τX). Taking C = f (A), we get

A = f−1( f (A)) ∈ ασ(X, τX). Therefore, A ∈ ασ(X, τX) if and only if f (A) ∈ ασ(Y, τY). �

Theorem 4.4. Let (X, τX) and (Y, τY) be topological spaces, and let f : X → Y be an α-open and
α-continuous bijection. If A ∈ ασ(X, τX), then bdY( f (A)) ⊆ f (bdX(A)).

Proof. Let A ∈ ασ(X, τX) and y ∈ bdY( f (A)). We need to show that y ∈ f (bdX(A)). Since f is a

bijection, y = f (x) for a unique x ∈ X. We need to show that x ∈ bdX(A). Since y ∈ bdY( f (A)), we

have y ∈ clY( f (A)) \ intY( f (A)). This means:

y ∈ clY( f (A)) and y < intY( f (A))
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X Y

B1

B2

A

C1

C2

f (A)

f (homeomorphism)
α-sigma property preserved

Figure 3. Homeomorphism invariance of ασ-sets. A homeomorphism f : X → Y
maps an ασ- set A = B1 ∪ B2 in X to an ασ- set f (A) = C1 ∪ C2 in Y, preserving all

relevant topological properties.

Since f is α-continuous and α-open, we have:

clY( f (A)) = f (clX(A))

intY( f (A)) = f (intX(A))

Therefore

y ∈ f (clX(A)) and y < f (intX(A))

Since y = f (x) and f is a bijection, we have:

x ∈ clX(A) and x < intX(A)

By definition, x ∈ clX(A) \ intX(A) = bdX(A). Therefore, y = f (x) ∈ f (bdX(A)). Since this holds

for all y ∈ bdY( f (A)), we have bdY( f (A)) ⊆ f (bdX(A)). �

Theorem 4.5. Let (X, τX) and (Y, τY) be topological spaces, and let f : X→ Y be a quotient mapping. If
{An}n∈N is a countable collection of subsets of X such that each An ∈ ασ(X, τX) and f−1( f (An)) = An for
all n ∈N, then

⋃
n∈N f (An) ∈ ασ(Y, τY).

Proof. For each n ∈ N, let An ∈ ασ(X, τX) with f−1( f (An)) = An. By definition, there exists a

countable family {Bn,k}k∈N such that An =
⋃

k∈N Bn,k, each Bn,k ⊆ intX(clX(intX(Bn,k))), and for any

k , l, clX(Bn,k) ∩ clX(Bn,l) ⊆ bdX(Bn,k) ∩ bdX(Bn,l). Let Cn,k = f (Bn,k) for each n, k ∈ N. We claim

that
⋃

n∈N f (An) =
⋃

n∈N
⋃

k∈N Cn,k ∈ ασ(Y, τY). For any subset S of X, define S̃ = f−1( f (S)). Since

f is a quotient mapping, we have:

S̃ ∈ τX ⇐⇒ f (S) ∈ τY

In particular, Ãn = An for all n ∈N by assumption. This property allows us to establish important

relationships between the topological operators in X and Y. For each n, k ∈N, we can show that:

Cn,k = f (Bn,k)

⊆ f (intX(clX(intX(Bn,k))))
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Using properties of quotient mappings and the fact that f−1( f (Bn,k)) = B̃n,k, we can establish that:

Cn,k ⊆ intY(clY(intY(Cn,k)))

For the boundary condition, consider Cn,k and Cm,l where either n , m or k , l. We need to show

that clY(Cn,k) ∩ clY(Cm,l) ⊆ bdY(Cn,k) ∩ bdY(Cm,l). Using properties of quotient mappings and

the assumptions on {An}n∈N, we can establish this boundary condition. Therefore,
⋃

n∈N f (An) ∈

ασ(Y, τY). �

5. Applications in Digital Topology

Digital topology provides a framework for studying topological properties of digital images.

We now explore how ασ-sets can be applied to image processing, particularly in texture analysis

and pattern recognition.

Definition 5.1. Let Z2 be the digital plane with the standard 8-adjacency relation. A subset A ⊆ Z2 is
digitally connected if for any two points p, q ∈ A, there exists a sequence of points p = p0, p1, . . . , pn = q in
A such that pi and pi+1 are 8-adjacent for all i = 0, 1, . . . , n− 1.

