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Abstract. Crude oil is a critical energy source and a raw material for various products, including fuels (gasoline, diesel,

and jet fuel), lubricants, petrochemicals, and asphalt. It undergoes refining processes to separate and convert it into

usable products. Multiple factors, including economic indicators, geopolitical events, supply and demand dynamics,

and technological advancements influence crude oil prices. Its global market has prices often benchmarked to grades

like Brent Crude and West Texas Intermediate (WTI). In this article, the daily WTI crude oil prices are multi-step

ahead forecasted using four different methods which are autoregressive integrated moving average (ARIMA), random

forest (RF), k-nearest neighbors (kNN), and autoregressive neural networks (ARNN). The data set consists of daily WTI

crude oil prices from February 13, 2014, to February 13, 2024, divided into 80% training set and 20% validation set.

The performance of the methods is evaluated by one-step and seven-step ahead forecasting using root mean square

error (RMSE) and mean absolute percentage error (MAPE) as the accuracy measures. The results show that ARIMA

outperforms the methods for one and seven-step ahead forecasting, followed by ARNN, kNN, and RF. The study

provides useful insights for investors and policymakers in the oil market.

1. Introduction

Crude oil is a naturally occurring, unrefined petroleum substance comprising hydrocarbon

deposits and various organic compounds. Drilling is typically used to extract it from underground

reservoirs. Crude oil serves as a vital energy source and is the primary raw material for many

everyday products such as diesel, gasoline, jet fuel, heating oil, and various plastics and chemicals

[1]. Due to its widespread use in transportation, manufacturing, and various industries crude oil

has a significant impact on the global economy. Fluctuations in crude oil prices directly influence

the prices of gasoline, diesel, and other energy products. Higher oil prices caused an increase in
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transportation costs, heating, and production costs, impacting consumer spending and business

operations. Since oil is a key component in the services and production of goods, changes in oil

prices can affect overall price levels, leading to inflationary pressures in the economy. High oil

prices can contribute to higher inflation rates, affecting consumer purchasing power and economic

stability [2].

Countries that are net exporters of oil enjoy benefits from high prices of oil as they earn more

revenue from exports. In contrast, countries that are net importers of oil face increased import

costs, which can negatively impact trade balances and currency exchange rates. The oil and gas

industry is a significant contributor to employment and investment in many economies. Changes

in oil prices can affect investment decisions and employment levels within the industry, along with

related sectors such as transportation, manufacturing, and construction [2].

Since most of the oil is produced in specific regions of the world including the Middle East

and North America, the geopolitical tensions in that region can significantly affect the prices of

crude oil due to interrupting the supply. Political instability, sanctions, or conflicts in those regions

that are the major oil producers can have far-reaching consequences on global oil markets and the

economy [3]. High demand for crude oil results in a price increase, whereas low demand leads

to a decrease in price. Key factors such as production levels, changes in consumption patterns,

and economic growth rates can affect both supply and demand dynamics. Economic downturns

or recessions typically reduce oil demand, whereas times of strong economic growth can result in

heightened demand and elevated prices. Sanctions on major oil-producing nations interrupt the

supply chain or concern about future supply leads to an increase in prices. Currency exchange rates,

inflation, GDP growth, and interest rates are the major economic factors that affect the demand

for crude oil causing a price hike. Horizontal drilling and hydraulic fracturing (fracking) are the

advanced technologies that enabled the extraction of oil from once unreachable reserves, impacting

global oil supply and prices [4]. By influencing consumer behavior and investment decisions, the

energy sector may influence the future outcome for oil demand and pricing through the use of

renewable energy sources and the implementation of environmental policies and regulations to

reduce greenhouse gas emissions. Overall, a complex interplay between macroeconomic factors,

supply and demand dynamics, and geopolitical developments affects crude oil prices, making the

oil markets very volatile and unpredictable [5].

Crude oil is forecasted by [6] through a proposed novel hybrid method based on autoregressive

integrated moving average (ARIMA), long short-term memory (LSTM), and local mean decompo-

sition (LMD) models. The authors conclude that their method can improve forecasting accuracy

by decomposing the original data into stochastic and deterministic components, forecasting each

component by ARIMA, and summing the residuals that are forecasted through LSTM. Using vari-

ous accuracy measures the author forecasts the WTI crude oil prices to test their proposed methods.

