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Abstract. In this paper, we employ the Klein-Grifone formalism to study the nullity distributions associated with the

curvature tensors of the Hashiguchi connection. We establish several important results regarding the nullity distribution

NR? of the h-curvature tensor
?
R, demonstrating thatNR? is completely integrable and that its corresponding foliation

consists of auto-parallel leaves. An illustrative example shows that the nullity distribution NP? , associated with the

hv-curvature tensor
?
P, is not generally completely integrable. Furthermore, we determine necessary and sufficient

conditions under whichNP? becomes completely integrable.

1. Introduction

In 1952, Chern and Kuiper [5] introduced a distribution on a Riemannian manifold M by

assigning to each point x ∈M the subspace

NR(x) =
{
U ∈ TxM | R(U, V) = 0, for all V ∈ TxM

}
,

where R denotes the curvature tensor of the Riemannian connection. This subspace is referred as

the nullity space at x, and the associated distribution across M is called the nullity distribution N .

The dimension µx = dimNx is called the index of nullity at x. Chern and Kuiper showed that if

µx is constant in a neighborhood of x, then N forms a completely integrable distribution, and the

leaves of the corresponding foliation are flat submanifolds. Later, Maltz [11] extended this result

by proving that these leaves are also totally geodesic.

In 1972, Akbar-Zadeh [1,2] generalized this concept to Finsler geometry by studying the nullity

distribution of the classical curvature tensor associated with the Cartan connection using the
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pullback formalism. More recently, Bidabad and Refie-Rad [3] investigated a broader concept

known as the k-nullity distribution within the same framework.

In a parallel development, in 1982, N. L. Youssef [13] studied the nullity distribution of various

curvature tensors within the Klein-Grifone approach to Finsler geometry. Specifically, he estab-

lished the nullity distribution corresponding to the curvature of the Barthel connection, and in [14],

he addressed the nullity distribution of the Berwald connection.

Within the framework of the Klein-Grifone (KG) approach to Finsler geometry, Youssef and

his collaborators, in [17, 19], conducted a detailed investigation of the nullity distributions corre-

sponding to the curvature tensors of both the Cartan and Chern connections. Their work focused

on analyzing the geometric and integrability properties of these distributions, shedding light on

the underlying structure of the Finsler manifold as governed by these classical connections.

In the present work, we investigate the nullity distributions associated with the curvature

tensors, specifically the h- and hv-curvatures of the Hashiguchi connection within the framework

of the Klein-Grifone approach to Finsler geometry. Unlike previous studies, our focus lies on

the intrinsic geometric nature of these nullity distributions and their implications for the broader

geometry of the Finsler manifold. Moreover, since the v-curvature of Hashiguchi connection

coincide with the v-curvature of Cartan connection which was studied in [19], so we do not

consider its distribution here.

This paper is organized as follows. Section 2 introduces the necessary preliminaries, including

a concise overview of the Klein-Grifone formalism in Finsler geometry, along with essential tools

from the FrÃűlicher-Nijenhuis theory of vector-valued forms and derivations, which are instru-

mental in our analysis. Section 3 is devoted to a detailed discussion of the fundamental properties

and key identities of curvature tensors, with a particular emphasis on the structure of fundamental

linear connections in the KG-setting. Section 4 focuses on the nullity distribution NR? associated

with the h-curvature tensor ?R. We demonstrate thatNR? is contained within the nullity distribu-

tion of the curvature tensor of the Barthel connection. Moreover, we prove thatNR? is completely

integrable, and that the leaves of the corresponding foliation are auto-parallel and, consequently,

totally geodesic. Section 5 establishes the nullity distributions corresponding to the hv-curvature

tensor ?P. Using explicit examples, we show that these distributions are not generally completely

integrable. However, we also establish necessary and sufficient conditions under which complete

integrability can be achieved.

2. Preliminaries: The Klein-Grifone Approach

In this section, we briefly outline the fundamental notions of the Klein-Grifone approach to

global Finsler geometry. For more comprehensive treatments, we refer the reader to [7–9]. All

geometric objects considered are assumed to be of class C∞.

