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ABSTRACT. This research aims to present an efficient computational method for finding approximate solutions to the
boundary-value problems (BVPs) of ordinary differential equations (ODEs), specifically, the class of two-point BVPs.
This method is based on the combination of the shooting method with the mixture of the Laplace transform and the
Adomian decomposition method. In addition, the study examined several BVPs in both the linear and nonlinear cases
of the second- and third-order ODEs. For validating the suggested method, the acquired results are contrasted with
the actual solutions and those of the other approximation methods. Moreover, the convergence of the proposed method
to the actual analytical solutions has been noted to be very high. Additionally, this method provides the most accurate

numerical results for BVPs per this study's findings.

1. Introduction

Two-point boundary value problems (BVPs) arise in various science and technological fields,
including electrical engineering, optimization theory, theoretical physics, applied mathematics
and elasticity to state but a few. In this regard, as not all of these BVPs can be analyzed
analytically, many scientists have in the past and present times proposed various approximation
and numerical methods, including the shooting method [1], which is one of the most widely
known and used methods for this class of equations. Moreover, shooting methods are

characterized by different pluses, including a reduced computational size of the system, rapid
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convergence, and also needing less computational time to attain optimal approximate solutions
for dissimilar nonlinear BVPs to mention a few. In fact, these computational advantages of the
shooting method are what are geared toward the successful combination of the shooting method
with the Laplace Adomian decomposition method [2]. Besides, the Laplace Adomian
decomposition method is used to solve a range of applications, including the regularized long-
wave (RLW) evolution equation [3], and certain forms of the Korteweg-de Vries (KdV) equations
[4]. In addition, the approach has been successfully applied to solve diverse nonlinear integral
equations, including the mixture of the Volterra integral equations with differential equations [5].

However, the current manuscript attempts to develop a symbolic algorithm to find the

approximate computational solution of the generalized nth-order ODEs of the following form

y™ = flxyy,..,y®V),  0<x<b, (1)
amidst the presence of the following two-point boundary data
yP0) =a, yb)=p  i=01..,n-2 )

by coupling the shooting method [1] with the Laplace Adomian decomposition method [2] to
obtain an efficient method called the Laplace Decomposition Shooting Method (LDSM). Indeed,
the two beseeched approaches have been exhaustively used in the literature to analyze various
classes of BVP; see [6-7] for various considerations using the Laplace Adomian decomposition
method, and [8-15] for some documentations on the applications of shooting method. The LDSM
basically intends to approximate the solution of linear and nonlinear BVPs of the second- and
third-order, where a;, § are given real constants and n = 2 or 3. In the same vein, the effectiveness
of the present method will be evaluated using actual and other approximate solutions acquired
using different techniques [16-34], and a conclusion regarding the efficacy of the devised method

shall be reported at the end.

2. General description of the Laplace Adomian decomposition method

The Laplace Adomian decomposition method (LADM) is a blend of the Laplace integral
transform with the Adomian decomposition method. More precisely, this method is an
approximate or rather a semi-analytical method for solving linear/nonlinear initial value
problems [6-7]. Now, to demonstrate how this method works, let us consider an nth-order

nonlinear ODE below

Ly + Ry + Ny =r(x), (3)
together with the following initial conditions
yP0) =, y™P0)=t i=01..,n-2, (4)

where L represents the highest-order derivatives of the second- or third-order with the initial
conditions (4), Ry is a linear differential operator and Ny denotes the nonlinear differential

operator both have order less than 2 or 3, respectively and r(x) is a given source function, while
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a; and t are given constants. Therefore, the technique then goes by applying the Laplace integral
transform on both sides of (3) to get

L[Ly] + L[Ry] + L[Ny] = L[r(x)],
or further when explicitly expressing L[Ly] via the Laplace transform formula the following

S"LLy] = s" Ty (0) — e = sy@TR(0) =y @TV(0) + LIRy] + LINY] = LIr()L. ()
Next, on using the initial conditions (4) in (5), we have
sPL[y] = s"rag — =+ — san_p — t + L[Ry] + LINy] = L[r(x)],
or
Lyl =24+ 224 — 4 Lr(0)] - LIRy] — — LINy]. (6)