In short and long-term forecasting of crude oil, the proposed method surpasses the other methods

along with reducing computation cost and overfitting problems of neural networks. According to



Int. J. Anal. Appl. (2025), 23:268 3

the authors, the proposed method to forecast crude oil prices provides guidance and insights for

policymakers to make decisions.

A blending ensemble learning model is utilized by [7] to forecast WTI and Brent crude oil at

different time series frequencies such as daily, weekly, and monthly. The author named their

proposed model LKDSR comprised of five machine learning models i.e., linear regression, k-

nearest neighbor (KNN) regression, decision tree regression, SVR, and ridge regression. This is

known as blending which employs a second-order ensemble method. The author argues that

their proposed approach will provide more reliable, accurate, and robust forecasts in contrast to

individual models. various accuracy measures are used to test the model performance along with

employing Diebold- Mariano (DM) test to check the significance of performance accuracy. The

author used a grid search technique to find the optimum hyperparameter of the model. The results

show that their proposed model surpasses all individual models including deep learning-based

ensemble models, obtaining an R-square value of 0.99. The authors say that their proposed method

is useful for stakeholders and policymakers to make accurate forecasts of oil.

employs a second-order ensemble method known as blending.

LSTM neural networks are used by [8] to forecast WTI and Brent crude oil prices. The data

span from February 10, 1986, to May 17, 2021, taken from the USA-based Energy Information

Administration website. The proposed model is compared with the classical time series model

ARIMA and Artificial Neural Network (ANN). The study highlights how major events, such as

the Gulf Wars and the 9/11 terrorist attacks, affected crude oil prices and how well the LSTM

model captured these fluctuations. The study concludes that LSTM neural networks are effective

for forecasting crude oil prices, particularly for long-term predictions. However, the accuracy

decreases with shorter forecast timescales, suggesting the need to consider additional factors for

more precise short-term forecasts.

The Brent crude oil in Tanzania is forecasted by [9] through Box Jenkins methodology utilizing

monthly data from January 2002 to February 2022. The author tested various ARIMA models

whose orders are identified through PACF and ACF plots and made data stationary through first-

order lag difference. Finally, ARIMA(0,1,1) outperformed other models in terms of AIC value.

The author concludes that COVID-19 and the Ukraine war have a negative impact on crude oil

prices. Furthermore, the ARIMA model using Box Jenkins methodology is applied by [10] using

yearly data from 1946-2016 and forecasting the yearly price for the period 2017-2021 through the

ARIMA(2,1,1) model. The ARIMA and SARIMA model for forecasting daily crude oil is compared

by [11]. They use closed data of crude oil from January 27, 2020, to January 25, 2023, downloaded

from Yahoo Finance. They conclude that both ARIMA(0,1,0) and SARIMA(0,1,0)(0,0,0)[7] has same

performance accuracy.

This work seeks to build various autoregressive integrated moving averages (ARIMA) and ma-

chine learning models including ARNN, kNN, and random forest to forecast multi-step forecasting

of daily WTI crude oil prices.
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2. West Texas Intermediate (WTI) Crude Oil

WTI crude oil serves as a key benchmark for global oil prices. It is a sweet and light crude oil

that is produced mainly in the Permian Basin of Texas and New Mexico. WTI crude oil is traded

on the New York Mercantile Exchange (NYMEX) and is used as the reference price for many oil

contracts and derivatives [12]. The prices of WTI crude oil are influenced by multiple factors

like geopolitics, supply and demand, market sentiment, and weather. The descriptive statistics of

WTI crude oil from February 13, 2014, to February 13, 2024, are presented in Table 1 in which the

minimum WTI crude oil price is USD -37.63 per barrel which was recorded on April 20, 2020, due

to oversupply in COVID-19 which caused an unprecedented drop in prices. The mean is greater

than the median which indicates the positive skewness in data varify by skewness greater than

zero however the kurtosis of exact 3 shows that the data is mesokurtic. The Augmented Dickey-

Fuller (ADF) test statistic value is equal to -2.809 with a corresponding p-value (0.579) surpassing

the level of significance 0.05 indicating that the null hypothesis failed to reject that the data is

not stationary. Forecasting prices of WTI crude oil is difficult due to the complex and nonlinear

nature of the factors involved, high volatility, and uncertainty. Accurate forecasting of WTI crude

oil prices can help investors, traders, consumers, and policymakers, to make better decisions and

optimize their strategies [13].