Throughout this paper, we adopt the following notations: M denotes a smooth real manifold

of dimension n; F(M) is the R-algebra of smooth real-valued functions on M; X(M) represents
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the F(M)-module of smooth vector fields on M; πM : TM → M is the tangent bundle of M, while

π : TM → M refers to the subbundle of nonzero tangent vectors on M; V(TM) designates the

vertical subbundle of the double tangent bundle TTM; iU denotes the interior product with respect

to a vector field U ∈ X(M); d f stands for the exterior derivative of a function f ; dL := [iL, d] is the

exterior derivative associated with a vector form L; andLU denotes the Lie derivative with respect

to U ∈ X(M).

We have the short exact sequence of vector bundles:

0 −→ π−1(TM)
γ
−→ T(TM)

ρ
−→ π−1(TM) −→ 0,

where the bundle morphisms are defined as follows:

ρ := (πTM, dπ), γ(u, v) := ju(v),

with ju denoting the natural isomorphism ju : TπM(v)M → Tu(TπM(v)M). The vector 1-form

J := γ ◦ ρ on TM is called the natural almost tangent structure. The vertical vector field C on TM
given by C := γ ◦ η, where η(u) = (u, u), is known as the canonical or Liouville vector field.

We will make use of the FrÃűlicherâĂŞNijenhuis bracket in specific cases [6]:

If L is a vector `-form and U ∈ X(M), then for all V1, . . . , V` ∈ X(M),

[U, L](V1, . . . , V`) = [U, L(V1, . . . , V`)] −
∑̀
i=1

L(V1, . . . , [U, Vi], . . . , V`).

In particular, if L is a vector 1-form,

[U, L]V = [U, LV] − L[U, V].

If K, L are vector 1-forms, then for all U, V ∈ X(M),

[K, L](U, V) = [KU, LV] + [LU, KV] + KL[U, V] + LK[U, V]

−K[LU, V] −K[U, LV] − L[KU, V] − L[U, KV].

The Nijenhuis torsion NK of a vector 1-form K is defined by

NK :=
1
2
[K, K](U, V) = [KU, KV] + K2[U, V] −K[KU, V] −K[U, KV]. (2.1)

The natural almost tangent structure J satisfies:

J2 = 0, [J, J] = 0, [C, J] = −J, Im(J) = ker(J) = V(TM). (2.2)

A scalar p-form ω is said to be semi-basic if iJUω = 0 for all U ∈ X(TM). A vector `-form L is

semi-basic if JL = 0 and iJUL = 0 for all U ∈ X(TM).

A scalar p-form ω is homogeneous of degree r if LCω = rω. The structure J is homogeneous of

degree 0, i.e., J is h(0). A vector `-form L is homogeneous of degree r, written h(r), if [C, L] = (r− 1)L.

A semispray on M is a vector field S on TM, of class C∞ on TM and C1 on TM, such that JS = C.

A semispray S satisfying [C, S] = S is called a spray.
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A nonlinear connection on M is a vector 1-form Γ on TM, of class C∞ on TM and C0 on TM, such

that

JΓ = J, ΓJ = −J.

The associated vertical and horizontal projectors v and h are defined by

v :=
1
2
(I − Γ), h :=

1
2
(I + Γ).

The decomposition TTM = V(TM) ⊕H(TM) naturally arises, where the vertical subbundle is

given by V(TM) := Im(v) = ker(h), and the horizontal subbundle by H(TM) := Im(h) = ker(v),
both determined by the nonlinear connection Γ. For any vector field U ∈ X(TM), its horizontal and

vertical projections are denoted hU and vU, respectively. These projections satisfy the relations:

Jv = 0, vJ = J, Jh = J, hJ = 0.

A nonlinear connection Γ is called homogeneous if it commutes with the canonical vector field C,

i.e., [C, Γ] = 0. Such a connection determines a semispray S by the condition S = hS′, for any

semispray S′. When Γ is homogeneous, the resulting semispray becomes a spray.

The torsion associated with a nonlinear connection Γ is defined by the vector-valued 2-form

t :=
1
2
[J, Γ],

and the corresponding curvature is expressed as

R := −
1
2
[h, h].

An almost complex structure F on TM is associated with Γ via:

F2 = −I, FJ = h, Fh = −J,

and defines an isomorphism on each fiber Tz(TM) for z ∈ TM.

