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ABSTRACT. This research aims to present an efficient computational method for finding approximate solutions to the 

boundary-value problems (BVPs) of ordinary differential equations (ODEs), specifically, the class of two-point BVPs. 

This method is based on the combination of the shooting method with the mixture of the Laplace transform and the 

Adomian decomposition method. In addition, the study examined several BVPs in both the linear and nonlinear cases 

of the second- and third-order ODEs. For validating the suggested method, the acquired results are contrasted with 

the actual solutions and those of the other approximation methods. Moreover, the convergence of the proposed method 

to the actual analytical solutions has been noted to be very high. Additionally, this method provides the most accurate 

numerical results for BVPs per this study's findings. 

 

 

1. Introduction 

Two-point boundary value problems (BVPs) arise in various science and technological fields, 

including electrical engineering, optimization theory, theoretical physics, applied mathematics 

and elasticity to state but a few.  In this regard, as not all of these BVPs can be analyzed 

analytically, many scientists have in the past and present times proposed various approximation 

and numerical methods, including the shooting method [1], which is one of the most widely 

known and used methods for this class of equations. Moreover, shooting methods are 

characterized by different pluses, including a reduced computational size of the system, rapid 
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convergence, and also needing less computational time to attain optimal approximate solutions 

for dissimilar nonlinear BVPs to mention a few. In fact, these computational advantages of the 

shooting method are what are geared toward the successful combination of the shooting method 

with the Laplace Adomian decomposition method [2]. Besides, the Laplace Adomian 

decomposition method is used to solve a range of applications, including the regularized long-

wave (RLW) evolution equation [3], and certain forms of the Korteweg-de Vries (KdV) equations 

[4]. In addition, the approach has been successfully applied to solve diverse nonlinear integral 

equations, including the mixture of the Volterra integral equations with differential equations [5]. 

     However, the current manuscript attempts to develop a symbolic algorithm to find the 

approximate computational solution of the generalized 𝑛th-order ODEs of the following form  

                                                   𝑦(𝑛) =  𝑓(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1)),            0 ≤ 𝑥 ≤ 𝑏,                       (1) 

amidst the presence of the following two-point boundary data 

                                        𝑦(𝑖)(0) = 𝛼𝑖 ,      𝑦(𝑏) = 𝛽,        𝑖 = 0,1 … , 𝑛 − 2,                         (2) 

by coupling the shooting method [1] with the Laplace Adomian decomposition method [2] to 

obtain an efficient method called the Laplace Decomposition Shooting Method (LDSM). Indeed, 

the two beseeched approaches have been exhaustively used in the literature to analyze various 

classes of BVP; see [6-7] for various considerations using the Laplace Adomian decomposition 

method, and [8-15] for some documentations on the applications of shooting method. The LDSM 

basically intends to approximate the solution of linear and nonlinear BVPs of the second- and 

third-order, where 𝛼𝑖, 𝛽 are given real constants and 𝑛 = 2 or 3. In the same vein, the effectiveness 

of the present method will be evaluated using actual and other approximate solutions acquired 

using different techniques [16-34], and a conclusion regarding the efficacy of the devised method 

shall be reported at the end. 

2. General description of the Laplace Adomian decomposition method 

   The Laplace Adomian decomposition method (LADM) is a blend of the Laplace integral 

transform with the Adomian decomposition method. More precisely, this method is an 

approximate or rather a semi-analytical method for solving linear/nonlinear initial value 

problems [6-7]. Now, to demonstrate how this method works, let us consider an 𝑛th-order 

nonlinear ODE below  

                                                             𝐿𝑦 + 𝑅𝑦 + 𝑁𝑦 = 𝑟(𝑥),                                                         (3) 

together with the following initial conditions  

                                      𝑦(𝑖)(0) = 𝛼𝑖,      𝑦
(𝑛−1)(0) = 𝑡,  𝑖 = 0,1 … , 𝑛 − 2,                        (4) 

where 𝐿 represents the highest-order derivatives of the second- or third-order with the initial 

conditions (4), 𝑅𝑦 is a linear differential operator and 𝑁𝑦 denotes the nonlinear differential 

operator both have order less than 2 or 3, respectively and 𝑟(𝑥) is a given source function, while 



Int. J. Anal. Appl. (2025), 23:258 3 

 

 

𝛼𝑖 and 𝑡 are given constants. Therefore, the technique then goes by applying the Laplace integral 

transform on both sides of (3) to get  

ℒ[𝐿𝑦] + ℒ[𝑅𝑦] + ℒ[𝑁𝑦] = ℒ[𝑟(𝑥)], 

or further when explicitly expressing ℒ[𝐿𝑦] via the Laplace transform formula the following 

    𝑠𝑛ℒ[𝑦] − 𝑠𝑛−1𝑦(0) − ⋯− 𝑠𝑦(𝑛−2)(0) − 𝑦(𝑛−1)(0) + ℒ[𝑅𝑦] + ℒ[𝑁𝑦] = ℒ[𝑟(𝑥)].           (5) 

Next, on using the initial conditions (4) in (5), we have  

                    𝑠𝑛ℒ[𝑦] − 𝑠𝑛−1𝛼0 −⋯− 𝑠𝛼𝑛−2 − 𝑡 + ℒ[𝑅𝑦] + ℒ[𝑁𝑦] = ℒ[𝑟(𝑥)],                                                                                                             

or 

                ℒ[𝑦] =
𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

𝑡

𝑠𝑛
+

1

𝑠𝑛
ℒ[𝑟(𝑥)] −

1

𝑠𝑛
ℒ[𝑅𝑦] −

1

𝑠𝑛
ℒ[𝑁𝑦].                   (6) 

In addition, LADM proceeds to decompose the solution 𝑦(𝑥) via an infinite series representation 

of the following form 

                                                                 𝑦(𝑥) = ∑ 𝑦𝑚(𝑥)
∞
𝑚=0 ,                                                        (7) 

while the nonlinear term 𝑁𝑦 is obtained using the following recurrent formula  

                                  𝐴𝑚 =
1

𝑚!

