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ABSTRACT. In this study, exact solutions of the conformable fractional Zhiber–Shabat (Z–S) equation have been 

investigated using the unified method. The primary objective is to apply this method to derive analytical solutions to 

the fractional Z–S equation. Graphical visualizations of selected solutions are presented to demonstrate the influence 

of the fractional order on wave dynamics. The results confirm the reliability and effectiveness of the unified method in 

solving the Z–S equation. 

 

1. Introduction 

The investigation of exact solutions for nonlinear partial differential equations (NLPDEs) 

plays a crucial role in deepening our understanding of numerous physical processes. Over time, 

a variety of analytical techniques have been developed to derive such solutions, including the 

homogeneous balance method [1], Hirota’s bilinear method [2], the Tanh method [3], the inverse 

scattering transform [4], the extended F-expansion method [5], the exp-function method [6], the 

(𝐺′/𝐺)-expansion method [7], the variational iteration transform method [8], and the optimized 
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decomposition method [9]. More recently, increased attention has been directed toward nonlinear 

fractional partial differential equations (NLFPDEs), owing to their capacity to incorporate 

memory and non-local effects. These equations have found widespread application across 

various disciplines, including mathematical modeling, physics, engineering, biological systems, 

and economic analysis [10–13]. 

The Zhiber-Shabat Equation [14] is written as follows 

𝑤𝑥𝑡 + 𝑎𝑒
𝑤 + 𝑏𝑒−𝑤 + 𝑐𝑒−2𝑤 = 0                                                                                                           (1.1) 

where 𝑤 is a function in 𝑥 and 𝑡, and 𝑎, 𝑏, 𝑐 ∈ ℝ.    

The Z-S equation plays a significant role in various branches of science, including 

mathematical biology, fluid dynamics, solid-state physics, nonlinear optics, chemical kinetics, 

plasma physics, crystal dislocation theory, kink dynamics, and quantum field theory [14]. Due to 

its wide range of applications, the Z-S equation has been the subject of extensive research, and 

numerous analytical techniques have been employed to obtain its solutions. These include the 

Tanh method [14], bifurcation theory [15], the Hermite transform in conjunction with the 

homogeneous balance method [16], the exp(−𝜙(𝜉)-expansion method [17], the Jacobi elliptic 

function method [18], the (1/G′)-expansion and (G′/G, 1/G)-expansion methods  [19], the 

improved 𝐹-expansion method [20], the rational hyperbolic function method [21], the (𝐺′/𝐺)- 

expansion method [22], the modified Tanh–Coth method [23], Lie symmetry analysis coupled 

with the extended direct algebraic method [24], modified Kudryashov and extended simple 

equation methods [25] and Sardar sub-equation method [26]. 

The conformable fractional Z-S equation is given by   

𝐷𝑥𝑡
2𝛼𝑤 + 𝑎𝑒𝑤 + 𝑏𝑒−𝑤 + 𝑐𝑒−2𝑤 = 0                                                                                                        (1.2)                                                       

where 𝐷𝑥
𝛼 denotes the CFD with respect to 𝑥 and 𝐷𝑥𝑡

2𝛼 = 𝐷𝑡
𝛼(𝐷𝑥

𝛼).  

Numerous formulations of fractional derivatives have been developed to address diverse 

modeling requirements. Among the most prominent are the conformable fractional derivative, 

Caputo derivative, Riemann–Liouville and its modified form, as well as the Hilfer, Riesz, and 

Atangana derivatives [27–30]. 