Definition 2.1 ( [9]). A Finsler space of dimension n is a pair (M, E), where M is a smooth n-dimensional
manifold, and E : TM→ R is a function, referred as the energy, which satisfies the following conditions:

(a): E(u) > 0 for every u ∈ TM and vanishes at the zero section, i.e., E(0) = 0,
(b): E is smooth on TM and continuously differentiable on TM,
(c): E is positively homogeneous of degree 2, meaning that LCE = 2E,
(d): The 2-form Ω := ddJE, known as the fundamental form, is of maximal rank.

It is worth mentioning that if the energy function E satisfies the aforementioned conditions on

a conic subset of TM, then the pair (M, E) is referred as a conic Finsler manifold.

Theorem 2.1 ( [9]). Given a Finsler space (M, E), there exists a vector field S ∈ U(TM) satisfying
iSΩ = −dE. This vector field S defines a spray and is called the canonical spray associated with the Finsler
structure.
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Theorem 2.2 ( [9]). For a Finsler space (M, E), there is a unique nonlinear connection that is conservative
(i.e., dhE = 0), homogeneous, and torsion-free. This connection is determined by:

Γ = [J, S],

where S denotes the canonical spray. It is commonly referred as the canonical connection, Barthel

connection, or the Cartan nonlinear connection corresponding to (M, E).

It is worth mentioning that the semispray related to the Barthel connection coincides with the

canonical spray.

3. Fundamental Linear Connections

This section provides a concise overview of the key concepts and properties of the Berwald
◦

D,

Cartan D, and Hashiguchi connections ?D, which serve as foundational tools for the developments

in this work. For more comprehensive discussions, the reader may consult [8, 14, 15, 18].

Theorem 3.1 ( [8]). Let (M, E) be a Finsler space. Then, there exists a unique linear connection
◦

D on TM
satisfying the following conditions:

(a)
◦

DJ = 0.
(b)

◦

DC = v.
(c)

◦

DΓ = 0 (⇐⇒
◦

Dh =
◦

Dv = 0).

(d)
◦

DJU JV = J[JU, V].

(e)
◦

T(JU, V) = 0,

where h and v are the horizontal and vertical projectors associated with the Barthel connection Γ = [J, S],

and
◦

T is the classical torsion of
◦

D. This connection is known as the Berwald connection.

The Berwald connection
◦

D is explicitly given by:
◦

DJU JV = J[JU, V],
◦

DhU JV = v[hU, JV],
◦

DF = 0.

(3.1)

Lemma 3.1. The torsion of the Berwald connection satisfies
◦

T(hU, hV) = R(U, V),

where R is the curvature tensor of the Barthel connection.

Let (M, E) be a Finsler space and set Ω := ddJE. Define a map g on V(TM) by

g(JU, JV) := Ω(JU, V), for all U, V ∈ T(TM).

This induces a metric g on T(TM) given by:

g(U, V) = g(JU, JV) + g(vU, vV) = Ω(U, FV). (3.2)

Theorem 3.2 ( [8]). Let (M, E) be a Finsler space. Then, there exists a unique linear connection D on TM
satisfying:
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(a) DJ = 0.
(b) DC = v.
(c) DΓ = 0 (⇐⇒ Dh = Dv = 0).

(d) Dg = 0.
(e) T(JU, JV) = 0.
(f) JT(hU, hV) = 0.

This connection is referred as the Cartan connection.

The Cartan connection D is given explicitly by:
DJU JV =

◦

DJU JV + C(U, V),

DhU JV =
◦

DhU JV + C′(U, V),

DF = 0,

(3.3)

where C and C′ are tensor fields on TM defined by:

Ω(C(U, V), Z) = 1
2 (LJU(J∗g))(V, Z), Ω(C′(U, V), Z) = 1

2 (LhU g)(JV, JZ),

with (J∗g)(V, Z) := g(JV, JZ). The tensors C and C′, known as the first and second Cartan tensors,

are symmetric, semi-basic, and satisfy:

C(U, S) = C′(U, S) = 0. (3.4)

We present the following lemmas.

Lemma 3.2. The (h)h-torsion T(hU, hV) and (h)v-torsion T(hU, JV) of Cartan connection are given
respectively by

T(hU, hV) = R(U, V), T(hU, JV) = (C′ − FC)(U, V),

where R is the curvature of the Barthel connection.

Lemma 3.3. The h-curvature R, hv-curvature P and v-curvature Q of Cartan connection are given respec-
tively by

(a): R(U, V)Z =
◦

R(U, V)Z + (DhUC
′)(V, Z) − (DhVC

′)(U, Z) + C′(FC′(U, Z), V)

−C
′(FC′(V, Z), U) + C(FR(U, V), Z).