𝑑𝑚

𝑑𝜆𝑚
[𝑁(∑ 𝜆𝑖𝑚

𝑖=0 𝑦𝑖)]𝜆=0,      𝑚 = 0, 1, 2, …  .                         (8) 

Moreover, when (7) - (8) are substituted into (6), one gets  

ℒ [∑ 𝑦𝑚
∞
𝑚=0 ] =

𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

𝑡

𝑠𝑛
+

1

𝑠𝑛
ℒ[𝑟(𝑥)] −

1

𝑠𝑛
ℒ[𝑅( [∑ 𝑦𝑚

∞
𝑚=0 ])] −

1

𝑠𝑛
ℒ [∑ 𝐴𝑚

∞
𝑚=0 ],  

or equally upon deploying the linearity of the Laplace transform the following  

       ∑ ℒ [𝑦𝑚]
∞
𝑛=0 =

𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

𝑡

𝑠𝑛
+

1

𝑠𝑛
ℒ[𝑟(𝑥)] −

1

𝑠𝑛
∑ ℒ [𝑅𝑦𝑚]
∞
𝑚=0 −

1

𝑠𝑛
∑ ℒ [𝐴𝑚]
∞
𝑚=0 .  

Therefore, from the above equation, one acquires the resulting recursive scheme in the Laplace 

transform domain as follows 

                    
ℒ [𝑦0] =

𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

𝑡

𝑠𝑛
+

1

𝑠𝑛
ℒ[𝑟(𝑥)] = 𝐾(𝑠),               

ℒ [𝑦𝑚+1] = −
1

𝑠𝑛
ℒ [𝑅𝑦𝑚] −

1

𝑠𝑛
ℒ [𝐴𝑚],      𝑚 ≥ 0.                   

                                 (9) 

Lastly, when the inverse Laplace transform is applied on (9), the overall recursive relationship is 

obtained in the following form  

                    
𝑦0 = 𝐾(𝑥),                                                              

𝑦𝑚+1 = −ℒ
−1 [

1

𝑠𝑛
ℒ [𝑅𝑦𝑚] +

1

𝑠𝑛
ℒ [𝐴𝑚]] ,      𝑚 ≥ 0,

                                                 (10) 

where 𝐾(𝑥) denotes the terms originating from the prescribed initial data and the source term. 

Further, one obtains the explicit solution components 𝑦1, 𝑦2, … , 𝑦𝑚from (10) upon which the 

approximate solution of the governing model in (3) - (4) is obtained as follows  

𝑦𝑀+1 = ∑ 𝑦𝑚(𝑥) .
𝑀
𝑚=0   

In the same way, the linear case follows the same steps of the solution as in the nonlinear case, 

only that we should exclude the nonlinear term. Thus, one rewrites (3) as follows  

           𝐿𝑦 + 𝑅𝑦 = 𝑟(𝑥),                                                              (11) 
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with the same initial conditions in (4). Then, on using LADM, the recursive relation for (11) with 

the initial condition (4) is obtained as follows 

                                                  
𝑦0 = 𝐾(𝑥),                                        

𝑦𝑚+1 = −ℒ
−1 [

1

𝑠𝑛
ℒ [𝑅𝑦𝑚]] ,      𝑚 ≥ 0.

                                       (12) 

Therefore, one obtains an approximate closed-form solution for the linear model (11) together 

with the initial data (4) as follows  

𝑦𝑀+1 = ∑ 𝑦𝑚(𝑥) .
𝑀
𝑚=0   

3. Laplace decomposition shooting method 

     The shooting method [1, 8-15] is an iterative method that has been used for solving different 

BVPs by initially transforming the given BVPs into a system of coupled initial value problems 

(IVPs) with specified initial conditions. Besides, none of these resulting IVPs is treated 

analytically; so, the solution will be approximated using the one-step methods or multistep 

methods or directly using the ADM. In this paper, we will use the LDSM directly to solve IVPs in 

both the linear and nonlinear cases of the second- and third-order differential equations. 

3.1 Linear case 

    Consider the generalized nth-order linear two-point BVPs as follows 

                 𝑦(𝑛)(𝑥) = ∑ 𝑃𝑛−𝑗+1(𝑥)𝑦
(𝑛−𝑗)(𝑥)𝑛−1

𝑗=1 + 𝑃1(𝑥)𝑦(𝑥) + 𝑟(𝑥),   0 ≤ 𝑥 ≤ 𝑏,           (13) 

subject to the following two-point boundary data 

                                     𝑦(𝑖)(0) = 𝛼𝑖 ,      𝑦(𝑏) = 𝛽,       𝑖 = 0,1 … , 𝑛 − 2,                             (14) 

where 𝑃𝑛−𝑗+1(𝑥), 𝑗 = 1,2, … , 𝑛 are prescribed known functions. Therefore, shooting method starts 

off by converting the governing nth-order BVP into two IVPs, upon which the endowed boundary 

data in (14) are changed as given in the following resulting IVPs 

 𝑢(𝑛)(𝑥) = ∑ 𝑃𝑛−𝑗+1(𝑥)𝑢
(𝑛−𝑗)(𝑥)𝑛−1

𝑗=1 + 𝑃1(𝑥)𝑢(𝑥) + 𝑟(𝑥),  

                                                𝑢(𝑖)(0) = 𝛼𝑖 , 𝑢
(𝑛−1)(0) = 0,                                                       (15) 

and  

                               𝑣(𝑛)(𝑥) = ∑ 𝑃𝑛−𝑗+1(𝑥)𝑣
(𝑛−𝑗)(𝑥)𝑛−1

𝑗=1 + 𝑃1(𝑥)𝑣(𝑥),   

                                                  𝑣(𝑖)(0) = 0, 𝑣(𝑛−1)(0) = 1.                                               (16) 

Therefore, on using LADM, we get 

ℒ[∑  𝑢𝑚(𝑥)
∞
𝑚=0 ] =

𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

1

𝑠𝑛
ℒ[𝑟(𝑥)] −

1

𝑠𝑛
ℒ (∑ 𝑃𝑛−𝑗+1(𝑥)∑ 𝑢𝑚

(𝑛−𝑗)(𝑥)∞
𝑚=0

𝑛−1
𝑗=1 +

𝑃1(𝑥)∑  𝑢𝑚(𝑥)
∞
𝑚=0 ),  

and  

ℒ[∑  𝑣𝑚(𝑥)
∞
𝑚=0 ] =

1

𝑠𝑛
−

1

𝑠𝑛
ℒ (∑ 𝑃𝑛−𝑗+1(𝑥)∑ 𝑣𝑚

(𝑛−𝑗)(𝑥)∞
𝑚=0

𝑛−1
𝑗=1 + 𝑃1(𝑥)∑  𝑣𝑚(𝑥)

∞
𝑚=0 ).   