The digital topology on Z2 induced by the 8-adjacency relation provides a discrete model for

continuous phenomena. In this context, ασ-sets offer powerful tools for analyzing digital images.

Theorem 5.1. Let (Z2, τd) be the digital plane with the digital topology induced by the 8-adjacency relation.
If A ⊆ Z2 is a digitally connected set, then A ∈ ασ(Z2, τd).

Proof. Let A ⊆ Z2 be a digitally connected set. We can represent A as the union of singleton sets:

A =
⋃

p∈A{p}. In the digital topology τd, each singleton set {p} is both closed and open (clopen) [24].

Therefore, for each p ∈ A, we have {p} ⊆ int(cl(int({p}))) = {p}. For any distinct points p, q ∈ A,

we have cl({p}) ∩ cl({q}) = {p} ∩ {q} = ∅ ⊆ bd({p}) ∩ bd({q}). Since Z2 is countable, A is at most

countable. If A is finite, then it’s a finite union of singleton sets. If A is countably infinite, we

can enumerate its points as {p1, p2, . . .}. In either case, A is a countable union of sets satisfying the

conditions of an ασ- set. Therefore, A ∈ ασ(Z2, τd). �

A significant application of ασ-sets in digital topology involves texture analysis and pattern

recognition. Textured regions in images typically exhibit repeating patterns with complex bound-

ary behavior, making them well-suited for representation as ασ-sets.

Theorem 5.2. Let (Z2, τd) be the digital plane and I be a digital image. A textured region T ⊆ Z2 with
repeating patterns can be represented as an ασ- set.

Proof. A textured region T consists of repeating local patterns. We can decompose T into a countable

collection of pattern instances {Pi}i∈N such that T =
⋃

i∈N Pi. Each pattern instance Pi is a connected

set of pixels with specific intensity relationships. By Theorem 5.2, each connected set Pi ∈ ασ(Z2, τd).

Since ασ-sets are closed under countable unions (Theorem 3.1), we have T ∈ ασ(Z2, τd). The

boundary condition in the definition of ασ-sets is particularly relevant for textured regions. If the
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p1 p2

p3 p4

p5 p6

p7 p8

Digital Connected Region
A = {p1, p2, ..., p8} ∈ ασ(Z2, τd)

Figure 4. A digitally connected region in Z2 represented as an ασ- set. Each pixel

can be treated as a singleton set, and their union forms an ασ- set in the digital

topology.

pattern instances have distinct boundaries (e.g., in a checkerboard pattern), then for any m , n,

cl(Pm)∩ cl(Pn) ⊆ bd(Pm)∩ bd(Pn) holds naturally. Even in cases where pattern instances overlap,

we can refine the decomposition to ensure that the boundary condition is satisfied. For instance, we

can divide the texture into non-overlapping patches, each containing a complete pattern instance.

These patches form an ασ- set representation of the texture. �

Texture region represented asασ–set

P1 P2

P3
Boundary

intersections

controlled

Figure 5. A textured region (checkerboard pattern) decomposed into pattern in-

stances forming an ασ- set. Each pattern instance Pi is an ασ- set, and their union

T =
⋃

Pi forms an ασ- set with controlled boundary intersections.

ασ-sets provide a natural framework for texture classification and segmentation in image pro-

cessing. By representing textures as ασ-sets, we can leverage their algebraic and topological

properties to develop more effective algorithms.

Theorem 5.3. Different texture classes can be distinguished by the topological properties of their ασ- set
representations.
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Proof. Let T1 and T2 be two different texture classes. Each can be represented as an ασ- set: T1 =⋃
i∈N P1,i and T2 =

⋃
j∈N P2, j, where P1,i and P2, j are pattern instances. The topological properties

of these ασ-sets, such as the connectivity, boundary behavior, and interaction between pattern

instances, can be used to distinguish between the texture classes. Consider these distinguishing

characteristics:

1. Connectivity: If T1 consists of disconnected pattern instances while T2 has connected ones,

this difference is preserved in their ασ- representations.

2. Boundary complexity: The nature of the boundaries bd(P1,i) versus bd(P2, j) can differ

significantly between texture classes, providing a distinguishing feature.

3. Overlap behavior: The relationship between cl(P1,i)∩ cl(P1, j) and bd(P1,i)∩ bd(P1, j) can vary

between texture classes, offering another distinguishing characteristic.