According to [30], the conformable fractional derivative (CFD) of order 𝛼 with respect to 

the independent variable 𝑧  is defined as follows 

                       𝐷𝛼𝑔(𝑧) = 𝑙𝑖𝑚
𝛿→0

𝑔(𝑧+𝛿𝑧1−𝛼)−𝑔(𝑧)

𝛿
, ∀𝑧 > 0, 𝛼 ∈ (0,1]                                           

                       𝑔(𝛼)(0) = 𝑙𝑖𝑚
𝑧→0+

𝑔(𝛼)(𝑧)                                                         

Suppose that 𝑔 and ℎ are 𝛼 −differentiable functions at 𝑧 > 0. In the special case 𝛼 = 1, the CFD 

is reduced to the classical integer derivative. The CFD possesses the following properties:   

𝐷𝛼𝑧𝑚 = 𝑚𝑧𝑚−𝛼,𝑚 ∈ 𝑅                                                                                                                       (I)                                                                               

𝐷𝛼𝐶 = 0.                                                                                                                                              (II) 
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𝐷𝛼(𝐴𝑔 + 𝐵ℎ) = 𝐴𝐷𝛼𝑔 + 𝐵𝐷𝛼ℎ                                                                                                        (III) 

𝐷𝛼(𝑔ℎ) = 𝑔𝐷𝛼ℎ + ℎ𝐷𝛼𝑔                                                                                                                   (IV) 

𝐷𝛼 (
𝑔

ℎ
) =

ℎ𝐷𝛼𝑔−𝑔𝐷𝛼ℎ

ℎ2
                                                                                                                            (V) 

𝐷𝑎ℎ(𝑧) = 𝑧1−𝛼
𝑑ℎ

𝑑𝑧
                                                                                                                               (VI) 

𝐷𝛼𝑔(ℎ) = 𝑧1−𝛼ℎ′(𝑧)𝑔′(ℎ(𝑧)),                                                                                                          (VII) 

where A, B, and C are constants. The proofs of these properties are given in [30]. 

The CFD offers several notable advantages [30, 31], it adheres to the fundamental principles and 

properties of the classical derivative, it is adaptable to both exact and numerical solutions of 

fractional differential equations, and it extends classical integral transforms, including the 

Laplace and Sumudu transforms. This study focuses on applying the unified method to obtain 

solutions of the conformable fractional Z-S equation. The unified method is a robust analytical 

technique for deriving closed-form solutions to both NLPDEs and NLFPDEs [32–37]. The primary 

aim of this study is to demonstrate the effectiveness of the unified method in obtaining exact 

solutions for the conformable fractional Z-S equation. This method offers several advantages, 

such as integrating multiple solution techniques into a simplified framework, thereby enhancing 

efficiency and comprehensiveness without adding unnecessary complexity [33]. While previous 

approaches [14-23] have been employed to solve the nonlinear Z-S equation, none have 

extensively applied the unified method to this specific equation. Therefore, the novelty of this 

work lies in the application of the unified method to the fractional Z-S equation. This topic has 

not been thoroughly explored in the existing literature. The paper is organized as follows: Section 

2 describes the unified method. Section 3 applies the method to solve the fractional Z-S equation. 

Section 4 provides graphical illustrations. Finally, Section 5 concludes the study. 

 

2. Description of the unified method 

The steps of the method are as follows [32]: 

Step 1: Consider a NLFPDE of the form: 

𝐹(𝑤,𝐷𝑡
𝛼𝑤,𝐷𝑥

𝛼𝑤,𝐷𝑥𝑡
2𝛼𝑤,𝐷𝑡

2𝛼𝑤, 𝐷𝑥
2𝛼𝑤, . . . ) = 0,                                                                                     (2.1) 

where 𝑤 is the unknown function of spatial coordinate 𝑥 and temporal variable 𝑡. The solutions 

to Eq. (2.1) are derived by applying the following traveling wave transformation 

𝑤(𝑥, 𝑡) = 𝑊(𝜂), where 𝜂 = (𝑘𝑥𝛼 −𝜔𝑡𝛼)/𝛼,                                                                                       (2.2) 

Eq. (2.1) is reduced to an ODE: 

𝐹(𝑊,𝑊′,𝑊′′,𝑊′′′, . . . ) = 0,                                                                                                                    (2.3) 

where 𝑊′ =
𝑑𝑊

𝑑𝜂
. 