The right panel of Figure 1 shows the boxplot of daily WTI crude oil prices for each month. The

boxplot shows that the median price is approximately equal for all months but March, May, and

June show a significant number of outliers above the third quartile.

Table 1. Summary statistics of WTI crude oil

Min Mean Median Max Skewness Kurtosis

-37.63 63.49 59.64 123.7 0.481 3
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Figure 1. (A) Daily historical WTI crude oil prices from February 13, 2014 to February 13, 2024.

The red dashed vertical line shows the border of training and validation set on February 18, 2022.

(B) The boxplot shows the daily WTI Crude oil prices for each month for all study years.
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Table 2. Augmented Dickey-Fuller test on level and first-order lag difference

Dickey-Fuller Lag order p-value

Level -1.998 12 0.579

First difference -12.452 12 < 0.01

3. Materials andMethods

In this section, the methodology to forecast the WTI crude oil price is described. The series

is split into 80% training and 20% validation parts. The training set contains 2111 observations

from February 13, 2014, to February 18, 2022. The validation set contains 529 observations from

February 19, 2022, to February 13, 2024.

3.1. Autoregressive Integrated Moving Average (ARIMA). ARIMA is a composition of autore-

gressive p and moving average q term along with integrated term d which is a lag difference of

series that makes the data stationary therefore the autocorrelation, mean and variance remain con-

stant over time [14]. The coefficients of these parameters are estimated through the least square.

It is a specialized model developed for forecasting time series data. The assumption of the model

includes stationarity of the series, the linear dependency of future observation on past values, and

error term ε. The mathematical model of ARMA is obtained by combining the autoregressive and

moving average term as shown in Equation 3.1.

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt + θ1yt−1 + θ2yt−2 · · ·+ θqεt−q + εt(q) (3.1)

Where yt is the price of crude oil at time t, c is the intercept of the model, φi is the parameter of

autoregressive, θi is the parameter of moving average, (εt, εt(q)) is the random error. The orders p
and q are determined through the PACF, and ACF plots respectively, selecting the lags where the

correlation spikes are greater than 0.05. The optimum order of ARIMA is chosen through the trial

and error method. [15]

3.2. Random forest. A machine learning algorithm Random Forest developed by Leo Breiman

used for regression and classification tasks [16]. During the training process Random Forest

functions by creating numerous decision trees and outputting the average of the predictions of the

individual trees as shown in Figure 2. This ensemble approach reduces variance and improves

the robustness of the model. The training data is randomly selected with replacement to generate

several subsets, each of which trains an individual decision tree. This method is known as bootstrap

aggregation or bagging, which helps in reducing overfitting and variance [17].

For time series forecasting, the mathematical foundation of Random Forest involves constructing

multiple decision trees {T1, T2, . . . , TB}, where B is the total number of trees. Each tree Tb is built

using a bootstrap sample of the data and a random subset of features at each split.
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The forecast for a novel data point is determined by averaging predictions generated by each

tree in the ensemble. Mathematically, the Random Forest’s prediction for a specific input x can be

formulated as:

ŷ =
1
B

B∑
b=1

Tb(x)

Figure 2. Random Forest tree representation. (Source: [7])

In one-step forecasting, the model utilizes the current observation yt and the prior observation

yt−1 as input features, while Tb(x) denotes the prediction made by the b-th tree. For seven-step

ahead forecasting, the model includes yt, yt−1, and yt−7 as features. The input feature vector xt for

forecasting can be represented as:

xt = [yt−1, yt−7]