Therefore, the recursive relationships will be as follows   
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{
𝑢0 = ℒ

−1 [
𝛼0

s
+⋯+

𝛼𝑛−2

𝑠𝑛−1
+

1

𝑠𝑛
ℒ[𝑟(𝑥)]] ,

𝑢𝑚+1 = −ℒ
−1 [

1

𝑠𝑛
ℒ (∑ 𝑃𝑛−𝑗+1(𝑥) 𝑢𝑚

(𝑛−𝑗)(𝑥)𝑛−1
𝑗=1 + 𝑃1(𝑥) 𝑢𝑚(𝑥))] ,

                                 (17) 

and 

{
𝑣0 = ℒ

−1 [
1

𝑠𝑛
] ,

𝑣𝑚+1 = −ℒ
−1 [

1

𝑠𝑛
ℒ (∑ 𝑃𝑛−𝑗+1(𝑥) 𝑣𝑚

(𝑛−𝑗)(𝑥)𝑛−1
𝑗=1 + 𝑃1(𝑥) 𝑣𝑚(𝑥))] ,

                                   (18) 

where 𝑚 ≥ 0.  

In addition, if 𝑢(𝑥) and 𝑣(𝑥) represent the solutions for the IVPs in (15) - (16) correspondingly, 

one further defines    

                              𝑧(𝑥) =  𝑢(𝑥) +
𝛽−𝑢(𝑏)

𝑣(𝑏)
𝑣(𝑥), 𝑣(𝑏) ≠ 0,                                        (19) 

as the approximate solution to governing linear BVP in (13) - (14).  

3.2 Nonlinear case 

     Without further delay, the procedure of the shooting method on nonlinear BVPs is similar to 

that of the corresponding linear BVPs only that the solution to the nonlinear BVPs cannot be 

presumed as a linear sum of the solutions to two IVPs as in the case of linear BVPs. Thus, one 

approximates the solution to the BVP through the use of the solutions to several IVPs in 𝑡. So, we 

will convert the nth-order BVP in (1) - (2) to IVPs where we replace the boundary conditions with 

specific initial conditions. Precisely, this problem has the form 

                                                  𝑦(𝑛) =  𝑓(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1)),              0 ≤ 𝑥 ≤ 𝑏,                          (20) 

with the initial data given as follows  

                                             𝑦(𝑖)(0) = 𝛼𝑖 , 𝑦
(𝑛−1)(0) = 𝑡, 𝑖 = 0,1 … , 𝑛 − 2.                          (21) 

We will then use the LDSM directly to treat (20) - (21) by selecting parameters 𝑡 =  𝑡𝑠 in such a 

way that 

                                                     lim
𝑠→∞

𝑦(𝑏, 𝑡𝑠) = 𝑦(𝑏) = 𝛽,                                                       (22) 

where 𝑦(𝑥, 𝑡𝑠) presents the solution to the IVP (20) - (21) with 𝑡 = 𝑡𝑠 , while 𝑦(𝑥) represents the 

solution to the BVP (1) - (2). Further, we seek an initial guess of the form 𝑡0 =
𝛽−𝛼

𝑏−𝑎
 in order to 

construct the solution of the first IVP alongside utilizing the Newton’s method for finding the 

value for 𝑡1 as follows 

                                                                  𝑡1 = 𝑡0 −
𝑦(𝑏,𝑡0)−𝛽
𝑑𝑦

𝑑𝑡
(𝑏,𝑡0)

 .                                                          (23) 

Next, to determine the value of  
𝑑𝑦

𝑑𝑡
(𝑏, 𝑡0), we scale the IVP expressed in (20) - (21) to depend on 𝑥 

and 𝑡 variables as follows   

                                            𝑦(𝑛) =  𝑓 (𝑥, 𝑦(𝑥, 𝑡), 𝑦′(𝑥, 𝑡), … , 𝑦(𝑛−1)(𝑥, 𝑡)),                                    (24) 

with the initial data as follows 
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                                        𝑦(𝑖)(0, 𝑡) = 𝛼𝑖 ,     𝑦
(𝑛−1)(0, 𝑡) = 𝑡, 𝑖 = 0,1 … , 𝑛 − 2.                      (25) 

We then proceed to differentiate (24) – (25) partially in 𝑡. Then, if we let 𝑧(𝑥, 𝑡) =
𝜕𝑦

𝜕𝑡
(𝑥, 𝑡), the 

above model now becomes 

𝑧(𝑛) =
𝜕𝑓

𝜕𝑦
(𝑥, 𝑦(𝑥, 𝑡), 𝑦′(𝑥, 𝑡), … , 𝑦(𝑛−1)(𝑥, 𝑡))  𝑧(𝑥, 𝑡) +

            
𝜕𝑓

𝜕𝑦′
(𝑥, 𝑦(𝑥, 𝑡), 𝑦′(𝑥, 𝑡), … , 𝑦(𝑛−1)(𝑥, 𝑡)) 𝑧′(𝑥, 𝑡) + ⋯+

            
𝜕𝑓

𝜕𝑦(𝑛−1)
(𝑥, 𝑦(𝑥, 𝑡), 𝑦′(𝑥, 𝑡), … , 𝑦(𝑛−1)(𝑥, 𝑡)) 𝑧(𝑛−1)(𝑥, 𝑡),                                                 (26) 

for 0 ≤ 𝑥 ≤ 𝑏, with the following transformed initial conditions as follows 

                                                      𝑧(𝑖)(0) = 0,     𝑧(𝑛−1)(0) = 1.                                                    (27) 