Step 2: The solution Eq. (2.3) is assumed to be of the form: 

𝑊(𝜂) = 𝜌0 + ∑ [𝜌𝑗𝜓
𝑗 + 𝜇𝑗𝜓

−𝑗𝑁
𝑗=1 ],                                                                                                         (2.4) 
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where 𝜓 = 𝜓(𝜂) satisfies the Riccati equation 

  𝜓′ = 𝜉 + 𝜓2(𝜂),                                                                                                                                      (2.5) 

and 𝜉 is a constant. The positive integer 𝑁 is obtained by equating the highest-order derivatives 

and the nonlinear terms of the highest degree in Eq. (2.3). Additionally, 𝜌𝑗 , 𝜇𝑗 and 𝜌0 are 

coefficients that need to be determined. The following three families give the general solutions of 

Eq. (2.5): 

Family 1. If 𝜉 < 0, the solutions are 

𝜓(𝜂) =

{
 
 
 
 

 
 
 
 𝜓1 =

√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
                        

𝜓2 =
−√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
                     

𝜓3 = √−𝜉 +
−2𝛽√−𝜉

𝛽+cosh(2√−𝜉(𝜂+𝜂0))−sinh(2√−𝜉(𝜂+𝜂0))
   

𝜓4 = −√−𝜉 +
2𝛽√−𝜉

𝛽+cosh(2√−𝜉(𝜂+𝜂0))+sinh(2√−𝜉(𝜂+𝜂0))

                                                                  (2.6) 

Family 2. If 𝜉 > 0, the solutions are 

  𝜓(𝜂) =

{
 
 
 
 

 
 
 
 𝜓5 =

√(𝛽2−𝛾2)𝜉−𝛽√𝜉cos (2√𝜉(𝜂+𝜂0))

𝛽 sin(2√𝜉(𝜂+𝜂0))+𝛾
                        

𝜓6 =
−√(𝛽2−𝛾2)𝜉−𝛽√𝜉cos (2√𝜉(𝜂+𝜂0))

𝛽 sin(2√𝜉(𝜂+𝜂0))+𝛾
                     

𝜓7 = 𝑖√𝜉 +
−2𝛽𝑖√𝜉

𝛽+cos(2√𝜉(𝜂+𝜂0))−𝑖sin(2√𝜉(𝜂+𝜂0))
   

𝜓8 = −𝑖√𝜉 +
2𝛽𝑖√𝜉

𝛽+cos(2√𝜉(𝜂+𝜂0))+𝑖sin(2√𝜉(𝜂+𝜂0))

                                                                     (2.7) 

Family 3. If 𝜉 = 0, the solution is 

 𝜓(𝜂) = −
1

𝜂+𝜂0
,                                                                                                                                                               (2.8) 

where 𝛽 ≠ 0 and 𝛾, 𝜂0 ∈ ℝ.  

Step 3: Substituting Eqs. (2.4) and (2.5) in Eq. (2.3), and equating the coefficients of like powers of 

𝜓 to zero yields a system of algebraic equations. This system is then solved using Maple to 

determine the values of 𝜌𝑗, 𝜇𝑗 , 𝑘, 𝜔, and 𝜌0. These values are then used along with the general 

solutions of Eq. (2.5) to obtain the exact solutions of Eq. (2.1). 

 

3. Application 

In this section, the unified method is utilized to derive exact solutions for Eq. (1.2). According 

to Painlevé transformation 𝑢 = 𝑒𝑤 and the traveling wave transformation, Eq. (1.2) becomes 

−𝑘𝜔(𝑊𝑊′′ −𝑊′2) + 𝑎𝑊3 + 𝑏𝑊 + 𝑐 = 0.                                                                                            (3.1) 