Here, yt−1 is the lagged value from one step prior, and yt−7 is the lagged value from seven steps

prior. Several decision trees are trained using various bootstrap samples derived from the training

dataset. Each tree acquires a segment of the pattern within the time series. The model learns to

predict the future value yt+1 for one-step ahead and yt+7 for seven-step ahead forecasting. For

one-step ahead forecasting, the forecasted value ŷt+1 is:

ŷt+1 =
1
B

B∑
b=1

Tb([yt, yt−1])
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For seven-step ahead forecasting, the predicted value ŷt+7 is:

ŷt+7 =
1
B

B∑
b=1

Tb([yt, yt−1, yt−7])

The main hyperparameters including the number of trees (n_estimators), the maximum depth

of each tree (max_depth), and the number of features considered for splitting (max_ f eatures) are

tuned using cross-validation to optimize the model’s performance.

When Random Forest is used for daily WTI crude oil price forecasting, it performs optimized

in ensemble learning and decision trees. By including lagged values yt−1 and yt−7 as features,

the model successfully captures temporal dependencies for both one-step and seven-step ahead

forecasts. For time series analysis in financial and commodity markets, this methodology is useful

by providing accurate and reliable forecasting.

3.3. Autoregressive neural network (ARNN). ARNN effectively captures the temporal depen-

dency and pattern that exist in data when used for time series data such as WTI crude oil prices.

It is a powerful machine learning algorithm for modeling non-linear and complex relationships

in data [18]. The basic architecture of a neural network consists of an input layer, several hidden

layers, and an output layer. The network of connected nodes also known as the neuron builds a

layer of neural networks to evaluate the input data and get accurate forecasts. During the training

process, the forecasting error is reduced by continuously changing the weights that are assigned

to the connections between neurons [19].

The lag value of the series is received as an input value by a neural network. The current value

at time t and one order lag value at t − 1 is received as input value by the algorithm for one step

ahead forecasting while the current value at time t and seven order lag value t− 7 is received as an

input value for seven-step ahead forecasting by neural network. The input feature vector xt may

be expressed mathematically as follows:

yt = [yt−1] (for one-step ahead)

yt = [yt−1, yt−7] (for seven-step ahead)

The input data is modified by a hidden layer to apply a consecutive weighted sum throughout

the activation function as shown in Figure 3. To understand the complex relationship in the model

the non-linear aspect is introduced by activation function. The final output is also processed by an

activation function to induce non-linearity, and the linear output is set to FALSE. The activation

of the j-th neuron in the hidden layer, denoted as h j, is determined by the weight wi j connecting

the i-th input to the j-th hidden neuron, and the bias b j of the j-th hidden neuron. This can be

formulated as follows:

h j = f

∑
i

wi jxi + b j


Here, f is denoted as an activation function such as the ReLU (Rectified Linear Unit).
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The forecasts are provided by the output layer. For regression tasks, this is typically a linear

combination of the activations from the hidden layer.

Figure 3. The ARNN architecture comprises of three layers i.e., Input, hidden, and

output layer along with each weight and bias. (Source: [20])

Let ŷt+k represent the forecasted value for k-step ahead, wout
jk the weight between the j-th hidden

neuron and the output neuron, and bout the bias of the output neuron [21]. The output can be

expressed as:

ŷt+k =
∑

j

wout
jk h j + bout

The Min-Max transformation is used to scale the data by normalizing the input feature in the

[0,1] range. This normalization enhances the training speed and increases the efficiency of the

model. For one step and seven steps ahead forecasting the neural network configuration is made

of two hidden layers of five and four neurons. cross-validation technique is employed to choose

these parameters and hidden layers to maximize the performance of the algorithm.

To reduce the overfitting in the training output the training process is set with minimum life

sign to concentrate the model on the important features only. Therefore the temporal relationship

can effectively capture and provide accurate forecasting by scaling the data, developing a neural

network model by choosing optimum hidden layers, and lag setup.
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3.4. k-Nearest Neighbour (kNN). kNN algorithm is a simple, non-parametric, and robust work

efficiently for both regression and classification. Based on how similar the previous observation

is, kNN forecasts the future unknown observation in a time series. The methodology of kNN

to predict the outcome involves finding the k neighbors (similar instances) of a particular query

instance in the training set and combining their outputs shown in Figure 4. A prediction in most

regression tasks is made by calculating the weighted average of response value utilizing the k
closest neighbor. This method uses distance measures such as Euclidean distance to evaluate the

similarity between data [22].