In addition, LADM proceeds to decompose the solution y(x) via an infinite series representation

of the following form

y(x) = Z?;=O Ym(x)' (7)
while the nonlinear term Ny is obtained using the following recurrent formula
ml dlm[ (Z Aiyi)]lzo, m=20,1,2,... . (8)

Moreover, when (7 ( ) - (8) are substituted into (6), one gets

L[Emmom] =24+ 224 Sk L[ (0] = LIRS0 YmD] — 5 £ [Biz0 Am]
or equally upon deploymg the hnearlty of the Laplace transform the following

Troo L [ym] =24+ B2 4 b L[ (0] — 5 Eineo £ [RYm] — 5 Dm0 £ [Am]

Therefore, from the above equatlon, one acquires the resulting recursive scheme in the Laplace

transform domain as follows
n— t 1
Llyol =2+ +F5+ 5+ 5 LIr(0] = K(s),
1 1
Llymil = = L[Rym] —ZL[An], m=0.

©)

Lastly, when the inverse Laplace transform is applied on (9), the overall recursive relationship is
obtained in the following form
Yo = K(x),

Ymir = —L7 R L Ry + 2L 1], m 20, (10)

where K(x) denotes the terms originating from the prescribed initial data and the source term.
Further, one obtains the explicit solution components y;,y,, ..., ypfrom (10) upon which the
approximate solution of the governing model in (3) - (4) is obtained as follows
Ym+1 = Zm=0Ym(¥) .
In the same way, the linear case follows the same steps of the solution as in the nonlinear case,
only that we should exclude the nonlinear term. Thus, one rewrites (3) as follows
Ly + Ry = r(x), (11)
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with the same initial conditions in (4). Then, on using LADM, the recursive relation for (11) with
the initial condition (4) is obtained as follows
Yo = K(),
Yima1 = —L71 LinL [Rym]], m > 0.
Therefore, one obtains an approximate closed-form solution for the linear model (11) together
with the initial data (4) as follows

(12)

YMm+1 = Z%:o Yim (%) .

3. Laplace decomposition shooting method

The shooting method [1, 8-15] is an iterative method that has been used for solving different
BVPs by initially transforming the given BVPs into a system of coupled initial value problems
(IVPs) with specified initial conditions. Besides, none of these resulting IVPs is treated
analytically; so, the solution will be approximated using the one-step methods or multistep
methods or directly using the ADM. In this paper, we will use the LDSM directly to solve IVPs in
both the linear and nonlinear cases of the second- and third-order differential equations.
3.1 Linear case

Consider the generalized nth-order linear two-point BVPs as follows

y™(x) = ;‘;11 Pn_j+1(x)y("_j) )+ P (x)y(x)+r(x), 0<x<b, (13)
subject to the following two-point boundary data
yO)=a; yb)=p i=01..,n-2 (14)

where P,,_;,1(x), j = 1,2, ..., nare prescribed known functions. Therefore, shooting method starts
off by converting the governing nth-order BVP into two IVPs, upon which the endowed boundary

data in (14) are changed as given in the following resulting IVPs
ul () = ZJ Pojra (Ou () + Py (ulx) +r(x),
u®@(0) = a;, uV(0) =0, (15)
and
v () = T2 P ja (v () + P (0w (),
vD(0) =0, vV (0) = 1. (16)
Therefore, on using LADM, we get
L8y tm ()] = 24 o+ 222 4 L[ (0] = 5 £ (021 Pac i () Tinouly ™ () +
Py (x) Xim=0 um(x));
and
LIE50 vm (] = 5 = 2L (Z05F Pacjus (1) Eipmo vy () + P1(2) B U ().

Therefore, the recursive relationships will be as follows
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STL—l

ug = £ [2 ot a2 L],
. 17)
s = =L L (T P @ 45 @) + P @),

and
vo= L7,
Vmer = =L LTI Pa i @ 900 + P v @),

where m > 0.