If we set 𝑎 = 1, 𝑏 = −
3

2
 and 𝑐 =

1

2
, we get 

−𝑘𝜔(𝑊𝑊′′ −𝑊′2) +𝑊3 −
3

2
𝑊 +

1

2
= 0.                                                                                            (3.2) 
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Balancing 𝑊𝑊′′ with 𝑊3 gives 𝑁 =  2. Thus, the solutions of Eq. (3.2) can be expressed in the 

form 

𝑊(𝜂) = 𝜌0 + 𝜌1𝜓 + 𝜌2𝜓
2 + 𝜇1𝜓

−1 + 𝜇2𝜓
−2.                                                                                      (3.3) 

Inserting Eqs. (3.3) and (2.5) into Eq. (3.2) and equating the coefficients of the powers of 𝜓 to zero 

produces a system of algebraic equations. This system is then solved with Maple to obtain the 

following: 

Set 1:  𝜌1 = 𝜌2 = 𝜇1 = 0, 𝑘 = 𝑘, 𝜌0 =
1

4
, 𝜇2 = −

3ξ

4
, ω = −

3

8𝑘𝜉
.  

Set 2:  𝜌1 = 𝜇1 = 𝜇2 = 0, 𝑘 = 𝑘, 𝜌0 =
1

4
, 𝜌2 = −

3

4ξ
, ω = −

3

8𝑘𝜉
.  

Set 3:  𝜌1 = 𝜌2 = 𝜇1 = 0, 𝑘 = 𝑘, 𝜌0 = 1 +
√3

2
, 𝜇2 =

3𝜉

2
, ω =

3

4𝑘𝜉
.  

Set 4:  𝜌1 = 𝜌2 = 𝜇1 = 0, 𝑐 𝑘 = 𝑘, 𝜌0 = 1 −
√3

2
, 𝜇2 =

3𝜉

2
, ω =

3

4𝑘𝜉
.  

Set 5:  𝜌1 = 𝜇1 = 𝜇2 = 0, 𝑘 = 𝑘, 𝜌0 = 𝜌0 = 1 +
√3

2
, 𝜌2 =

3

2𝜉
, ω =

3

4𝑘𝜉
.  

Set 6:  𝜌1 = 𝜇1 = 𝜇2 = 0, 𝑘 = 𝑘, 𝜌0 = 𝜌0 = 1 −
√3

2
, 𝜌2 =

3

2𝜉
, ω =

3

4𝑘𝜉
.  

Set 7:  𝜌1 = 𝜇1 = 0,   𝑘 = 𝑘, 𝜌0 =
5

8
, 𝜌2 = −

3

16𝜉
, 𝜇2 = −

3𝜉

16
, ω = −

3

32𝑘𝜉
.  

Set 8:  𝜌1 = 𝜇1 = 0,   𝑘 = 𝑘, 𝜌0 =
1

4
+
√3

2
, 𝜌2 =

3

8𝜉
, 𝜇2 =

3𝜉

8
, ω =

3

16𝑘𝜉
.  

Set 9:  𝜌1 = 𝜇1 = 0,   𝑘 = 𝑘, 𝜌0 =
1

4
−
√3

2
, 𝜌2 =

3

8𝜉
, 𝜇2 =

3𝜉

8
, ω =

3

16𝑘𝜉
.  

Using the above sets, family 1 and family 3, we obtain the exact hyperbolic and rational solutions 

of the conformable fractional Z-S equation as follows: 

For set 1: 

𝑤1(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
3ξ

4
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))
]

2

),                                               

𝑤2(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
3ξ

4
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

),  

𝑤3(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
3ξ

4
[−

1

𝜂+𝜂0
]
−2
)                          

for set 2: 

𝑤4(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−

3

4ξ
[
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
]

2

),                                          

𝑤5(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−

3

4ξ
[
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
]

2

),  

𝑤6(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−

3

4ξ
[−

1

𝜂+𝜂0
]
2
),                     

where 𝜂 = (𝑘𝑥𝛼 +
3

8𝑘𝜉
𝑡𝛼)/𝛼. 
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For set 3: 

𝑤7(𝑥, 𝑡) = 𝑙𝑛 (1 +
√3

2
+
3𝜉

2
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))
]

