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Abstract. This study presents many special anisotropic conformal changes of a conic pseudo-Finsler surface (M, F),

such as C-anisotropic and horizontal C-anisotropic conformal transformations, which reduce to C-conformal when the

conformal factor is solely position-dependent. Furthermore, we present vertical C-anisotropic conformal changes and

demonstrate that they are characterized by the property of (M, F) being Riemannian. Additionally, we examine the

anisotropic conformal transformation that fulfils the φT-condition, the horizontal φT-condition, and the vertical φT-

condition. The first two conditions reduce to the σT-condition when the conformal factor relies solely on a positional

variable. We demonstrate that, under the vertical φT-condition change, every Landsberg surface is Berwaldian. Thus,

the vertical φT-condition is equivalent to the T-condition. Furthermore, we examine the scenario when the anisotropic

conformal factor becomes the main scalar of the non-Riemannian surface (M, F). We present an example of a Finslerian

Schwarzschild-de Sitter solution having Finslerian spherical symmetry and apply our results to it.

1. Introduction

A conformal transformation entails the scaling of a Finsler metric by a smooth positive function

known as the conformal factor. A transformation that relies solely on the manifold coordinates

(position) is referred to as an isotropic conformal transformation [5, 9, 12, 13, 17, 18]. Knebelman

initially introduced the theory of isotropic conformal transformation of Finsler spaces in 1929 [12].

M. Hashiguchi [9] subsequently introduced a particular transformation termed a C-conformal

change, which serves as an essential tool in the study of Finsler geometry. This transformation

facilitates the examination of invariant qualities and the classification of special Finsler spaces.

It is an extension of the concept of concurrent vector fields. Concurrent vector fields have been
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extensively studied in the Riemannian geometry. In 1950, Tachibana [20] expanded this concept

to Finsler geometry and identified the spaces in which such vector fields are exist. In 2019, N.

Youssef et al. presented a general idea known as a semi-concurrent vector field in [24]. The

Cartan tensor is a fundamental non-Riemannian quantity in Finsler geometry, invariant under

isotropic conformal changes, encouraging some geometers to define and explore the C-conformal

transformation. In Finsler surfaces [1–3, 15, 21], the C-conformal transformation is characterized

by F being a Riemannian metric.

The T-tensor is a crucial object in Finsler geometry which holds significant relevance. The

σT-condition is particularly important in determining the preservation of features such as the

Landsberg or Berwald character under conformal transformations. Elgendi, in [5], examined

the relationship between the T-condition and the σT-condition, demonstrating their equivalence

in Finsler surfaces. Furthermore, the Landsberg unicorn’s problem is closely related to both

T-condition and σT-condition [5–8].

On the other hand, when the conformal factor is dependent upon both direction (tangent or

velocity vectors) and position, the transformation is referred to as an anisotropic conformal trans-

formation [10,11,22,23]. Anisotropic conformal transformations of Finsler spaces vary in direction,

as opposed to uniform scaling in conformal transformations. The direction-dependent provides

more comprehensive metric deformations, essential for describing directional phenomena such as

relativistic spacetime. The investigation of anisotropic transformations enhances the examination

of Finsler spaces.

We introduce and investigate the concepts of C-anisotropic and C-anisotropic conformal changes

of a pseudo-Finsler surface in §3 due to the fact that the Cartan tensor does not remain invariant

under an anisotropic conformal transformation of a conic pseudo-Finsler surface [22]. In particular,

we explore under what conditions the anisotropic conformal transformation of a conic pseudo-

Finsler surface is C-anisotropic and C-anisotropic conformal change, and identify necessary and

sufficient conditions such that the property of C-anisotropic is preserved. When this property is

preserved, we determine the conditions under which F is projectively flat.

Based on the dependence of the anisotropic conformal factor on position and directional argu-

ments, we introduce and examine the horizontal C-anisotropic, horizontal C-anisotropic, vertical

C-anisotropic and vertical C-anisotropic conformal changes. Also, we demonstrated that the

conformal transformation between two non-Riemannian metrics is horizontal C-anisotropic and

horizontal C-anisotropic if and only if the geodesic spray is invariant (Theorem 3.1). We show that

the conformal changes of C, C, horizontal C, and horizontal C- anisotropic are the same when the

conformal factor is just a function of x only, but the vertical C-anisotropic change is not. Addition-

ally, the vertical C-anisotropic conformal change is characterized by the property that the Finsler

surface is Riemannian.