(18)

In addition, if u(x) and v(x) represent the solutions for the IVPs in (15) - (16) correspondingly,

one further defines

B—u(b)
v(b)

z(x) = ulx) + v(x), v(b) # 0, (19)

as the approximate solution to governing linear BVP in (13) - (14).
3.2 Nonlinear case

Without further delay, the procedure of the shooting method on nonlinear BVPs is similar to
that of the corresponding linear BVPs only that the solution to the nonlinear BVPs cannot be
presumed as a linear sum of the solutions to two IVPs as in the case of linear BVPs. Thus, one
approximates the solution to the BVP through the use of the solutions to several IVPs in t. So, we
will convert the nth-order BVP in (1) - (2) to IVPs where we replace the boundary conditions with

specific initial conditions. Precisely, this problem has the form

y™ = f(x,y,y, .., y@D), 0<x<b, (20)
with the initial data given as follows
y@P0) =a;, y*V(0)=t, i=01..,n—2. (21)

We will then use the LDSM directly to treat (20) - (21) by selecting parameters t = t;in such a
way that

lim y(b,ts) = y(b) = B, (22)
where y(x, tg) presents the solution to the IVP (20) - (21) with t = t;, while y(x) represents the
solution to the BVP (1) - (2). Further, we seek an initial guess of the form t, = % in order to

construct the solution of the first IVP alongside utilizing the Newton’s method for finding the

value for t; as follows

y(b,te)-pB
t, =ty — Lt)=F 23
LU0 Dy 23)

Next, to determine the value of % (b, ty), we scale the IVP expressed in (20) - (21) to depend on x
and t variables as follows

y(n) = f (x,y(x, t),y' (x,t), ...,y(n'l) (x, t)), (24)

with the initial data as follows
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y@0,t) =a;, y™PO,t)=t i=01..n—2. (25)
We then proceed to differentiate (24) - (25) partially in t. Then, if we letz(x,t) = %(x, t), the
above model now becomes

zM = Z—f/(x,y(x, ),y (x,t), ...,y D(x, t)) z(x, t) +

2 (06 0,y (00, YD ) 2 ) 4

9 , - -
S (v 0,y @D, . YT 0) 2D (D), (26)
for 0 < x < b, with the following transformed initial conditions as follows
z®00) =0, z®DO)=1. (27)

Lastly, the IVP given above will be directly solved at t; using the LADM, which gives % (b, tg) =

z(x, ty). Also, to determine the complete sequence, the guessed points tg for s = 2, 3, ... together
with the nonlinear function y (b, t) — f = 0 are thus obtained through the utilization of the Secant

iterative method as follows

_ (y(b,ts—1)—B)(ts—1—ts—2)
y(brts—l)_Y(b'ts—z)

Moreover, the current study takes the following as the stopping criteria
ly(b,ts) — B| < tolerance. (29)

ty = te_q S=23 ... (28)

4. Numerical examples

The current section demonstrates the efficacy of the devised LDSM scheme on several BVPs of
both the second- and third-order ODEs that comprise various linear and nonlinear equations. In
addition, the section equally beseeched various computational methods to assess the efficiency
of the devised LDSM scheme, including the known Runge-Kutta method of order-fourth
(SRKM4), and several other methods in the open literature [16-34]. In addition, some interesting
helpful Figures 1-5 and Tables 1-10 have been reported; reporting various treads of the resulting
absolute error differences that exist between the proposed LDSM scheme and various
computational solutions posed by dissimilar methods.

Example 1 Consider the following linear second-order BVP [16-18]

y"'(x)+2y'(x) +5y(x) = 6 cos(2x) — 7 sin(2x), y(0) =4, y (g) =1.
The actual analytical solution for the present BVP is given as follows
y(x) = sin(2x) + 2(1 + e ™) cos(2x).
Accordingly, we consider the two IVPs as follows
u"” +2u' + 5u = 6cos(2x) — 7sin(2x), u(0) =4, u'(0) =0, (30)
and
v'+2v +5v =0, v(0) =0, v'(0)=1. (31)
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Then, on applying the Laplace transform to (30) - (31) alongside using the new prescribed initial

conditions, one gets the following
45+8 6s—14

Llu)] = S2425+5  (s242s+5)(s2+4)’ (32)
and
L] = 50— (33)
So, upon applying the LDSM procedure, one obtains from the IVPs (32) - (33) the following
L[ ( )] __ 4s+8 6s—14
Ul = 2 oers (s2+2s+5)(s2+4)’
1 (34)
L[um+1(x)] = SZ+ZS+5L[O]' m = 0,
and
1
L[UO(X)] = 12545
(35)
L[Um+1(X)] = mL[O], m = 0.
Next, on taking the inverse Laplace transform of (34) - (35), one obtains the recursive relations as
follows
uy(x) =21+ e *)cos(2x) + sin(2x),
Ums1(x) =0, m =0,
and