2

),                                                 

𝑤8(𝑥, 𝑡) = 𝑙𝑛 (1 +
√3

2
+
3𝜉

2
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

),  

for set 4: 

𝑤9(𝑥, 𝑡) = 𝑙𝑛 (1 −
√3

2
+
3𝜉

2
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))
]

2

),                            

𝑤10(𝑥, 𝑡) = 𝑙𝑛 (1 −
√3

2
+
3𝜉

2
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

),  

𝑤11(𝑥, 𝑡) = 𝑙𝑛 (1 ±
√3

2
+
3𝜉

2
[−

1

𝜂+𝜂0
]
−2
),            

for set 5: 

𝑤12(𝑥, 𝑡) = 𝑙𝑛 [1 +
√3

2
+

3

2𝜉
(
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
)

2

],                            

𝑤13(𝑥, 𝑡) = 𝑙𝑛 [1 +
√3

2
+

3

2𝜉
(
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
)

2

],   

for set 6: 

𝑤14(𝑥, 𝑡) = 𝑙𝑛 [1 −
√3

2
+

3

2𝜉
(
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
)

2

],                 

  𝑤15(𝑥, 𝑡) = 𝑙𝑛 [1 −
√3

2
+

3

2𝜉
(
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
)

2

], 

𝑤16(𝑥, 𝑡) = 𝑙𝑛 (1 ±
√3

2
+

3

2𝜉
[−

1

𝜂+𝜂0
]
2
),             

where 𝜂 = (𝑘𝑥𝛼 −
3

4𝑘𝜉
𝑡𝛼)/𝛼. 

For set 7: 

𝑤17(𝑥, 𝑡) = 𝑙𝑛 (
5

8
−

3

16𝜉
[
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉 cosh(2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
]

2

−

                                                                                       
3𝜉

16
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉cosh (2√−𝜉(𝜂+𝜂0))
]

2

),                       

𝑤18(𝑥, 𝑡) = 𝑙𝑛 (
5

8
−

3

16𝜉
[
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
]

2

−

                                                                   
3𝜉

16
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

), 
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𝑤19(𝑥, 𝑡) = 𝑙𝑛 (
5

8
−

3

16𝜉
[−

1

𝜂+𝜂0
]
2
−
3𝜉

16
[−

1

𝜂+𝜂0
]
−2
),            

where 𝜂 = (𝑘𝑥𝛼 +
3

32𝑘𝜉
𝑡𝛼)/𝛼. 

For set 8: 

𝑤20(𝑥, 𝑡) = 𝑙𝑛 (
1

4
+
√3

2
+

3

8𝜉
[
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉 cosh(2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
]

2

+

                                                                                    
3𝜉

8
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉 cosh(2√−𝜉(𝜂+𝜂0))
]

2

),                      

𝑤21(𝑥, 𝑡) = 𝑙𝑛 (
1

4
+
√3

2
+

3

8𝜉
[
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
]

2

+

                                                                  
3𝜉

8
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

),                

for set 9: 

𝑤22(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
√3

2
+

3

8𝜉
[
±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉 cosh(2√−𝜉(𝜂+𝜂0))

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾
]

2

+

                                                                                    
3𝜉

8
[

𝛽 sinh(2√−𝜉(𝜂+𝜂0))+𝛾

±√−(𝛽2+𝛾2)𝜉−𝛽√−𝜉 cosh(2√−𝜉(𝜂+𝜂0))
]

2

),                      

𝑤23(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
√3

2
+

3

8𝜉
[
±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))
]

2

+

                                                                  
3𝜉

8
[

𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0))

±√−𝜉(−𝛽+cosh(2√−𝜉(𝜂+𝜂0))∓sinh(2√−𝜉(𝜂+𝜂0)))
]

2

), 

𝑤24(𝑥, 𝑡) = 𝑙𝑛 (
1

4
±
√3

2
+

3

8𝜉
[−

1

𝜂+𝜂0
]
2
+
3𝜉

8
[−

1

𝜂+𝜂0
]
−2
),                  

where 𝜂 = (𝑘𝑥𝛼 −
3

16𝑘𝜉
𝑡𝛼)/𝛼. 