We are motivated to introduce the φT-condition, horizontal φT-condition and vertical φT-

condition in light of the fact that the T-tensor is not invariant under an anisotropic conformal
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transformation of a conic pseudo-Finsler surface (with conformal factor φ(x, y)) [22, 23]. The

anisotropic φT-, horizontal φT-, and vertical φT-conditions are investigated and characterized

in §4. Given an anisotropic conformal transformation that satisfies the anisotropic φT-condition in

(M, F) and (M, F), we determine the conditions under which the Landsberg metric is Berwaldian,

as shown in Theorem 4.1. In §5, we assume that F represents a non-Riemannian metric, with the

anisotropic conformal factor being the main scalar I of F. This specific case for the conformal

factor yields interesting results.

In §6, an example of a Finslerian sphere is provided by an anisotropic conformal transformation

of a Riemannian sphere. We examine the conditions under which this transformation meets

the criteria for C-anisotropic, C-anisotropic, horizontal C-anisotropic and the φT-condition. This

example represents a Finslerian Schwarzschild-de Sitter solution that possesses the symmetry of

a Finslerian sphere. This is because, the Finslerian analogue of Birkhoff’s theorem states that

a Finslerian gravitational field with the symmetry of a "Finslerian sphere" in a vacuum must be

static [14]. Also, the Einstein field equations including a non-zero cosmological constant have been

modified to the Finslerian framework as presented in [16]. This modification yields a Finslerian

Schwarzschild-de Sitter solution that possesses the symmetry of a Finslerian sphere. Finally,

we end our work by some concluding remarks along with a table which summarizes all special

anisotropic conformal transformations we studied in §7.

2. Notation and Preliminaries

Let M be an n-dimensional smooth manifold. The tangent bundle of M is denoted by

(TM,πM, M), where TM is the disjoint union of all tangent vectors at each point in base manifold

M and πM : TM −→ M denote the canonical projection from TM onto M. Define TM0 = TM \ (0)
as the tangent bundle with the zero section removed. Then (TM0,πM, M) is sub-bundle of non

zero vectors. On the base manifold M, we use local coordinates (xi). In the tangent bundle TM, the

coordinates are given by (xi, yi) , where xi are the base coordinates and yi represent the components

of the tangent vectors.

A function f ∈ C∞(TM0) is said to be positively homogeneous of degree r in the directional

argument y and denoted by h(r) if f (x,λy) = λr f (x, y), ∀λ > 0.

A conic sub-bundle of TM is a non-empty open subsetA of TM0 which satisfies π(A) = M and

is invariant under scaling of tangent vectors by positive real numbers.

Definition 2.1. A conic pseudo-Finsler metric on M is a smooth function F : A −→ R which satisfies the
following conditions:

(i): F(x, y) is h(1): F(x,λy) = λF(x, y) for all λ ∈ R+,

(ii): For each point ofA, the Finsler metric tensor gi j(x, y) = 1
2 ∂̇i∂̇ jF2(x, y), is non-degenerate.

The pair (M, F) is called a conic pseudo-Finsler manifold.

For a Finsler metric F, a unique nonlinear Cartan (Ehresmann) connection exists onA ⊂ TM that

is both torsion-free and compatible with F. The nonlinear connection coefficients are determined
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by

G j
i =

1
4
∂̇i

[
g jk

(
ym∂m∂̇kF2

− ∂kF2
)]

.

This nonlinear connection defines the horizontal derivatives δi := ∂i −G j
i ∂̇ j, where ∂̇i :=

∂

∂yi .

The coefficients of the geodesic spray coefficients of F can be expressed as

Gi =
1
4

gik
(
ym∂m∂̇kF2

− ∂kF2
)

.

It is clear that Gi are smooth h(2) functions in A, moreover, the geodesic spray can be defined

globally on TM0 by S = yi∂i − 2Gi∂̇i.

In the case of positive definite of Finsler surface, Berwald introduced a global frame in [3] called

Berwald frame. Given that the angular metric hi j has a matrix representation (hi j) with rank one,

we can determine a unique vector field mi(x, y) and sign ε = ±1, where

hi j = εmim j.