1
vo(x) = Ee‘x sin(2x),

Vme1(x) =0, m = 0.
Then, the solutions of the IVPs in (30) - (31) are thus obtained from the above schemes upon taking
the respective series summations. Lastly, the approximate computational solution of the

governing BVP is obtained as z(x) whenM = 20andh = %. Therefore, forx, = kh for k =

0,1, .., M, the approximate solution then takes the following approximation z(x;) = u(xy) +

1-u(2)
g

The absolute errors of LDSM and SRKM4 solutions when h = % are presented in Table 1. It is

v(xg).

clear that that the proposed method agreed with the exact solutions.
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X Espkma Eipsm

0 0 0

T 1.3x 1077 1.0 x 1073°
40

24 x1077 1.0 x 1073°

(4

20

3T | 33x1077  2.0x107%

40

| 39%x107  20x107%
0

T | 41x107  2.0x1073°
8

3m | 39%x1077  2.0x1073°
20

7m | 34x1077  3.0x1073°
40

T | 26x1077  2.0x1073°
5

97 | 14x1077  2.0x1073°
40

n 0 2.0 X 1073°
4

Table 1: Absolute error of LDSM and SRKM4 solutions when h = %.
In Table 2, the comparison of maximum errors between the proposed method and the mentioned
methods is given. Obviously, our method generated more accurate results compared with the

others.

Numerical CBS[16] NCBS[17] newCBS[18] SRKM4  LDSM
Methods
Maximum Error 63x107° 51x107° 9.3x 1078 41x1077 3.0x1073°

. . T
Table 2: Comparison of maximum errors when h = .

Figure 1 graphically depicts all three solutions for graphical visualization, including the actual
solution, the proposed LDSM solution, and the beseeched SRKM4 solution for computational

validation.
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45

= Exact Solution
= Approximate of LDSM
@ Approximate of SRKM4

T T T

T T T T T
im im 3 Tn 7
32 15 37 T 37 16 2 T
¥

Figure 1: Graphical comparison, depicting the actual and competing approximate solutions
with h = %.
Example 2 Consider the following linear third-order BVP [19-20]
y"(x) +y(x) = (x =4 sin(x) + (1 —x) cos(x), y(0) =0, y'(0)=-1, y(1)=0.
The actual solution of the present two-point BVP is further reported as follows
y(x) = (x — 1) sin(x).
Accordingly, we consider the two IVPs to have following forms
u"" +u=(x—-4)sin(x) + (1 —x)cos(x), u(0)=0, u'(0)=-1, u""(0)=0, (36)

and
v'""+v=0, v(0)=0, v'(0)=0, v"(0)=1. (37)
Therefore, on deploying the proposed method, the IVPs in (36) - (37) are recurrently expressed as
follows
_ s s3-552+435-3
Llug()] = T4 (SB+1)(s2+1)? (38)
Llta1 0] = 57 £10) m >0,
and
Llvy(0)] = 5,
1 (39)
L[V (0)] = 53—13[0], m > 0.

+1
upon which when applying the inverse Laplace transform to (38) and (39) yields the following

recursive scheme
2 2 1 V3 V3
uy(x) =— §e"‘ + §eZX (—\/5 sin <7 x) + cos <7 x)) + (x — 1) sin(x),

um+1(x) = 0' m = 0!

and
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vo(x) = %e‘x + %e%x (\/gsin (?x) — cos (?x)),

Vns1(x) =0, m = 0.
Then, the solutions to the IVPs in (36) - (37) are thus obtained from the above schemes upon taking
the respective series summations. Consequently, one obtains the approximate computational
solution via the help of the deployed LDSM z(x) withM =8 and h = %, using z(xy) = u(x) +

—u(1)
v(1)

In Table 3, the absolute errors for h = % are provided. We can say that the proposed method fit

v(xy), xx=kh, k=01,.., M.

well with the exact solutions.

X Esrkma Eipsm

0 0 0

1 53 x 1077 0

8

1 1.0 x 1076 3.0 x 10740
4

3 1.4 x 107 1.0 x 1074°
8

1 1.6 x 1076 1.0 x 10740
2

5 1.7 x 1076 2.0 x 10740
8

3 1.4 x 1076 1.0 x 10740
4

7 8.8 x 1077 2.2 x 10740
8

1 1.0 x 10740 2.0 X 10740

Table 3: Absolute error of LDSM and SRKM4 solutions when h = %.