Similarly, by employing the same approach, we can derive numerous trigonometric solutions to 

the conformable fractional Z-S equation. This can be achieved by utilizing family 2, as shown in 

Eq. (2.7). For simplicity, only a few trigonometric solutions are presented below: 

For set 1: we obtain 

𝑤25(𝑥, 𝑡) = 𝑙𝑛 (
1

4
−
3ξ

4
[

𝛽 sin(2√𝜉(𝜂+𝜂0))+𝛾

±√(𝛽2−𝛾2)𝜉−𝛽√𝜉cos (2√𝜉(𝜂+𝜂0))
]

2

), 

where 𝜂 = (𝑘𝑥𝛼 +
3

8𝑘𝜉
𝑡𝛼)/𝛼.                                                                 

For set 5: we get 

𝑤26(𝑥, 𝑡) = 𝑙𝑛 (1 +
√3

2
+

3

2𝜉
[
∓𝑖√𝜉(𝛽−cos(2√𝜉(𝜂+𝜂0))±𝑖 sin(2√𝜉(𝜂+𝜂0)))

𝛽+cos(2√𝜉(𝜂+𝜂0))∓𝑖 sin(2√𝜉(𝜂+𝜂0))
]

2

), 
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where 𝜂 = (𝑘𝑥𝛼 −
3

4𝑘𝜉
𝑡𝛼)/𝛼.     

4. Graphical illustration 

This section presents a graphical visualization of the conformable fractional Z-S equation 

to investigate the effect of changing the fractional order on the solutions 𝑤1(𝑥, 𝑡), 𝑤25(𝑥, 𝑡) and 

𝑤26(𝑥, 𝑡). The analysis is managed by applying different parameter values within the domains  

0 ≤ 𝑥, 𝑡 ≤ 10. The 3D plots for fractional orders order 𝛼 = 0.5, 0.8, 1 are presented in panels (a)-

(c), whereas panel (d) provides corresponding 2D visualization. The solution 𝑤16(𝑥, 𝑡) is 

examined over the domain −10 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 10. The solutions take the form of hyperbolic, 

trigonometric, and rational functions in various wave shapes, including bright solitons, periodic 

structures, shock waves, and singular-dark solitons. 

  Figure 1: Panels (a-c) depict 3D plots presenting bright wave soliton solutions of 𝑤1(𝑥, 𝑡) 

with parameters 𝑘 = 𝛽 = 𝛾 = 1, 𝜂0 = 𝜉 = −1 and fractional order 𝛼 = 0.5, 0.8, 1, respectively. In 

panel (a), the surface exhibits highly irregular and steep growth near the upper right region. In 

panel (b), although the sharp growth persists, the amplitude and steepness are moderately 

reduced compared to panel (a). Panel (c) presents the smoothest and most stable surface among 

the three, with a more uniform and less erratic peak, suggesting the presence of a higher fractional 

order. Panel (d) presents 2D plots at time 𝑡 = 1, 0 ≤ 𝑥 ≤ 5 with the same parameters. The 2D plots 

of 𝑤1(𝑥, 𝑦) demonstrates how the fractional order affects the singularity and peak intensity of the 

solution. As 𝛼 decreases from 1 to 0.5, the peak becomes sharper and shifts slightly to the left.   

 

                                         

                                         

Figure 1. Behavior of wave soliton solutions: 3D and 2D visualizations of 𝑤1(x, y, t) 
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Figure 2: Panels (a-c) depict 3D plots that display periodic solutions of 𝑤25(𝑥, 𝑡) over the 

intervals  0 ≤ 𝑥, 𝑡 ≤ 10, with parameters 𝑘 = 𝛽 = 𝜂0 = 1, 𝛾 = 0, 𝜉 = 0.1 and fractional orders 𝛼 =