Lastly, the IVP given above will be directly solved at 𝑡𝑠 using the LADM, which gives 
𝑑𝑦

𝑑𝑡
(𝑏, 𝑡0) =

𝑧(𝑥, 𝑡0). Also, to determine the complete sequence, the guessed points 𝑡𝑠 for 𝑠 = 2, 3, … together 

with the nonlinear function 𝑦(𝑏, 𝑡) − 𝛽 = 0 are thus obtained through the utilization of the Secant 

iterative method as follows  

                                          𝑡𝑠 = 𝑡𝑠−1 −
(𝑦(𝑏,𝑡𝑠−1)−𝛽)(𝑡𝑠−1−𝑡𝑠−2)

𝑦(𝑏,𝑡𝑠−1)−𝑦(𝑏,𝑡𝑠−2)
,        𝑠 = 2,3, … .                          (28) 

Moreover, the current study takes the following as the stopping criteria 

                                                   |𝑦(𝑏, 𝑡𝑠) − 𝛽| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.                                                   (29) 

 

4. Numerical examples 

     The current section demonstrates the efficacy of the devised LDSM scheme on several BVPs of 

both the second- and third-order ODEs that comprise various linear and nonlinear equations. In 

addition, the section equally beseeched various computational methods to assess the efficiency 

of the devised LDSM scheme, including the known Runge-Kutta method of order-fourth 

(SRKM4), and several other methods in the open literature [16-34]. In addition, some interesting 

helpful Figures 1-5 and Tables 1-10 have been reported; reporting various treads of the resulting 

absolute error differences that exist between the proposed LDSM scheme and various 

computational solutions posed by dissimilar methods. 

Example 1 Consider the following linear second-order BVP [16-18] 

      𝑦′′(𝑥) + 2 𝑦′(𝑥) + 5𝑦(𝑥) = 6 cos(2𝑥) − 7 sin(2𝑥) , 𝑦(0) = 4,    𝑦 (
𝜋

4
) = 1.        

The actual analytical solution for the present BVP is given as follows  

𝑦(𝑥) = sin(2𝑥) + 2(1 + 𝑒−𝑥) cos(2𝑥). 

Accordingly, we consider the two IVPs as follows 

                𝑢′′ + 2 𝑢′ + 5𝑢 = 6 cos(2𝑥) − 7 sin(2𝑥) ,          𝑢(0) = 4,    𝑢′(0) = 0,           (30) 

 and  

              𝑣′′ + 2 𝑣′ + 5𝑣 = 0,                                                     𝑣(0) = 0,    𝑣′(0) = 1.            (31) 
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Then, on applying the Laplace transform to (30) - (31) alongside using the new prescribed initial 

conditions, one gets the following 

                                         ℒ[𝑢(𝑥)] =
4𝑠+8

𝑠2+2s+5
+

6s−14

(𝑠2+2s+5)(𝑠2+4)
,                                              (32) 

and 

                                                         ℒ[𝑣(𝑥)] =
1

𝑠2+2s+5
.                                                                      (33) 

So, upon applying the LDSM procedure, one obtains from the IVPs (32) - (33) the following   

                           {     

ℒ[𝑢0(𝑥)]  =
4𝑠+8

𝑠2+2s+5
+

6s−14

(𝑠2+2s+5)(𝑠2+4)
,

  

ℒ[𝑢𝑚+1(𝑥)] =
1

𝑠2+2s+5
ℒ[0],                              𝑚 ≥ 0,

                                (34) 

and  

                          {     

ℒ[𝑣0(𝑥)]  =
1

𝑠2+2s+5
,                           

  

ℒ[𝑣𝑚+1(𝑥)] =
1

𝑠2+2s+5
ℒ[0],           𝑚 ≥ 0.

                                                     (35) 

Next, on taking the inverse Laplace transform of (34) - (35), one obtains the recursive relations as 

follows  

         {     
𝑢0(𝑥)  = 2(1 + 𝑒

−𝑥) cos(2𝑥) + sin(2𝑥) ,
  

𝑢𝑚+1(𝑥) = 0,                                              𝑚 ≥ 0,
                                   

and  

        {     
𝑣0(𝑥)  =

1

2
𝑒−𝑥 sin(2𝑥),                              

  
𝑣𝑚+1(𝑥) = 0,                                           𝑚 ≥ 0.

       

Then, the solutions of the IVPs in (30) - (31) are thus obtained from the above schemes upon taking 

the respective series summations. Lastly, the approximate computational solution of the 

governing BVP is obtained as 𝑧(𝑥) when 𝑀 = 20 and ℎ =
π

80
. Therefore, for 𝑥𝑘 = 𝑘ℎ  for 𝑘 =

0,1,… ,𝑀, the approximate solution then takes the following approximation 𝑧(𝑥𝑘) =  𝑢(𝑥𝑘) +

1−𝑢(
𝜋

4
)

𝑣(
𝜋

4
)
𝑣(𝑥𝑘).    

The absolute errors of LDSM and SRKM4 solutions when  ℎ =
π

80
  are presented in Table 1. It is 

clear that that the proposed method agreed with the exact solutions.    
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x 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 

𝟎 0 0 
𝝅

𝟒𝟎
 1.3 × 10−7 1.0 × 10−39 

𝝅

𝟐𝟎
 2.4 × 10−7 1.0 × 10−39 

𝟑𝝅

𝟒𝟎
 

3.3 × 10−7 2.0 × 10−39 

𝝅

𝟏𝟎
 3.9 × 10−7 2.0 × 10−39 

𝝅

𝟖
 4.1 × 10−7 2.0 × 10−39 

𝟑𝝅

𝟐𝟎
 

3.9 × 10−7 2.0 × 10−39 

𝟕𝝅

𝟒𝟎
 

3.4 × 10−7 3.0 × 10−39 

𝝅

𝟓
 2.6 × 10−7 2.0 × 10−39 

𝟗𝝅

𝟒𝟎
 

1.4 × 10−7 2.0 × 10−39 

𝝅

𝟒
 0 2.0 × 10−39 

Table 1: Absolute error of LDSM and SRKM4 solutions when ℎ =
π

80
. 