Figure 4. Calculating nearest neighbors by kNN and forecast future value based

on their average. (Source: [23])

kNN algorithm, For a given query point q, identifies the k training instances that are closest to

q based on the calculated distances. The prediction ŷ for the query point q is computed as the

average value of the desired outcomes for the nearest k neighbors, considering their respective

weights. The weights generally vary in inverse relation to the distances. [24].

ŷ =

∑k
i=1

1
d(q,xi)

yi∑k
i=1

1
d(q,xi)

Here, yi is the target value of the i-th nearest neighbor, and d(q, xi) is the distance between the

query point q and the i-th nearest neighbor xi.

The kNN model is built using the training set. The value of k is varied from 1 to 12, and the

combination function is set to weighted, meaning that the influence of each neighbor is inversely

proportional to its distance from the query point. The Euclidean distance is used to calculate the

distance matrix, which determines the similarity between different observations. The model is

applied recursively to forecast one-step and seven-step ahead values. This means that for each

prediction, the model uses previously forecasted values as inputs for subsequent predictions.

To forecast yt+1, the input feature vector is:
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xt = [yt, yt−1, . . . , yt−(n−1)]

The kNN model identifies the k nearest neighbors of xt and uses their target values to predict

yt+1. For seven-step ahead forecasting a lag value of order seven is needed to incorporate the input

vector feature.

xt = [yt, yt−1, yt−7, . . . , yt−(n−1)]

The kNN model forecasts the yt+1 and yt+7 using recursive forecasting method. These steps

allow the kNN model to reliably forecast daily WTI crude oil prices for both one-step and seven-

step ahead. Recursive forecasting updates the input feature set with newly forecasted values

regularly, ensuring that the model can handle multiple step-ahead forecasts.

4. Out-of-Sample Forecasting

The 529 training set observations are forecasted through ARIMA and machine learning mod-

els. The forecasting accuracy of the model is evaluated through mean absolute percentage error

(MAPE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute error

(MAE). Figure 5 shows the stationary time series made through first-order lag difference and the

second row of the figure shows the ACF and PACF plot of the stationary data. The order of ARMA

is identified through these plots.

Table 3 shows the forecasting accuracy of the models on testing data in which ARIMA(4,1,2)

outperformed machine learning models on both short and intermediate-term forecasting. The

MAPE of ARIMA(4,1,2) is 2.066 for one-step-ahead forecasting and 3.838 for seven-step-ahead

forecasting. The MAPE shows the percentage deviation of the forecasted value from the true price.

The negative sign in MPE shows that the forecasted value is overestimated on average. The barplot

of MAPE of each model is shown in Figure 6.
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Figure 5. (a) The plot shows the stationary series of daily WTI crude oil through

first-order lag difference (b) Autocorrelation function (ACF) plot (c) Partial auto-

correlation function (PACF) plot.
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Table 3. Testing error of forecasting models on one step and seven steps ahead

forecasting

One-step ahead forecasting Seven-step ahead forecasting

Models RMSE MAE MPE MAPE RMSE MAE MPE MAPE

ARIMA(4,1,2) 2.5 1.809 -0.095 2.066 4.662 3.327 -0.2 3.838
kNN 2.874 2.214 0.628 2.317 4.797 3.431 -0.121 3.985

ARNN 2.87 2.012 0.15 2.221 5.512 4.147 0.229 4.762

RF 3.33 2.214 0.628 2.43 6.219 4.731 0.988 5.444
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Figure 6. (a) MAPE of different models on one-step ahead forecasting (b) MAPE of

different models on seven-step ahead forecasting

The adjacent bar plot in Figure 7 and 8 shows the MAPE of each model in each month for both

one-step and seven-step ahead forecasting. The forecasting accuracy of models in March and June

is poor compared to other months. This is because of the outliers in that month as shown in the

right panel of Figure 1.
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The MAPE of each model on each day of the week is visualized in Figure 9 and 10 which indicate

that the model’s performance does not vary significantly on each day of the week for both one step

and seven step ahead forecasting. For one step ahead forecasting the MAPE of models on Sunday

is relatively small but it is due to a small number of observations recorded on Sunday.
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Figure 9. Barplot of MAPE for one step ahead forecasting at each day of the week