0.5, 0.8, 1 respectively. In panel (a), the surface exhibits relatively periodic and regular high-

frequency oscillations, indicating a system characterized by strong, coherent wave-like behavior 

with minimal damping. In panel (b), the oscillations remain evident but display increased 

irregularity and more pronounced troughs, suggesting a deviation from stability. Panel (c) 

presents the most chaotic and irregular oscillatory pattern, featuring deeper negative peaks and 

greater amplitude variation. Panel (d) presents a 2D plot at 𝑥 = 1, with the same parameters. The 

figure illustrates the impact of varying the fractional order 𝛼 on the time-dependent behavior of 

the system. As 𝛼 decreases from 1 to 0.5, the oscillations exhibit reduced intensity and increased 

damping. In lower fractional orders result in smoother and broader waveforms. 

 

                                           

                                                            

Figure.2. Behavior of periodic solutions: 3D and 2D visualizations of 𝑤25(𝑥, 𝑡) 

 

Figure 3: Panels (a-c) depict 3D plots that present periodic solutions of 𝑤26(𝑥, 𝑡) over the 

intervals 0 ≤ 𝑥, 𝑡 ≤ 10, with parameters 𝑘 = 𝜂0 = 0.01, 𝛽 = 𝛾 = 1, 𝜉 = 0.001 and fractional orders 

𝛼 = 0.5, 0.8, 1 respectively. In panel (a), the solution exhibits sharp transitions along both the 

spatial and temporal axes, indicating strong discontinuities. Panel (b) displays smoother 

transitions with reduced amplitude. Panel (c) presents moderate sharpness and amplitude, 

representing an intermediate behavior that balances the characteristics observed in panels (a) and 

(b). Panel (d) presents 2D plots at 0.0007 ≤ 𝑡 ≤ 0.002, 𝑥 = 1 with the same parameters. The plots 

highlight how fractional order influences early-time system behavior. While the 𝛼 = 1 case shows 
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smooth, classical dynamics, lower orders 𝛼 = 0.5 and 𝛼 = 0.8 result in sharp, high-frequency 

oscillations. 

 

                          

                               

  

Figure 3. Behavior of periodic solution: 3D and 2D visualizations of 𝑤26(𝑥, 𝑡). 

 

Figure 4: Panels (a-b) depict 3D plots presenting shock soliton solutions, whereas panel 

(d) represents singular-dark soliton solutions of 𝑤16(𝑥, 𝑡) over the intervals −10 ≤ 𝑥 ≤ 10 and 

0 ≤ 𝑡 ≤ 10, with parameters 𝑘 = 10, 𝜂0 = 0, 𝜉 = −100 and fractional order 𝛼 = 0.5, 0.8, 1 

respectively. The panels illustrate increasing spatial variability, with panel (a) showing a nearly 

flat surface, panel (b) presenting a sharper transition, and panel (c) demonstrating the most 

pronounced drop and curvature in the solution. Panel (d) presents 2D plots at the interval −2 ≤

𝑥 ≤ 2, 𝑡 = 1 with the same parameters. All curves exhibit a sudden dip in a narrow region near  

𝑥 = 0.5. The sharpness and depth of this transition are influenced by the fractional order: the 

curve for 𝛼 = 1 shows the steepest and most pronounced drop. As 𝛼 decreases to 0.8 and 0.5, the 

transition becomes less sharp and more spread out. 
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Figure 4.  Behavior of wave soliton solution: 3D and 2D visualizations of 𝑤16(𝑥, 𝑡). 

 

5. Conclusions  

The article applies the unified method to obtain exact solutions to the conformable 

fractional nonlinear Z-S equation. Several new exact solutions were derived, including 

hyperbolic, rational and periodic wave solutions. The 3D and 2D graphs were provided for some 

solutions to understand their physical behavior. All computations were performed using MAPLE 

software, highlighting the efficiency of the unified method in solving the Z–S equation. The results 

demonstrated the effectiveness of the unified method in solving NLFPDEs. The unified method 

can be extended to solve other classes of complex NLFPDEs.  
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