(b): P(U, V)Z =
◦

P(U, V)Z + (DhUC)(V, Z) − (DJVC
′)(U, Z) + C(FC′(U, Z), V)

+ C(FC′(U, V), Z) −C′(FC(V, Z), U) −C′(FC(U, V), Z).
(c): Q(U, V)Z = C(FC(U, Z), V) −C(FC(V, Z), U),

where
◦

R and
◦

P are respectively the h-curvature and hv-curvature of Berwald connection.

Lemma 3.4. For Cartan connection, the following properties hold:

(a): R(U, V)S = R(U, V).
(b): P(U, V)S = C′(U, V).
(c): P(S, U)V = P(U, S)V = 0.
(d): Q(S, U)V = Q(U, S)V = Q(U, V)S = 0.

Lemma 3.5. A semi spray S satisfies the following relation

J[JU, S] = JU, for all U ∈ X(TM).
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Lemma 3.6. For a homogenous connection Γ, its horizontal projector h satisfies

[C, hU] = h[C, U], for all U ∈ X(TM).

Proof. Since Γ is homogenous, then h is h(1). Thus, [C, h] = 0 and hence

0 = [C, h]U

= [C, hU] − h[C, U].

�

Theorem 3.3. The Hashiguchi connection ?D is uniquely determined by the following relations:

(a): ?DJU JV = J[JU, V] + C(U, V).

(b): ?DhU JV = v[hU, JV].

(c): ?DF = 0.

Lemma 3.7. The (h)h-torsion ?T(hU, hV) and (h)v-torsion ?T(hU, JV) are given by:

(a): ?T(hU, hV) = R(U, V).

(b): ?T(hU, JV) = −FC(U, V).

Lemma 3.8. The h-curvature ?R, mixed curvature ?P and the v-curvature ?Q of the Hashiguchi
connection, are given by

(a): ?R(U, V)Z =
◦

R(U, V)Z + C(FR(U, V), Z).
(b): ?P(U, V)Z =

◦

P(U, V)Z + (
?DhUC)(V, Z).

(c): ?Q(U, V)Z = Q(U, V)Z = C(FC(U, Z), V) −C(FC(V, Z), U).

Lemma 3.9. The h-curvature ?R and mixed curvature ?P of the Hashiguchi connection have the following
properties:

(a): ?R(U, V)S = R(U, V).

(b): ?P(U, V)S =
?P(U, S)V =

?P(S, U)V = 0.

(c): ?Q(U, V)S =
?Q(U, S)V =

?Q(S, U)V = 0.

Lemma 3.10. The h-curvature ?R, the mixed curvature ?P and the v-curvature ?Q of the Hashiguchi
connection satisfy the following properties:

?DC
?R = 0, ?DC

?P = −
?P, ?DC

?Q = −2 ?Q.

Lemma 3.11. The Bainchi identities for Hashiguchi connection are given by:

(a): SU,V,Z{
?R(U, V)Z} = SU,V,Z{C(FR(U, V), Z)}.

(b): SU,V,Z{
?Q(U, V)Z} = 0.

(c): C(FR(U, V), Z) = R(FC(U, Z), V) −R(FC(V, Z), U).
(d): SU,V,Z{(

?DhUR)(V, Z)} = 0.
(e): SU,V,Z {(

?DhU
?R)(V, Z)} = SU,V,Z {

?P(U, FR(V, Z))}.
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(f): (
?DhU

?P)(V, Z) − ( ?DhV
?P)(U, Z) + (

?DJZ
?R)(U, V) =

?R(FC(V, Z), U)

−
?R(FC(U, Z), V) −

?Q(FR(U, V), Z).
(g): (

?DhU
?Q)(V, Z) − ( ?DJV

?P)(U, Z) + (
?DJZ

?P)(U, V) =
?P(FC(U, V), Z)

−
?P(FC(Z, U), V).

(h): SU,V,Z{(
?DJU

?Q)(V, Z)} = 0.

Lemma 3.12. The mixed curvature ?P of the Hashiguchi connection satisfies that
?P(U, V)Z =

?P(U, Z)V.