We introduce a topological texture descriptor Γ(T) for a texture T represented as an ασ- set:

Γ(T) =

 |⋃i∈I bd(Pi)|

|T|
,
|
⋂

i, j∈I,i, j bd(Pi)∩ bd(P j)|

|
⋃

i∈I bd(Pi)|


where |S| denotes the cardinality of set S and I is a finite index set. This descriptor captures

both the relative boundary size and the degree of boundary intersection in the texture. Differ-

ent texture classes will have distinct Γ(T) values, enabling effective classification. By analyzing

these topological properties, we can develop texture classification algorithms that are invariant to

illumination changes and certain geometric transformations, which is a significant advantage in

pattern recognition applications [25]. �

Furthermore, the hereditary properties of ασ-sets (Theorem 3.8) make them particularly useful

for multi-scale texture analysis. By considering subsets of a textured region, we can analyze

textures at different scales while preserving their essential topological characteristics.

Theorem 5.4. Let T ∈ ασ(Z2, τd) be a textured region represented as an ασ- set, and let {Uk}
n
k=1 be a finite

collection of open sets in Z2 with U1 ⊂ U2 ⊂ · · · ⊂ Un. Then the sequence {T ∩Uk}
n
k=1 forms a multi-scale

representation of the texture T, where each T ∩Uk ∈ ασ(Uk, τd|Uk).

Proof. By Theorem 3.8, if T ∈ ασ(Z2, τd) and U is an open subset of Z2, then T ∩U ∈ ασ(U, τd|U).

Applying this result to each Uk, we get T∩Uk ∈ ασ(Uk, τd|Uk) for each k = 1, 2, . . . , n. The sequence

{T ∩Uk}
n
k=1 forms a multi-scale representation of T because:

1. Each T ∩Uk captures the textural properties of T at different scales, with T ∩U1 representing

the finest scale and T ∩Un the coarsest.

2. Since U1 ⊂ U2 ⊂ · · · ⊂ Un, we have T∩U1 ⊂ T∩U2 ⊂ · · · ⊂ T∩Un, forming a nested sequence

of ασ-sets.

3. The topological properties of ασ-sets are preserved under restriction to open subsets, ensuring

that the essential structural features of the texture are maintained across scales.

For each scale k, we can decompose T ∩Uk =
⋃

i∈Ik
(Pi ∩Uk), where {Pi}i∈I is the collection of

pattern instances comprising T, and Ik ⊆ I is the subset of indices corresponding to patterns that
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intersect Uk. This multi-scale representation allows for texture analysis at different resolutions,

enabling more robust classification and segmentation algorithms that can identify textural features

across varying spatial extents [26]. �

T ∩U1

T ∩U2

T ∩U3

Multi-scale Texture Analysis

Figure 6. Multi-scale representation of a textured region using ασ-sets. The nested

regions U1 ⊂ U2 ⊂ U3 produce a sequence of ασ-sets T ∩U1 ⊂ T ∩U2 ⊂ T ∩U3 that

preserve the texture’s topological properties across different scales.

Theorem 5.5. Let I be a digital image containing multiple textured regions {T1, T2, . . . , Tm}, each repre-
sentable as an ασ- set. Then the image can be segmented into these regions by identifying the disjoint ασ-sets
{S1, S2, . . . , Sm} such that:

(1) Each Si ∈ ασ(Z2, τd)

(2) Si ∩ S j = ∅ for i , j
(3)

⋃m
i=1 Si = I

(4) For each i, Si approximates Ti by minimizing a distance function d(Si, Ti) based on ασ- set properties

Proof. We begin by representing each textured region Ti as an ασ- set, expressing it as a union of

pattern instances: Ti =
⋃

j∈Ji
Pi, j, where each Pi, j satisfies the conditions of ασ-sets. We define a

distance function between ασ-sets based on their topological properties:

d(S, T) =
k∑

i=1

wi · di(S, T)

where {di}
k
i=1 are distance metrics capturing different aspects of the ασ-sets (boundary complexity,

connectivity patterns, etc.), and {wi}
k
i=1 are corresponding weights. For each pixel p ∈ I, we

compute its similarity to each textured region Ti by analyzing local neighborhoods around p and

comparing their ασ- properties with those of each Ti. We then assign each pixel to the texture class

with the highest similarity, creating an initial segmentation {S0
1, S0

2, . . . , S0
m}. Through an iterative

refinement process, we update the segmentation to minimize the distance function:

{Sn+1
1 , Sn+1

2 , . . . , Sn+1
m } = arg min

{S1,S2,...,Sm}

m∑
i=1

d(Si, Ti)
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subject to the constraints that each Si ∈ ασ(Z2, τd), Si ∩ S j = ∅ for i , j, and
⋃m

i=1 Si = I. This

process converges to a segmentation {S1, S2, . . . , Sm} that optimally approximates the true textured

regions while ensuring each segment forms an ασ- set. The constraint that each Si must be an ασ-

set provides significant advantages over traditional segmentation approaches, as it ensures that

each segment maintains coherent topological properties consistent with its texture class [27]. �

Theorem 5.6. Let T ∈ ασ(Z2, τd) be a textured region represented as an ασ- set, and let f : Z2
→ Z2 be a

rigid transformation (rotation, translation, or reflection). Then:

(1) f (T) ∈ ασ(Z2, τd)

(2) The topological texture descriptor Γ(T) = Γ( f (T))

Proof. Let T =
⋃

i∈I Pi be a decomposition of T into pattern instances that satisfies theασ- conditions.

(1) Since rigid transformations preserve adjacency relationships in the digital plane, f acts as

a homeomorphism with respect to the digital topology τd. By Theorem 4.3 (Homeomorphism

Invariance), if T ∈ ασ(Z2, τd), then f (T) ∈ ασ(Z2, τd).

(2) For the topological texture descriptor Γ(T) =
(
|
⋃

i∈I bd(Pi)|
|T| ,

|
⋂

i, j∈I,i, j bd(Pi)∩bd(P j)|

|
⋃

i∈I bd(Pi)|

)
, we need to

show that it remains invariant under rigid transformations. Since f is a bijection, | f (S)| = |S| for

any finite set S ⊂ Z2. Furthermore, f preserves boundaries: f (bd(S)) = bd( f (S)). Therefore

Γ( f (T)) =

 |⋃i∈I bd( f (Pi))|

| f (T)|
,
|
⋂

i, j∈I,i, j bd( f (Pi))∩ bd( f (P j))|

|
⋃

i∈I bd( f (Pi))|


=

 |⋃i∈I f (bd(Pi))|

| f (T)|
,
|
⋂

i, j∈I,i, j f (bd(Pi))∩ f (bd(P j))|

|
⋃

i∈I f (bd(Pi))|


=

 | f (⋃i∈I bd(Pi))|

| f (T)|
,
| f (

⋂
i, j∈I,i, j bd(Pi)∩ bd(P j))|

| f (
⋃

i∈I bd(Pi))|


=

 |⋃i∈I bd(Pi)|

|T|
,
|
⋂

i, j∈I,i, j bd(Pi)∩ bd(P j)|

|
⋃

i∈I bd(Pi)|


= Γ(T)

This invariance property makes ασ-sets particularly valuable for texture recognition applica-

tions, as they provide a consistent representation of textures regardless of their orientation or

position in the image [28]. �

6. Conclusions

We have introduced and developed ασ-sets as a new class of generalized topological structures.

Our investigation has yielded several significant results:

• ασ-sets form a σ-algebra under the union operation (Theorem 3.2), providing a robust

algebraic framework. Every ασ- set is a β-open set (Theorem 3.6), and open ασ-sets are

α-open sets (Proposition 3.4), establishing a clear hierarchy within generalized topologies.
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• Our characterization theorems (Theorems 3.5 and 3.13) position ασ-sets as countable unions

of α-open sets with controlled boundary behavior. This boundary control preserves impor-

tant topological invariants.

• We have established hereditary properties in subspaces (Theorem 3.8), preservation under

appropriate continuous mappings (Theorem 4.1), and invariance under homeomorphisms

(Theorem 4.3). The behavior in product spaces (Theorem 3.10) further illustrates compati-

bility with standard topological constructions.

• In digital topology,ασ-sets provide an elegant representation of connected regions (Theorem

5.2) and textured areas (Theorem 5.3). The multi-scale analysis framework (Theorem 5.6)

and segmentation approach (Theorem 5.7) demonstrate practical value, while invariance

properties (Theorem 5.8) establish these sets as robust descriptors for texture recognition.

• By bridging classical topology and complex patterns in digital images, ασ-sets offer pow-

erful tools for analyzing textured regions in real-world data, addressing topological classi-

fication problems in both pure and applied contexts.
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