The maximum errors between the proposed method and the other methods are demonstrated in

Table 4. Evidently, our results were better than the others.

Numerical Methods | 2PQS[19] 4PQS[19] 6PQS[19] SC3—PGM[20] SC4—PGM[20] SRKM4 LDSM

Maximum Error 13x107%2 36x108% 27x107° 8.6 x 10710 6.7 x 10710 1.7x107¢ 3.0x 10740

. . 1
Table 4: Comparison of maximum errors when h = pe

Further, when the actual, LDSM and SRKM4 solutions are graphically depicted as shown in

Figure 2, one may observe an excellent agreement among the three solutions.
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02 04 06 08 1

0.03- 4

0.10- "
] — Exact Solution

= Approximate of LDSM
® Approximate of SRKM4

0.15- 4

0.20- +

Figure 2: Graphical comparison, depicting the actual and competing approximate solutions

with h = 1.
8

Example 3 Consider of the following nonlinear second-order BVP [21]
Y'() +xy? )y () +x?y* () =7r(x), y(0) =0, y(1)=0, (40)
wherer(x) = (1 — x) (6(—1 +x)+6x+ (=1 +x)8x> + (=1 +x)"x3(-1+ 4x)).
This nonlinear BVP admits the following actual analytical solution
y(x) = x(1 - x)°.

Therefore, for the given BVP, one considers the two IVPs as follows

y'=—xy?(0)y' () = x* y*(x) + r(x), y(©0) =0, y'(0)=t5 (41)
and

2" = (—2xy(x)y’ (x) — 3x? y%(x))z(x) — x y2(x)z'(x), z(0) =0, z'(0) =1. (42)
Accordingly, when deploying the proposed method on the IVPs in (41) - (42) and upon using the

initial conditions, then the recursive equations are obtained as follows

LIyo(x)] = St—j — 2 (s1% — 3513 4 4512 — 11 4 48510 — 12205° + 2124058

517
—277200s7 + 2822400s°® — 2286144055 + 148780800s*
—778377600s3 + 319334400052 — 9340531200s + 14529715200), (43)

L[Yms100] = = 5 LIxAm (0] = 5 LIx? By ()], m=0,
and
Llzo()] ==,
(44)
Lz (0] = =5 £](229m ()Y, () + 352 () 2 (0| = 5 L1y > ()2 m ()], m 2 0,

where 4,, and B,, in the above schemes denote the Adomian polynomials for y?y’ and y3,
respectively, which are the nonlinear terms present in the acquired IVPs. Next, on applying the

inverse Laplace transform to (43) - (44), we obtain
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Yo(x) =tex — 240240x2(1001x14 —10296x13 + 52800x1% — 180180x1! + 447720x1°
—825552x% + 1121120x8 — 1101100x7 + 759330x° — 348920x°
3 +96096x* — 12012x3 + 240240x2 — 720720x + 720720),
-1 1 1 2
\ Yms1(x) =L —S—ZL[xAm(x)] —S—zﬁ[x B ()], m =0,
and
Zo(X) =X,

|2 , 2., 2 1 2 ,
Zma1 () = L7 = £ [(200m (Y, () + 322 32 () 2 (0] = 5 LIy ()2 m)] |, mZ 0.
Consequently, the solution for (41) when M = 4 is obtained in a series form as
Y() = n=0¥m = Yo+ y1+ -+ Vs
Therefore, when using 7 iterations, then y(x, ts) represents the solution to the second-order BVP
(40) with t = tq.
Table 5 lists the absolute error when h = i. We can say that the proposed method was in good

agreement with the exact solutions

X Espkma Eipsm

0 0 0

1 2.7 x 1076 1.6 x 10~1°
4

1 3.8x107° 1.8 x 1071°
2

3 1.8 x 107° 3.4x1071°
4

1 | 29x10732 5.6 x 1072°

Table 5: Absolute error of LDSM and SRKM4 solutions when h = %.

The maximum errors between the proposed method and SGM method are presented in Table 6.

Clearly, our method produced better approximations compared with SGM.