As, gi j = `i` j + hi j, where `i = ∂̇iF and `i =
yi

F . Then, the metric tensor can be expressed as

gi j = `i` j + εmim j. (2.1)

We denote g = det(gi j) and we have the following relations:

`i`i = 1 `imi = `imi = 0, mimi = ε. (2.2)

Hence, (`i, mi) is orthonormal frame, called modified Berwald frame introduced by Báscó and

Matsumoto [2] which is suitable for both positive definite and non-positive definite surfaces.

The main scalar I(x, y) is one of the most significant quantities in Finsler surfaces, it is an h(0)
smooth function defined from the Cartan tensor [3] by,

FCi jk = I mim jmk. (2.3)

For a smooth f ∈ C∞(TM0) we define the v-scalar derivatives ( f;1, f;2) and h-scalar derivatives

( f,1, f,2) in (M, F) as follows:

F∂̇i f = f;1`i + f;2mi, δi f = f,1`i + f,2mi, (2.4)

where

f;1 = yi∂̇i f , f;2 = εF(∂̇i f )mi, f,1 = (δi f )`i, f,2 = ε(δi f )mi.

Specifically, if f is h(r), then f;1 = r f , the commutation formulas [3] are given by:

f,1,2 − f,2,1 = −R f;2, (2.5)

f,1;2 − f;2,1 = f,2, (2.6)

f,2;2 − f;2,2 = − ε( f,1 + I f,2 + I,1 f;2), (2.7)
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where R is said to be the Gauss curvature or the h-scalar curvature.

Definition 2.2. [22] The anisotropic conformal change of a conic pseudo-Finsler metric F is defined by

F 7−→ F(x, y) = eφ(x,y)F(x, y), F2(∂̇i∂̇ jφ + (∂̇iφ)(∂̇ jφ))mim j + ε = ε+ σ− (φ;2)
2 , 0, (2.8)

σ = φ;2;2 + εIφ;2 + 2 (φ;2)
2, (2.9)

given that the conformal factor φ(x, y) is a smooth h(0)-function on A. In this case, F is said to be
anisotropic conformally changed to F. In addition, we say that the anisotropic conformal transformation is
proper if the conformal factor is a non-isotropic and non-homothetic function which means φ;2 , 0.

Now, we define the v-scalar derivatives ( f; a, f; b) and h-scalar derivatives ( f, a, f, b) in (M, F) for

f by:

F∂̇i f = f; a`i + f; bmi, δi f = f, a`i + f, bmi,

where

f; a = yi∂̇i f , f; b = εF(∂̇i f )mi, f, a = (δi f )`
i
, f, b = ε(δi f )mi.

In [22], we discuss the anisotropic conformal change on a conic pseudo-Finsler surface F equipped

with modified Berwald frame and determined how this change affects the components of the

Berwald frame, the main scalar and the geodesic spray coefficients of F as follows:

`i = eφ[`i + φ;2 mi], `
i
= e−φ`i, mi = eφ

√
ε
ρ

mi, mi = e−φ
√
ερ[mi

− εφ;2 `
i]. (2.10)

I =
√
ερ[I+ 2εφ;2 −

ερ;2

2ρ
]. (2.11)

G
i
= Gi + Qmi + P`i, (2.12)

where

ρ =
1

σ+ ε− (φ;2)2 . (2.13)

2Q = ερF2(φ;2φ,1 + φ,1;2 − 2φ,2), (2.14)

2P = −ρF2φ;2(φ;2φ,1 + φ,1;2 − 2φ,2) + F2φ,1. (2.15)

Furthermore, from (2.14) and (2.15), we get

2εφ;2Q + 2P = F2φ,1. (2.16)

Lemma 2.1. Let (M, F) be Finsler surface. Each smooth function f is on M satisfies mi∂i f = 0 is constant.

Proof. Since f ∈ C∞(M), then we have δi f = ∂i f and δi f = f,1`i + f,2mi. Then, mi∂i f = ε f,2.

Moreover, if mi∂i f = 0, we obtain f;1 = f;2 = f,2 = 0. Thereby, using the commutation formula

(2.7), we get f,1 = 0. Consequently, f is a constant function. �
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3. C-Anisotropic and Horizontal C-Anisotropic Change

Hashiguchi [9] introduced the concept of C-conformal transformation in Finsler geometry as a

special form of a conformal transformation. This class is a subset of conformal transformations,

distinguished by specific conditions on the Cartan tensor and the conformal factor. In Finsler

surfaces, the C-conformal transformation is characterized by the fact that F is a Riemannian metric.