Lemma 3.13. The hv-curvature ?P and the v-curvature ?Q of the Hashiguchi connection satisfy the
following properties:

(
?DhU

?P)(V, S) = 0, (
?DJU

?P)(V, S) = ?P(V, U),

(
?DhU

?Q)(V, S) = 0, (
?DJU

?Q)(V, S) = ?Q(V, U).

Lemma 3.14. For all U, V ∈ X(TM), we have

(a): [JU, JV] = J( ?DJUV − ?DJVU).

(b): [hU, JV] = J( ?DhU)V − h( ?DJVU) + FC(U, V).

(c): [hU, hV] = h( ?DhUV − ?DhVU) −R(U, V).

4. Nullity Distribution of Hashiguchi h-Curvature

We are now prepared to investigate the nullity distribution of the Hashiguchi connection. Our

first focus is the nullity distribution of its h-curvature tensor. It is worth mentioning that Youssef

has previously studied the nullity distributions of the Barthel and Berwald connections [13, 14].

Moreover, Youssef et al. have studied the nullity distributions of the Cartan and Chern connections

[17, 19].

Definition 4.1. Let ?R denote the h-curvature tensor of the Hashiguchi connection. The nullity space of
?R at a point z ∈ TM is the subspace of Hz(TM) defined by

NR?(z) := {U ∈ Hz(TM) : ?R(U, V) = 0, for all V ∈ Tz(TM)}.

The dimension ofNR?(z), denoted by µR?(z), is called the index of nullity of ?R at z.
If this index is constant on an open set, then the assignment

z 7→ NR?(z)

defines a distributionNR? of dimension µR? , called the nullity distribution of ?R. Any vector field tangent
to this distribution is called a nullity vector field. We denote by Γ(NR?) the C∞(TM)-module of the
nullity vector fields.

Proposition 4.1. The nullity distributionNR? satisfies the following properties:

(a) NR? , ∅.
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(b) NR? ⊆ NR, whereNR denotes the nullity distribution of the curvature R.
(c) If U ∈ Γ(NR?), then the Lie bracket [C, U] also belongs to Γ(NR?) and consequently toNR.

Proof. (b) Let U ∈ Γ(NR?). Then, for all V, Z ∈ X(TM),
?R(U, V)Z = 0.

In particular, taking Z = S (the canonical section), we have
?R(U, V)S = 0, for all V ∈ X(TM)

which implies

R(U, V) = 0, for all V ∈ X(TM).

Therefore, U ∈ Γ(NR?).

(c) Let U ∈ Γ(NR?). By Lemma 3.10,

(
?DC

?R)(U, V) = 0,

which yields
?R( ?DCU, V) = 0.

Using Theorem 3.3, it follows that
?R([C, U], V) = 0.

Since h is homogeneous of degree 1, we have [C, U] = [C, hU] = h[C, U], so [C, U] is horizontal,

and thus

[C, U] ∈ Γ(NR?) ⊆ Γ(NR).

�

Definition 4.2. The conullity space of the h-curvature tensor at z, denoted by N⊥R?(z), is the orthogonal
complemmaent ofNR?(z) in Hz(TM) with respect to the metric g.

Proposition 4.2. For each point z ∈ TM, either µR?(z) = n or µR?(z) ≤ n− 2.

Proof. Suppose µR?(z) , n. Then there exists a nonzero vector U < NR?(z). Hence, there exists

V ∈ Hz(TM) such that
?R(U, V) , 0,

and so
?R(V, U) , 0.

Thus, both U, V < Γ(NR?), which implies U, V ∈ Γ(N⊥R?). Consequently,

dimN⊥R? ≥ 2,

and therefore

µR?(z) ≤ n− 2.

�
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Theorem 4.1. The nullity distributions of the h-curvature tensors of the Hashiguchi connection NR? and
the Berwald connectionNR◦ coincide:

NR? = NR◦ .

Proof. Let U ∈ Γ(NR?). By Proposition 3.8 (a) and Proposition 4.1 (b), we have U ∈ Γ(NR◦). Hence,

NR? ⊆ NR◦ .

Conversely, if U ∈ Γ(NR◦), then by Proposition 3.8 (a) and the inclusionNR◦ ⊆ NR [14], we get

U ∈ Γ(NR?).

Thus,

NR◦ ⊆ NR? ,

and the two nullity distributions coincide. �

As an immediate consequence of this theorem and the known complete integrability ofNR◦ [14],

we have the following corollary.