Numerical Methods SGM [21] SRKM4 LDSM

Maximum Error 9.9 x 1073 3.8x107° 3.4 x1071°

. . 1
Table 6: Comparison of maximum errors when h = —.
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Figure 3 graphically illustrates the pictorial representation of the devised approach's solution
in comparison with those of the contesting SRKM4 and the actual solution. Invariably, the

proposed method's solution matches that of the actual solution with good precision.

0.10 4
0.08 4

0.06

— Exact Solution
= *Approximate of LDSM
0.04 Approximate of SRKM4

002 4

\

0 ; . . . . : . : . ,
0 02 04 06 08 1

x

Figure 3: Graphical comparison, depicting the actual and competing approximate solutions

with h = 1.
4

Example 4 Consider the following nonlinear third-order BVP [22]
y"(x)=y?—y(*+x)+e* y(0)=1, y'(0) =2, y(1) =el +1, (45)

that is being satisfied by the following actual analytical solution

y(x) =e* +x.
Accordingly, we consider the two IVPs as follows
y" =y -y +x)+e¥, y(0) =1 y'(0) =2 y"(0) =t (46)
and
z'" =2yz — (e* +x) z, z(0)=0, z'(0) =0, z"(0) =1. (47)

Moreover, the recursive relations of the above IVPs via LDSM are as follows

2
Yo=x+e¥+ (=1+1t),

111 1
Yot = £7 [ LA ()] = 5 Llm(e* + 0], m>0,
and
x2
ZO - 7,
111 1
Imer = L7 [ L12Ymm] = S L1 + )7, m>o,

where 4,, in the first recursive scheme denotes the Adomian polynomials in favour of the
nonlinear term y?2. Further, equation (46) when M = 2 admits the following series solution

y() = Eh=0¥m = Yo+ y1 + Y2
Therefore, when using 6 iterations, y(x, ts) represents the solution to the third-order BVP (45)
witht = ts.
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Table 7 displays the absolute error when h = % Clearly, the proposed method worked well

with the exact solutions.

X Esrkma E;psm

0 0 0

1 5.7 x 107> 1.6 x 10730
2

1 2.5x 10726 6.5 x 10730

Table 7: Absolute error of LDSM and SRKM4 solutions when h = %

The maximum errors between the proposed method and the MADM method are demonstrated
in Table 8. Again, our method produced better approximations compared with
MADM.

Numerical Methods MADM [22] SRKM4 LDSM

Maximum Error 9.0 x 1073 5.7 x 107° 6.5 x 10730

Table 8: Comparison of maximum errors

See Figure 4 for the graphical illustration, graphically comparing the proposed method's solution

with those of the actual solution, and the competing SRKM4.

— Exact Solution
g = -Approximate of LDSM
2] Approximate of SRKM4

T T T T T T T T T 1
o 02 04 0.6 0.8 1
x

Figure 4: Graphical comparison, depicting the actual and competing approximate solutions

with h = 1.
2

Example 5 Consider the two-point Bratu-type BVP as follows [23-34]
y"'(x)+ 1Y =0, y(0) =0, y(1)=0. (48)
Case 1: when 4 = 0.1,0.5,and 1, the actual solution of the BVP (48) is reported as follows

cosh((x—%)g

o ) e 0
y(x)=-2 ln[ Cosh(%) ] , where 6 satisfies 8 = v/21 cosh (4).
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Case 2: when A1 = — 1, the actual solution of the BVP (48) is reported as follows
y(x) =2In (9 sec (g (x - %))) —In2, with 8 satisfying 6 sec (g) =+2.
Consequently, we consider the two IVPs as follows
y'=—2e?, y(0) =0, y'(0) = ts, (49)
and
z"" =—2e¥ z, z(0) =0, z'(0) = 1. (50)

Moreover, the recursive relations of the above IVPs via LDSM are as follows

Yo = ts X,
- 1
Ymar = L7 |F L2 @1], m=0,
and
ZO =X,
— 1
Zmer = L[S LI=AePmz,]], m=0,

where A,, in the first recursive scheme denotes the Adomian polynomials in favor of the

nonlinear term e”. Further, equation (49) when M = 10 admits the following series solution

Y(x) = Y=o Ym = Yo + Y1 + =+ + Y.
Therefore, when using 7 iterations, then y(x, t¢) represents the solution to the second-order BVP

(48) with t = ts. The computed absolute errors at different values of A are tabulated in Table 9.