More precisely,

Definition 3.1. [9] The (isotropic) conformal change F(x, y) = eθ(x)F(x, y) is said to be C-conformal if it
is not a homothetic change and satisfies

Ci
jk∂iθ = 0.

Lemma 3.1. The conformal change of a two-dimensional conic pseudo-Finsler metric F defined as F = eθF
is C-anisotropic conformal if and only if F is Riemannian.

Proof. Let F = eθF be a C-conformal transformation, then

0 = Ci
jk∂iθ = (∂iθ)

I

F
mim jmk,

which is equivalent to either I = 0 (F is Riemannian) or mi∂iθ = 0. Since θ is a function of x only,

then, by Lemma 2.1, θ is constant which is a contradiction. �

It should be noted that, in the case of a conformal transformation, C
i
jk = Ci

jk as the conformal

factor depends only on the position only. However, in the case of the anisotropic conformal

transformation (2.8), we have C
i
jk , Ci

jk as the conformal factor depends on both x and y. This

inspires us to introduce some special anisotropic conformal transformations, namely, C-anisotropic

conformal and horizontal C-anisotropic conformal transformations. We also discuss under what

conditions these transformations are preserved.

Definition 3.2. The proper anisotropic conformal change F = eφF is said to be C-anisotropic conformal
if it satisfies Ci

jk∂iφ = 0. Similarly, the anisotropic conformal change F = eφF is said to be C-anisotropic

conformal if it satisfies C
i
jk∂iφ = 0.

Proposition 3.1. Let F be conformally anisotropic changed to F by (2.8). Then, we have:

(i): The anisotropic conformal transformation is C-anisotropic conformal if and only if either F is a
Riemannian metric or mi∂iφ = 0.

(ii): The anisotropic conformal transformation is C-anisotropic conformal if and only if either I =
ε
2 (lnρ− 4φ);2 (F is a Riemannian metric) or mi∂iφ− εφ;2`i∂iφ = 0.

(iii): Assume that (2.8) is an anisotropic conformal transformation between two non-Riemannian
metrics. The property of C-anisotropic conformal is invariant if and only if `i∂iφ = 0.

Proof.

(i): The anisotropic conformal transformation is C-anisotropic conformal if and only if
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0 = Ci
jk∂iφ = Imim jmk∂iφ.

From which we have Imi∂iφ = 0. That is, the anisotropic conformal transformation (2.8)

is C-anisotropic conformal if and only if either F is a Riemannian metric or mi∂iφ = 0.

(ii): The anisotropic conformal transformation is C-anisotropic conformal if and only if

0 = C
i
jk∂iφ = I(mim jmk − εφ;2`

im jmk)∂iφ.

Therefore, the anisotropic conformal transformation (2.8) is C-anisotropic conformal if and

only if either I = 0 or mi∂iφ− εφ;2`i∂iφ = 0. By making use of (2.11), (2.8) is C-anisotropic

conformal if and only if either I = ε
2 [
ρ;2
ρ − 4φ;2] =

ε
2 (lnρ− 4φ);2 or mi∂iφ− εφ;2`i∂iφ = 0.

(iii): Consider the anisotropic conformal change (2.8) between non-Riemannian metrics F and

F. Now, we have:

(=⇒) If the property of C-anisotropic conformal is invariant, that is, our anisotropic

conformal transformation is both C-anisotropic and C-anisotropic transformation, then we

have mi∂iφ = 0 and mi∂iφ− εφ;2`i∂iφ = 0. Since φ;2 , 0, we conclude `i∂iφ = 0.

(⇐=) If `i∂iφ = 0 and the anisotropic conformal change (2.8) is C-anisotropic change

(i.e., mi∂iφ = 0, by (i) above), then, since φ;2 , 0, we have mi∂iφ − εφ;2`i∂iφ = 0. That is,

(2.8) is C-anisotropic conformal change.

�

Remark 3.1. A Finsler surface (M, F) is projectively flat if and only if it satisfies the Hamel’s equation
(∂̇1∂2F = ∂̇2∂1F) [4, Eqn. (2.70)]. The geodesic coefficient of the two-dimensional metric F is written as

2Gi = yr(∂rF)`i +
F2(∂̇2∂1F−∂̇1∂2F)

h mi, where h = ε
`1m2−`1m1 [15, Eqn. (1.4)]. Consequently, the Finsler

surface (M, F) is projectively flat if and only if Gkmk = 0.