Corollary 4.1. If the index of nullity µR? is constant on an open subset U ⊆ TM, then the nullity
distribution

z 7→ NR?(z)

is completely integrable.

Remark 4.1. It is worth mentioning that the nullity distributionN_R associated with the curvature of the
Barthel connection is also completely integrable, as established by Youssef [13].

When the index of nullity µR?(z) is constant, Frobenius’ theorem guarantees the existence of a

foliation of TM by maximal connected submanifolds (called leaves) whose tangent spaces at each

point coincide withNR?(z). We refer to this foliation as the nullity foliation.

Theorem 4.2. The leaves of the nullity foliationsNR? andNR are auto-parallel submanifolds with respect
to the Hashiguchi connection.

Proof. To prove that NR? is auto-parallel with respect to ?D, we must show that if U, V ∈ Γ(NR?),

then
?DUV ∈ Γ(NR?).

Let U, V ∈ Γ(NR?). Since U, V ∈ Γ(NR) and are horizontal, and since ?Dh = 0, we have

?DU(hV) = h?DUV,

which implies ?DUV is horizontal.

Using Lemma 3.11 (e), the first Bianchi identity yields

SU,V,Z{(
?DU

?R)(V, Z)} = 0,
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and consequently,

SU,V,Z{
?R( ?DUV, Z)} = 0.

Since U, V, Z ∈ Γ(NR?), this implies

?R( ?DUV, Z) = 0 for all Z ∈ X(TM),

and thus ?DUV ∈ Γ(NR?).

Similarly, applying Lemma 3.11 (d) for R, we conclude that if U, V ∈ Γ(NR), then ?DUV ∈
Γ(NR). �

In Riemannian geometry, it is well established that the concepts of auto-parallel and totally

geodesic submanifolds are equivalent [10]. While this equivalence does not generally extend to

broader settings, it is known that every auto-parallel submanifold is necessarily totally geodesic [4].

Based on this, we derive the following corollary.

Corollary 4.2. The nullity foliations NR and NR? form totally geodesic submanifolds with respect to the
Hashiguchi connection.

5. Nullity Distribution of Hashiguchi hv-Curvature

In this section, we study the nullity distribution associated with the mixed curvature tensor P?

of the Hashiguchi connection ?D. It is shown that the distributionNP? is, in general, not completely

integrable. To achieve integrability, a particular condition is introduced. Additionally, we identify

a class of Finsler spaces in which this condition is automatically satisfied.

Definition 5.1. Let ?P represent the mixed curvature tensor of the Hashiguchi connection ?D. The nullity

space of ?P at a point z ∈ TM is defined as the subspace of Hz(TM) given by

NP?(z) :=
{
U ∈ Hz(TM) : ?P(U, V) = 0, for all V ∈ Tz(TM)

}
.

The quantity µP?(z) := dimNP?(z) is referred as the index of nullity of ?P at z.

Proposition 5.1. The nullity distributionNP? satisfies the following properties:

(a) NP? , ∅.
(b) The spray S belongs to Γ(NP?).
(c) If U ∈ Γ(NP?), then the Lie bracket [C, U] also lies in Γ(NP?).

Proof. (a) This follows since the zero vector field trivially belongs to Γ(NP?).

(b) By Proposition 3.13, we have ?P(S, U)V = 0, implying S ∈ Γ(NP?).

(c) Suppose U ∈ Γ(NP?). Using Proposition 3.10, we obtain

(
?DC

?P)(U, V) = 0,
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which implies
?P( ?DCU, V) = 0.

Applying Theorem 3.3, it follows that

?P([C, U], V) = 0.

Since h is homogeneous of degree 1, we have [C, U] = [C, hU] = h[C, U], so [C, U] is horizontal.

Hence, [C, U] ∈ Γ(NP?). �

A Finsler manifold (M, E) is called Landesberg if its second Cartan tensor vanishes, i.e. C′ = 0,

equivalently P = 0 [12].

Proposition 5.2. If (M, E) is a Landesberg space, then the index of nullity µP? attains its maximal value.