0

2

4

6

Monday Tuesday Wednesday Thursday Friday Sunday
Day of the Week

M
A

P
E

 (
%

)

Model

ARIMA

ARNN

kNN

RF

Mean Absolute Percentage Error (MAPE) by Days of week

Figure 10. Barplot of MAPE for seven steps ahead forecasting at each day of week
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The assumption of the ARIMA model is tested through residual analysis. The time series plot

of ARIMA, their ACF, and PACF plot for one-step and seven-step ahead forecasting by ARIMA

is shown in Figure 11 and 12 respectively. The figures show that the residuals are stationary with

mean zero and most of the spikes on different lag in ACF and PACF plots are below the threshold

line of 0.05 therefore we conclude that there is no problem of autocorrelation in residuals.
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Figure 11. (a) Residuals of ARIMA (b) ACF plot of ARIMA residuals (c) PACF plot

of ARIMA residuals.
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Figure 12. (a) Residuals of ARIMA of seven steps ahead forecasting (b) ACF plot

of ARIMA residuals of seven steps ahead forecasting (c) PACF plot of ARIMA

residuals of seven steps ahead forecasting.

The one-step and seven-step ahead forecasted values for the validation set, as forecasted by each

model, are shown in Figures 13 and 14, respectively. The forecasted values are very close to the

observed values. However, for the seven-step ahead forecasting depicted in Figure 14, the random

forest model (blue dashed line) provides a poor forecast of the WTI crude oil prices, exhibiting

high fluctuations in its predictions.



Int. J. Anal. Appl. (2025), 23:268 17

2022−07 2023−01 2023−07 2024−01

70
80

90
10

0
11

0
12

0

Time

P
ric

es
 (

U
S

D
)

Observed
ARIMA
kNN
RF
ARNN

Figure 13. Forecasted value of daily WTI crude oil of validation set
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Figure 14. Seven steps ahead forecasted value of daily WTI crude oil of validation set

To enhance clarity in comparing the forecasting performance of each model, the observed and

true values for the last 30 days, from January 4, 2024, to February 13, 2024, are visualized in Figure

15 for one-step ahead forecasts and in Figure 16 for seven-step ahead forecasts. The plots show
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that for one-step ahead forecasting, the ARIMA(4,1,2) and ARNN models produce forecasts closer

to the observed values compared to the kNN and RF models. For seven-step ahead forecasting, the

ARIMA(4,1,2) and kNN models provide forecasts nearer to the observed values than the ARNN

and RF models.
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Figure 15. Forecasted and observed value of last thirty days of validation set
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Figure 16. Seven steps ahead forecasted and observed value of last thirty days of

validation set
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The forecasting accuracy of the models is compared through the Diebold-Mariano test. The

alternative hypothesis of the test statistics is that the model in columns is superior to the model in

rows. The P-values of the test statistic are shown in Table 4 for both one-step and seven-step ahead

forecasting. The test concludes that ARIMA(4,1,2) has higher accuracy than the machine learning

algorithms for both one-step and seven-step ahead forecasting. In machine learning algorithms for

short-term forecasting, ARNN and RF perform better than kNN. For intermediate-term forecasting