A 0.1 0.5

X Egrima Eipsm Esrima Eipsm Egrima Eipsm Esrima Eipsm

0 0 0 0 2.0 x 1072%° 0 0 50x 107 1.0x 1073t
0.1 6.7x107 54x107%' | 95%x107™° 68x107* | 9.1x1078 5.3 % 107° 52x 1078 59x107!
0.2 1.2x1071% 1.1x107%° | 1.7x107® 14x107*? | 1.7x1077 1.0x 1078 89x107% 1.2x10710
0.3 1.6 x1071% 16x%x1072° | 23%x10® 2.0x107*? | 2.3x1077 1.6 x 1078 1.1x1077 1.8x10710
0.4 1.8x10719 21x107%° | 27x107® 27x107'2 | 2.7x1077 2.1x 1078 1.3x1077 24x10°10
0.5 19x1071% 27x107%° | 28%x10® 33x107*? | 2.8x1077 2.5%x 1078 1.3x1077 3.0x 10710
0.6/ 1.8x10719 32x107%° | 27x107® 39x107'2 | 2.7x1077 3.0x 1078 1.3x1077 3.7x10°10
0.7 1.6 x1071% 37x107%° | 23%x10® 45x107*? | 2.3x1077 3.4%x 1078 1.1x1077 44x10710
0.8/ 1.2x10719 41x107%° | 1.7x107® 51x107*2 | 1.7x1077 3.7x 1078 87x107% 51x107°10
0.9/ 68x1071 42x107%° | 96x10™° 51x107*? | 9.3x107® 3.7%x 1078 51%x107% 51x10710
1 | 1.2x107* 40x107%22 | 1.3x1074° 0 21x1073* 14x1073% | 55x 10736 3.0%x 1073t

Table 9: Absolute error of LDSM and SRKM4 solutions when h = 1—10 and different A.
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A comparison with the other methods reported in the literature are presented in Table 10 shows
that our method is computationally effective. Clearly, the LDSM method is more accurate than of

other methods reported in the literature.

A=01 A=0.5 A= A=-1
Numerical Maximum Numerical Maximum Numerical Maximum Numerical Maximum
Methods Error Methods Error Methods Error Methods Error
LDSM 4.2 % 10720 LDSM 5.1x 10712 LDSM 3.7x1078 LDSM 5.1x 10710
SRKM4 1.9 x 10710 SRKM4 2.8x1078 SRKM4 2.8%x 1077 SRKM4 1.3x 1077

BCM[23] 24x107% | INCFD[26] 3.1x10"® | RADM with Taylor[29] 9.4x10~7 | ADM-RKM[32] 8.0 x 10~¢
IFD [24] 1.7 %1078 VIM [27] 42 %1075 SCM [30] 6.2 x 1075 NMADM [33] 1.0 x 1076
DESG[25] 2.7x10716 | BCM[28] 7.2 x 10712 LGSM [31] 1.0x 10" | MAM-ADW [34] 2.2 107°

Table 10: Comparison of maximum errors when h = % and different A.

The graph of the actual and the approximate solutions for different values of A has been plotted

in Figure 5.

%/ A= 01

] ~—_ 1= —1 e

nm.—i \ /

e ———

™
—

— Exact Solution
— - Approximate of LDSM
Approximate of SRKM4
/1

Figure 5: Graphical comparison, depicting the actual and competing approximate solutions

with h = 1—10 and different A.

5. Conclusions

In conclusion, an efficient modified approximation method has been introduced in this
study to efficiently tackle the linear and nonlinear cases of the second- and third-order two-point
BVPs of ODEs to find their approximate solutions. The proposed method is noted to be
numerically robust and economical, after being applied to various test BVPs and noted to majorly
outperform several contesting computational approaches. Lastly, we have supported the findings

of the present study with some comparison plots and tables - signifying the usefulness of the
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devised method. In addition, the initiated technique can be applied to diverse models of real-life
applications, including the nonlinear Bratu-typed problems, which emerge in various areas of
physical relevance. Lastly, this devised approach is recommended for solving diverse classes of
both linear and nonlinear equations, including the complex-valued evolution equations that

require robust approximation methods.
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