 

In Table 2, the comparison of maximum errors between the proposed method and the mentioned 

methods is given. Obviously, our method generated more accurate results compared with the 

others. 

                                                                                                                                             

Numerical 

Methods 

𝐂𝐁𝐒 [𝟏𝟔] 𝐍𝐂𝐁𝐒[𝟏𝟕] 𝐧𝐞𝐰 𝐂𝐁𝐒 [𝟏𝟖] SRKM4     LDSM  

Maximum Error 6.3 × 10−5 5.1 × 10−6 9.3 × 10−8 4.1 × 10−7 3.0 × 10−39 

Table 2: Comparison of maximum errors when ℎ =
π

80
. 

 

 

  Figure 1 graphically depicts all three solutions for graphical visualization, including the actual 

solution, the proposed LDSM solution, and the beseeched SRKM4 solution for computational 

validation.  
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Figure 1: Graphical comparison, depicting the actual and competing approximate solutions 

with ℎ =
π

80
. 

 

Example 2    Consider the following linear third-order BVP [19-20] 

 𝑦′′′(𝑥) + 𝑦(𝑥) = (𝑥 − 4) sin(𝑥) + (1 − 𝑥) cos(𝑥) ,     𝑦(0) = 0,    𝑦′(0) = −1,    𝑦(1) = 0. 

The actual solution of the present two-point BVP is further reported as follows  

𝑦(𝑥) = (𝑥 − 1) sin(𝑥). 

Accordingly, we consider the two IVPs to have following forms  

 𝑢′′′ + 𝑢 = (𝑥 − 4) sin(𝑥) + (1 − 𝑥) cos(𝑥) ,     𝑢(0) = 0, 𝑢′(0) = −1, 𝑢′′(0) = 0,     (36) 

 and  

𝑣′′′ + 𝑣 = 0,                                                                  𝑣(0) = 0,    𝑣′(0) = 0,    𝑣′′(0) = 1.     (37) 

Therefore, on deploying the proposed method, the IVPs in (36) - (37) are recurrently expressed as 

follows  

                  {     
ℒ[𝑢0(𝑥)]  = −

s

𝑠3+1
+

𝑠3−5𝑠2+3s−3

(𝑠3+1)(𝑠2+1)2
,            

  

ℒ[𝑢𝑚+1(𝑥)] =
1

𝑠3+1
ℒ[0],                                      𝑚 ≥ 0,

                                 (38) 

and  

                 {     

ℒ[𝑣0(𝑥)]  =
1

𝑠3+1
,                                                           

  

ℒ[𝑣𝑚+1(𝑥)] =
1

𝑠3+1
ℒ[0],                                          𝑚 ≥ 0.

                             (39) 

upon which when applying the inverse Laplace transform to (38) and (39) yields the following 

recursive scheme 

                {     
 𝑢0(𝑥)  = −

2

3
𝑒−𝑥 +

2

3
𝑒
1
2
𝑥 (−√3sin (

√3

2
𝑥) + cos (

√3

2
𝑥)) + (𝑥 − 1) sin(𝑥),   

  
𝑢𝑚+1(𝑥) = 0,                                                                           𝑚 ≥ 0,                                        

      

and  
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    {     
𝑣0(𝑥)  =

1

3
𝑒−𝑥 +

1

3
𝑒
1
2
𝑥 (√3 sin(

√3

2
𝑥) − cos (

√3

2
𝑥)) ,

  
𝑣𝑚+1(𝑥) = 0,                                                                        𝑚 ≥ 0.

                           

Then, the solutions to the IVPs in (36) - (37) are thus obtained from the above schemes upon taking 

the respective series summations. Consequently, one obtains the approximate computational 

solution via the help of the deployed LDSM 𝑧(𝑥) with 𝑀 = 8 and ℎ =
1

8
, using 𝑧(𝑥𝑘) =  𝑢(𝑥𝑘) +

−𝑢(1)

𝑣(1)
𝑣(𝑥𝑘),    𝑥𝑘 = 𝑘ℎ,    𝑘 = 0,1,… ,𝑀.  

In Table 3, the absolute errors for ℎ =
1

8
  are provided. We can say that the proposed method fit 

well with the exact solutions. 

x 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 

𝟎 0 0 

𝟏

𝟖
 

5.3 × 10−7 0 

𝟏

𝟒
 

1.0 × 10−6 3.0 × 10−40 

𝟑

𝟖
 

1.4 × 10−6 1.0 × 10−40 

𝟏

𝟐
 

1.6 × 10−6 1.0 × 10−40 

𝟓

𝟖
 

1.7 × 10−6 2.0 × 10−40 

𝟑

𝟒
 

1.4 × 10−6 1.0 × 10−40 

𝟕

𝟖
 

8.8 × 10−7 2.2 × 10−40 

𝟏 1.0 × 10−40 2.0 × 10−40 

 

Table 3: Absolute error of LDSM and SRKM4 solutions when ℎ =
1

8
. 

 

The maximum errors between the proposed method and the other methods are demonstrated in 

Table 4. Evidently, our results were better than the others. 

 

Numerical Methods 𝟐𝐏𝐐𝐒 [𝟏𝟗] 𝟒𝐏𝐐𝐒 [𝟏𝟗] 𝟔𝐏𝐐𝐒 [𝟏𝟗] 𝐒𝐂𝟑 − 𝐏𝐆𝐌 [𝟐𝟎] 𝐒𝐂𝟒 − 𝐏𝐆𝐌[𝟐𝟎] SRKM4 LDSM 

Maximum Error 1.3 × 10−2 3.6 × 10−8 2.7 × 10−9 8.6 × 10−10 6.7 × 10−10 1.7 × 10−6 3.0 × 10−40 

Table 4: Comparison of maximum errors when ℎ =
1

8
.  