Table 4. P-values of Diebold-Mariano test

One-step ahead forecasting Seven-step ahead forecasting

Models ARIMA RF kNN ARNN ARIMA RF kNN ARNN

ARIMA 0.999 1.000 0.996 1.000 0.955 1.000

RF 0.000 0.022 0.000 0.000 0.000 0.000
kNN 0.000 0.978 0.491 0.045 1.000 1.000

ARNN 0.004 1.000 0.509 0.000 1.000 0.000

5. Discussion

In this work, we develop various ARIMA and machine learning models to compare the fore-

casting accuracy of classical and machine learning approaches for multi-step ahead forecasting of

daily WTI crude oil prices. The descriptive statistics and visualizations indicate that WTI crude oil

prices exhibit a non-linear structure, suggesting that machine learning models should theoretically

capture these complex relationships more effectively than the linear ARIMA model. However, our

results show that ARIMA significantly outperforms the non-linear machine learning models. This

outcome can be attributed to several factors. ARIMA is a specialized linear model designed ex-

plicitly for time series analysis, relying on the assumption that future observations depend on past

observations, which is a fundamental characteristic of time series data [25]. In contrast, machine

learning models, which are generally developed for classification and regression tasks, do not

inherently make this assumption. Crude oil prices exhibit significant fluctuation and are impacted

by a multitude of external factors. Machine learning algorithms find it challenging to grasp this

level of volatility, especially if the noise in the data is high. In these scenarios, the ARIMA model

might be more robust as it is designed for time series data with such characteristics.

The time series data is assumed to be stationary in ARIMA models. If the data is not stationary

preprocessing techniques like differencing are used to bring the data into stationarity. Since

machine learning models do not make the explicit assumption of stationarity, it can occasionally

be difficult to understand the underlying patterns. To identify the pertinent patterns in the data,

machine learning models frequently need to do substantial feature engineering. If the features are

poorly designed, the model cannot function as intended [26]. On the other hand, ARIMA models

do not require feature engineering as they directly model the time series data. Machine learning
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models require careful hyperparameter tuning, which can be challenging and time-consuming.

If the hyperparameters are not optimized properly, the model performance may suffer. ARIMA

models have fewer parameters to tune, making the optimization process simpler.

According to the data analysis, there are a lot of outliers between March and June that have

a big impact on how accurate the ARIMA model is at forecasting the price of WTI crude oil. In

particular, the ARIMA model shows a significant drop in forecasting accuracy over these months.

The finding draws attention to the ARIMA model’s significant flaw: its vulnerability to outliers.

The model performs poorly when these outliers are present because they make it more difficult

for the model to recognize and forecast the underlying patterns in the time series. This conclusion

emphasizes the need for strong techniques to manage outliers when using ARIMA models for

time series forecasting, especially for datasets with high volatility and outliers. [27].

6. Conclusions

In this article, we compare the forecasting accuracy of machine learning models and ARIMA

models by forecasting daily WTI crude oil prices through both one-step and seven-step ahead

forecasts. The presence of unit root in data is tested through the Augmented Dickey-Fuller

(ADF) test in which it is concluded that the data is non-stationary and the presence of unit

root. Using first-order lag difference the series is made stationary to meet the assumption of

ARIMA. Multiple ARIMA models are built and tested whose orders are determined through

a combination of Partial Autocorrelation Function (PACF) and Autocorrelation Function (ACF)

plots, along with trial-and-error methods. Additionally, we developed machine learning models

including k-Nearest Neighbors (kNN), Artificial Neural Networks (ARNN), and Random Forest

(RF), with their parameters optimized using k-fold cross-validation.

Our results demonstrate that the ARIMA model outperforms the machine learning models in

both one-step and seven-step ahead forecasting. Specifically, ARIMA showed superior accuracy,

followed by kNN and ARNN. However, it is important to note that due to the presence of outliers

in March and June, the forecasts are less reliable. This result emphasizes how reliable the ARIMA

model is, especially when stationary data shows both linear and autoregressive dependencies.

Furthermore, our research emphasizes the challenges that machine learning models have in this

scenario. The performance of machine learning algorithms can be negatively impacted by the

existence of noise and the difficult, labor- and time-intensive process of parameter adjustment.

As a result, even though machine learning models may capture non-linear correlations, careful

parameter tuning and management of data anomalies are necessary for them to be successful. This

study indicates that ARIMA is still a more dependable and effective option for forecasting when

dealing with time series data that include large linear and autoregressive components.
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