Proof. If (M, E) is Landesberg, then C′ = 0. By (3.3) and Theorem 3.3, the horizontal covariant

derivatives of the Cartan and Hashiguchi connections coincide. Thus, by Propositions 3.3 and 3.8,

the mixed curvature vanishes. Consequently, µP? reaches its maximal value. �

In general, the nullity distribution NP? is not completely integrable, as the following example

illustrates. Detailed computations corresponding to this example are presented in the supplemen-

tary materials, including a PDF document and Maple worksheets generated using the Finsler pack-

age [16], available at: https://github.com/salahelgendi/Example1_ND_Hashiguchi_connection.git.

Example 5.1. LetU = {(x1, x2, x3; y1, y2, y3) ∈ R3
×R3

} ⊂ TM, where M := R3. Define E onU by

E(x, y) :=
√
(y1)4 + e−x2x3 y3(y2)3.

Locally, the equation ?P(U, V)Z = 0 for all V, Z ∈ H(TM) can be expressed as

X j ?Ph
ijk = 0.

For this conic Finsler space, ?Ph
ijk = 0. Also, the non-zero components Rh

ij are

R2
23 = −

1
3

y2, R3
23 = y3.

That is,NP? coincide with the horizontal distribution. Moreover, the solutions of the system

X j ?Ph
ijk = 0.

can be written as

X1 = t1, X2 = t2, X3 = t3, t1, t3 ∈ R.

Hence, the nullity vector X is given by

X = t1h1 + t2h2 + t3h3,

and so µP? = 3. Consider, for example,

X = h2, V = h3.

https://github.com/salahelgendi/Example1_ND_Hashiguchi_connection.git
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A direct computation gives

[X, V] = [h2, h3] = Ri
23
∂
∂yi

= −
1
3

y2 ∂
∂y2

+ y3 ∂
∂y3

,

which is vertical. Therefore,NP? is not completely integrable since [X, V] is not horizontal. �

Nevertheless, we have the following result.

Theorem 5.1. Suppose the index of nullity µP? is constant on an open subset U ⊂ TM. Then, the nullity
distributionNP? is completely integrable if and only if

R(U, V) = 0, (
?DJZ
∗

R)(U, V) = 0, for all U, V ∈ NP? , for all Z ∈ X(TM).

Proof. Let U, V ∈ Γ(NP?) with R(U, V) = 0 and (
?DJZ
∗

R)(U, V) = 0 for all Z ∈ X(TM). Since

R(U, V) = 0, the bracket [hU, hV] is horizontal. Applying Lemma 3.11 (d), we get

(
?DhU

?P)(V, Z) − ( ?DhV
?P)(U, Z) = 0 =⇒

?P( ?DUV − ?DVU, Z) = 0.

Hence,
?P([U, V] +R(U, V), Z) = 0 =⇒

?P([U, V], Z) = 0,

which implies [U, V] ∈ Γ(NP?). Thus,NP? is completely integrable.

Conversely, assume NP? is completely integrable. For any U, V ∈ Γ(NP?), the bracket [hU, hV]

is horizontal, hence R(U, V) = 0. Using Lemma 3.11 (d) and

?P([hU, hV], Z) = (
?DhU

?P)(V, Z) − ( ?DhV
?P)(U, Z) = 0,

we conclude (
?DJZ

?R)(U, V) = 0 for all U, V ∈ Γ(NP?) and Z ∈ X(TM). �

Remark 5.1. The conditions in Theorem 5.1 are not difficult to satisfy. For example, Finsler spaces where
the h-curvature of the Chern connection vanishes satisfy these conditions. In such spaces, the nullity
distribution NR coincides with the entire horizontal distribution H(TM), and hence by Theorem 5.1, NP?

is completely integrable.

Theorem 5.2. If NP? is completely integrable and satisfies hF[hU, JV] ∈ Γ(NP?) for all U, V ∈ Γ(NP?),
then the nullity foliationNP? is auto-parallel.

Proof. To show thatNP? is auto-parallel with respect to the Chern connection, we need to prove that

if U, V ∈ NP? , then ?DUV ∈ NP? . Given U, V ∈ NP? and Z ∈ HTM, and assuming hF[hU, JV] ∈ NP? ,

Theorem 3.3 and Proposition 5.1 yield

?P( ?DhUhV, Z) = ?P(Fv[hU, JV] + FC′(U, FV), Z) = ?P(hF[hU, JV], Z) = 0.

�

Corollary 5.1. IfNP? is completely integrable and for all U, V ∈ Γ(NP?), we have hF[hU, JV] ∈ Γ(NP?),
then the nullity foliationNP? is totally geodesic.
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