 

Further, when the actual, LDSM and SRKM4 solutions are graphically depicted as shown in 

Figure 2, one may observe an excellent agreement among the three solutions. 
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Figure 2: Graphical comparison, depicting the actual and competing approximate solutions 

with ℎ =
1

8
. 

Example 3    Consider of the following nonlinear second-order BVP [21] 

                    𝑦′′(𝑥) + 𝑥 𝑦2(𝑥)𝑦′(𝑥) + 𝑥2 𝑦3(𝑥) = 𝑟(𝑥), 𝑦(0) = 0,    𝑦(1) = 0,         (40) 

where 𝑟(𝑥) = (1 − 𝑥) (6(−1 + 𝑥) + 6𝑥 + (−1 + 𝑥)8𝑥5 + (−1 + 𝑥)7𝑥3(−1 + 4𝑥)). 

This nonlinear BVP admits the following actual analytical solution  

𝑦(𝑥) = 𝑥(1 − 𝑥)3. 

Therefore, for the given BVP, one considers the two IVPs as follows 

 𝑦′′ = −𝑥 𝑦2(𝑥)𝑦′(𝑥) − 𝑥2 𝑦3(𝑥) + 𝑟(𝑥),                                  𝑦(0) = 0,    𝑦′(0) = 𝑡𝑠,     (41) 

 and  

 𝑧′′ = (−2𝑥𝑦(𝑥)𝑦′(𝑥) − 3𝑥2 𝑦2(𝑥))𝑧(𝑥) − 𝑥 𝑦2(𝑥)𝑧′(𝑥),       𝑧(0) = 0,    𝑧′(0) = 1.  (42) 

Accordingly, when deploying the proposed method on the IVPs in (41) - (42) and upon using the 

initial conditions, then the recursive equations are obtained as follows   

{
 
 

 
 

 

ℒ[𝑦0(𝑥)]  =
𝑡𝑠

𝑠2
−

6

𝑠17
(𝑠14 − 3𝑠13 + 4𝑠12 − 𝑠11 + 48𝑠10 − 1220𝑠9 + 21240𝑠8

     −277200𝑠7 + 2822400𝑠6 − 22861440𝑠5 + 148780800𝑠4

                          −778377600𝑠3 + 3193344000𝑠2 − 9340531200𝑠 + 14529715200),
  

ℒ[𝑦𝑚+1(𝑥)] = −
1

𝑠2
ℒ[𝑥𝐴𝑚(𝑥)] −

1

𝑠2
ℒ[𝑥2𝐵𝑚(𝑥)],                                                 𝑚 ≥ 0,

        (43) 

and  

{  

ℒ[𝑧0(𝑥)]  =
1

𝑠2
,                                                                                                                                                 

  

ℒ[𝑧𝑚+1(𝑥)] = −
1

𝑠2
ℒ [(2𝑥𝑦𝑚(𝑥)𝑦

′
𝑚
(𝑥) + 3𝑥2 𝑦𝑚

2(𝑥)) 𝑧𝑚(𝑥)] −
1

𝑠2
ℒ[𝑥𝑦𝑚

2(𝑥)𝑧′𝑚(𝑥)],   𝑚 ≥ 0,

(44) 

 

where 𝐴𝑚 and 𝐵𝑚 in the above schemes denote the Adomian polynomials for 𝑦2𝑦′ and 𝑦3, 

respectively, which are the nonlinear terms present in the acquired IVPs. Next, on applying the 

inverse Laplace transform to (43) - (44), we obtain 
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{
 
 
 

 
 
 

     

𝑦0(𝑥)  = 𝑡𝑠𝑥 −
1

240240
𝑥2(1001𝑥14 − 10296𝑥13 + 52800𝑥12 − 180180𝑥11 + 447720𝑥10

  −825552𝑥9 + 1121120𝑥8 − 1101100𝑥7 + 759330𝑥6 − 348920𝑥5

+96096𝑥4 − 12012𝑥3 + 240240𝑥2 − 720720𝑥 + 720720),          
  

𝑦𝑚+1(𝑥) = ℒ
−1 [−

1

𝑠2
ℒ[𝑥𝐴𝑚(𝑥)] −

1

𝑠2
ℒ[𝑥2𝐵𝑚(𝑥)]] ,                                                𝑚 ≥ 0,

                          

and  

{
 

 
𝑧0(𝑥)  = 𝑥,                                                                                                                                             

  

𝑧𝑚+1(𝑥) = ℒ
−1 [−

1

𝑠2
ℒ [(2𝑥𝑦𝑚(𝑥)𝑦

′
𝑚
(𝑥) + 3𝑥2 𝑦𝑚

2(𝑥)) 𝑧𝑚(𝑥)] −
1

𝑠2
ℒ[𝑥𝑦𝑚

2(𝑥)𝑧′𝑚(𝑥)]] ,   𝑚 ≥ 0.
     

Consequently, the solution for (41) when 𝑀 = 4  is obtained in a series form as  

𝑦(𝑥) = ∑ 𝑦𝑚 = 𝑦0 + 𝑦1 +⋯+ 𝑦4.
4
𝑚=0   

Therefore, when using 7 iterations, then 𝑦(𝑥, 𝑡6) represents the solution to the second-order BVP 

(40) with 𝑡 = 𝑡6.  

Table 5 lists the absolute error when ℎ =
1

4
.  We can say that the proposed method was in good 

agreement with the exact solutions 

 

x 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 

𝟎 0 0 

𝟏

𝟒
 

2.7 × 10−6 1.6 × 10−19 

𝟏

𝟐
 

3.8 × 10−6 1.8 × 10−19 

𝟑

𝟒
 

1.8 × 10−6 3.4 × 10−19 

𝟏 2.9 × 10−32 5.6 × 10−29 

Table 5: Absolute error of LDSM and SRKM4 solutions when ℎ =
1

4
. 

 

The maximum errors between the proposed method and SGM method are presented in Table 6. 

Clearly, our method produced better approximations compared with SGM.            

 

Numerical Methods 𝐒𝐆𝐌 [𝟐𝟏] SRKM4 LDSM 

Maximum Error 9.9 × 10−3 3.8 × 10−6 3.4 × 10−19 

Table 6: Comparison of maximum errors when ℎ =
1

4
. 
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     Figure 3 graphically illustrates the pictorial representation of the devised approach's solution 

in comparison with those of the contesting SRKM4 and the actual solution. Invariably, the 

proposed method's solution matches that of the actual solution with good precision.  

Figure 3: Graphical comparison, depicting the actual and competing approximate solutions 

with ℎ =
1

4
. 

Example 4 Consider the following nonlinear third-order BVP [22] 

                𝑦′′′(𝑥) = 𝑦2 − 𝑦(𝑒𝑥 + 𝑥) + 𝑒𝑥 , 𝑦(0) = 1, 𝑦′(0) = 2, 𝑦(1) = 𝑒1 + 1,         (45) 

that is being satisfied by the following actual analytical solution  

𝑦(𝑥) = 𝑒𝑥 + 𝑥. 

Accordingly, we consider the two IVPs as follows 

     𝑦′′′ = 𝑦2 − 𝑦(𝑒𝑥 + 𝑥) + 𝑒𝑥 , 𝑦(0) = 1, 𝑦′(0) = 2, 𝑦′′(0) = 𝑡𝑠,               (46) 

and  

     𝑧′′′ = 2𝑦𝑧 − (𝑒𝑥 + 𝑥) 𝑧,                   𝑧(0) = 0, 𝑧′(0) = 0, 𝑧′′(0) = 1.             (47) 

Moreover, the recursive relations of the above IVPs via LDSM are as follows  

  {     

 𝑦0 = 𝑥 + 𝑒
𝑥 +

 𝑥2

2
 (−1 + 𝑡𝑠),                                                                                  

  

  𝑦𝑚+1 = ℒ
−1 [

1

𝑠3
ℒ[𝐴𝑚(𝑥)] −

1

𝑠3
ℒ[𝑦𝑚(𝑒

𝑥 + 𝑥)]] ,                                                𝑚 ≥ 0,

 

and 

 {     

 𝑧0 =
 𝑥2

2
 ,                                                                                                                        

  

  𝑧𝑚+1 = ℒ
−1 [

1

𝑠3
ℒ[2𝑦𝑚𝑧𝑚] −

1

𝑠3
ℒ[(𝑒𝑥 + 𝑥)𝑧𝑚]] ,                                               𝑚 ≥ 0,

 

where 𝐴𝑚 in the first recursive scheme denotes the Adomian polynomials in favour of the 

nonlinear term 𝑦2. Further, equation (46) when 𝑀 = 2 admits the following series solution  

𝑦(𝑥) = ∑ 𝑦𝑚 = 𝑦0 + 𝑦1 + 𝑦2.
2
𝑚=0   

Therefore, when using 6 iterations, 𝑦(𝑥, 𝑡5) represents the solution to the third-order BVP (45) 

with 𝑡 = 𝑡5. 
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 Table 7 displays the absolute error when ℎ =
1

2
. Clearly, the proposed method worked well 

with the exact solutions. 

x 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 

𝟎 0 0 

𝟏

𝟐
 

5.7 × 10−5 1.6 × 10−30 

𝟏 2.5 × 10−26 6.5 × 10−30 

Table 7: Absolute error of LDSM and SRKM4 solutions when ℎ =
1

2
. 

 

The maximum errors between the proposed method and the MADM method are demonstrated 

in Table 8. Again, our method produced better approximations compared with 

MADM.                                                                                                                                                       

 

Numerical Methods 𝐌𝐀𝐃𝐌 [𝟐𝟐] SRKM4 LDSM 

Maximum Error 9.0 × 10−3 5.7 × 10−5 6.5 × 10−30 

Table 8: Comparison of maximum errors  

 

See Figure 4 for the graphical illustration, graphically comparing the proposed method's solution 

with those of the actual solution, and the competing SRKM4.  

Figure 4: Graphical comparison, depicting the actual and competing approximate solutions 

with ℎ =
1

2
. 

Example 5 Consider the two-point Bratu-type BVP as follows [23-34] 

                                    𝑦′′(𝑥) + 𝜆𝑒𝑦 = 0, 𝑦(0) = 0,    𝑦(1) = 0.                                         (48) 

Case 1: when 𝜆 =  0.1, 0.5, and 1, the actual solution of the BVP (48) is reported as follows  

𝑦(𝑥) = −2 𝑙𝑛 [
cosh((𝑥−

1

2
)
𝜃

2
)

cosh(
𝜃

4
)

] ,  where 𝜃 satisfies 𝜃 = √2𝜆 cosh (
𝜃

4
). 
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Case 2: when 𝜆 = − 1, the actual solution of the BVP (48) is reported as follows  

𝑦(𝑥) = 2 ln(𝜃 sec (
𝜃

2
(𝑥 −

1

2
))) − ln2 ,  with 𝜃 satisfying 𝜃 sec (

𝜃

4
) = √2. 

Consequently, we consider the two IVPs as follows 

     𝑦′′ = −𝜆𝑒𝑦,                     𝑦(0) = 0, 𝑦′(0) = 𝑡𝑠,                                                              (49) 

and  

     𝑧′′ = −𝜆𝑒𝑦 𝑧,                   𝑧(0) = 0, 𝑧′(0) = 1.                                                             (50) 

Moreover, the recursive relations of the above IVPs via LDSM are as follows  

  {     

 𝑦0 = 𝑡𝑠 𝑥,                                                                                    
  

  𝑦𝑚+1 = ℒ
−1 [

1

𝑠2
ℒ[−𝜆𝐴𝑚(𝑥)]] ,                                                𝑚 ≥ 0,

 

and 

 {     

 𝑧0 = 𝑥 ,                                                                                            
  

  𝑧𝑚+1 = ℒ
−1 [

1

𝑠2
ℒ[−𝜆𝑒𝑦𝑚𝑧𝑚]] ,                                               𝑚 ≥ 0,

 

where 𝐴𝑚 in the first recursive scheme denotes the Adomian polynomials in favor of the 

nonlinear term 𝑒𝑦. Further, equation (49) when 𝑀 = 10 admits the following series solution  

𝑦(𝑥) = ∑ 𝑦𝑚 = 𝑦0 + 𝑦1 +⋯+ 𝑦10.
10
𝑚=0   

Therefore, when using 7 iterations, then 𝑦(𝑥, 𝑡6) represents the solution to the second-order BVP 

(48) with 𝑡 = 𝑡6. The computed  absolute errors at different values of 𝜆 are tabulated in Table 9. 

 

𝝀 0.1 0.5 1 -1 

x 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 𝑬𝑺𝑹𝑲𝑴𝟒 𝑬𝑳𝑫𝑺𝑴 

𝟎 0 0 0 2.0 × 10−29 0 0 5.0 × 10−40 1.0 × 10−31 

𝟎. 𝟏 6.7 × 10−11 5.4 × 10−21 9.5 × 10−9 6.8 × 10−13 9.1 × 10−8 5.3 × 10−9 5.2 × 10−8 5.9 × 10−11 

𝟎. 𝟐 1.2 × 10−10 1.1 × 10−20 1.7 × 10−8 1.4 × 10−12 1.7 × 10−7 1.0 × 10−8 8.9 × 10−8 1.2 × 10−10 

𝟎. 𝟑 1.6 × 10−10 1.6 × 10−20 2.3 × 10−8 2.0 × 10−12 2.3 × 10−7 1.6 × 10−8 1.1 × 10−7 1.8 × 10−10 

𝟎. 𝟒 1.8 × 10−10 2.1 × 10−20 2.7 × 10−8 2.7 × 10−12 2.7 × 10−7 2.1 × 10−8 1.3 × 10−7 2.4 × 10−10 

𝟎. 𝟓 1.9 × 10−10 2.7 × 10−20 2.8 × 10−8 3.3 × 10−12 2.8 × 10−7 2.5 × 10−8 1.3 × 10−7 3.0 × 10−10 

𝟎. 𝟔 1.8 × 10−10 3.2 × 10−20 2.7 × 10−8 3.9 × 10−12 2.7 × 10−7 3.0 × 10−8 1.3 × 10−7 3.7 × 10−10 

𝟎. 𝟕 1.6 × 10−10 3.7 × 10−20 2.3 × 10−8 4.5 × 10−12 2.3 × 10−7 3.4 × 10−8 1.1 × 10−7 4.4 × 10−10 

𝟎. 𝟖 1.2 × 10−10 4.1 × 10−20 1.7 × 10−8 5.1 × 10−12 1.7 × 10−7 3.7 × 10−8 8.7 × 10−8 5.1 × 10−10 

𝟎. 𝟗 6.8 × 10−11 4.2 × 10−20 9.6 × 10−9 5.1 × 10−12 9.3 × 10−8 3.7 × 10−8 5.1 × 10−8 5.1 × 10−10 

𝟏 1.2 × 10−41 4.0 × 10−22 1.3 × 10−40 0 2.1 × 10−34 1.4 × 10−32 5.5 × 10−36 3.0 × 10−31 

Table 9: Absolute error of LDSM and SRKM4 solutions when ℎ =
1

10
 and different λ. 
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A comparison with the other methods reported in the literature are presented in Table 10 shows 

that our method is computationally effective. Clearly, the LDSM method is more accurate than of 

other methods reported in the literature.  

 

𝝀 =0.1 𝝀 =0.5 𝝀 =1 𝝀 =-1 

Numerical 

Methods 

Maximum 

Error 

Numerical 

Methods 

Maximum 

Error 

Numerical  

Methods 

Maximum 

Error 

Numerical 

Methods 

Maximum 

Error 

LDSM 4.2 × 10−20 LDSM 5.1 × 10−12 LDSM 3.7 × 10−8 LDSM 5.1 × 10−10 

SRKM4 1.9 × 10−10 SRKM4 2.8 × 10−8 SRKM4 2.8 × 10−7 SRKM4 1.3 × 10−7 

BCM [23] 2.4 × 10−15 INCFD [26] 3.1 × 10−8 RADM with Taylor [29] 9.4 × 10−7 ADM–RKM [32] 8.0 × 10−6 

IFD [24] 1.7 × 10−8 VIM [27] 4.2 × 10−5 SCM [30] 6.2 × 10−5 NMADM [33] 1.0 × 10−6 

DESG [25] 2.7 × 10−16 BCM [28] 7.2 × 10−12 LGSM [31] 1.0 × 10−6 MAM-ADW [34] 2.2 × 10−6 

Table 10: Comparison of maximum errors when ℎ =
1

10
 and different λ. 

 

The graph of the actual and the approximate solutions for different values of λ has been plotted 

in Figure 5. 

 

Figure 5: Graphical comparison, depicting the actual and competing approximate solutions 

with ℎ =
1

10
 and different λ. 

 

5. Conclusions 

          In conclusion, an efficient modified approximation method has been introduced in this 

study to efficiently tackle the linear and nonlinear cases of the second- and third-order two-point 

BVPs of ODEs to find their approximate solutions. The proposed method is noted to be 

numerically robust and economical, after being applied to various test BVPs and noted to majorly 

outperform several contesting computational approaches. Lastly, we have supported the findings 

of the present study with some comparison plots and tables – signifying the usefulness of the 

𝜆 =  0.1 

𝜆 =  −1 

𝜆 =  0.5 

𝜆 =  1 
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devised method. In addition, the initiated technique can be applied to diverse models of real-life 

applications, including the nonlinear Bratu-typed problems, which emerge in various areas of 

physical relevance. Lastly, this devised approach is recommended for solving diverse classes of 

both linear and nonlinear equations, including the complex-valued evolution equations that 

require robust approximation methods.  

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 
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