Proposition 3.2. Assuming that F = eφF is an anisotropic conformal transformation between two non-
Riemannian metrics, we have the following:

(i): If F is a locally Minkowski metric and the anisotropic conformal transformation (2.8) is C-
anisotropic conformal change, then the two sprays S and S are projectively equivalent if and only if
φ;2,1 = 0 in some coordinate system.

(ii): If F is projectively flat metric, then the anisotropic conformal transformation (2.8) is C-anisotropic
if and only if φ,2 = φ;2

[
φ,1 −

Gk

F2 `k

]
. Moreover, the anisotropic conformal transformation (2.8) is

C-anisotropic if and only if φ,2 = −
φ;2

F2 Gkmk.

(iii): If the property of C-anisotropic conformal is preserved, then F is projectively flat if and only if φ
is a first integral of the geodesic spray S.

Proof. For a Finsler surface equipped with modified Berwald frame, we have, by [22, Eqn. (4.8)],

the following equalities:
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(a) F2`k ∂kφ = F2φ,1 + 2Gkφ;2 mk

(b) Fmk ∂kφ = εFφ,2 + Gi
k φ;2 mkmi

 (3.1)

This leads to the equivalence:

mi∂iφ− εφ;2`
i∂iφ = 0⇐⇒ φ,2 = φ;2[φ,1 +

2φ;2

F2 Gkmk −
ε
F

Gi
kmkmi], (3.2)

mi ∂iφ = 0⇐⇒ φ,2 = −
εφ;2

F
Gi

kmkmi, (3.3)

`i∂iφ = 0⇐⇒ φ,1 = −
2
F2φ;2Gk mk. (3.4)

(i): Let F be a locally Minkowski metric F (i.e., Gi = 0 in some coordinate system [18, Definition

5.3]) and (2.8) be C-anisotropic. By Proposition 3.1 (ii) and (3.2), we have

φ,2 = φ;2φ,1. (3.5)

Using the commutation formula (2.6) and (2.14), along with (3.5), we get

Q =
1
2
ερF2(φ;2φ,1 + φ,1;2 − 2φ,2) =

1
2
ερF2(φ;2φ,1 + φ;2,1 −φ,2) =

1
2
ερF2φ;2,1.

Consequently, the two sprays S and S are projectively equivalent if and only if φ;2,1 = 0 in

some coordinate system.

(ii): Assuming that F is projectively flat, by Remark 3.1, we have

Gkmk = 0. (3.6)

Differentiating (3.6) with respect to yi, where F∂̇ jmi = −(`i − εImi)m j, we get

0 = Gk
i mk +

Gk

F (−`k + εImk)mi. Using (3.6), we obtain

Gk
i mkmi =

εGk

F
`k. (3.7)

Substituting (3.6) and (3.7) into (3.2), then by Proposition 3.1 (ii), the anisotropic conformal

transformation (2.8) is C-anisotropic conformal if and only if φ,2 = φ;2

[
φ,1 −

Gk

F2 `k

]
. On the

other hand, plugging (3.7) into (3.3) leads to the anisotropic conformal transformation (2.8)

is C-anisotropic if and only if φ,2 = −
φ;2

F2 Gk`k.

(iii): Let the property of C-anisotropic conformal be preserved under the anisotropic confor-

mal change (2.8), form Proposition 3.1 (iii) and (3.4), we have φ,1 = − 2
F2φ;2Gk mk. Since

φ;2 , 0, then, by Remark 3.1, the metric F is projectively flat (Gkmk = 0) if and only if the

anisotropic conformal factor is a first integral of the geodesic spray S (i.e. φ,1 = 0). �

Remark 3.2. (i): Let F = eφF be non-Riemannian with φ is horizontally constant (i.e. δiφ = 0),
then the anisotropic conformal transformation (2.8) is C-anisotropic if and only if 2φ;2Gkmk =

εFGi
kmkmi, by Proposition 3.1 (ii) and (3.2).
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(ii): When the conformal factor in (2.8) is a function of positional argument, both C-anisotropic and
C-anisotropic conformal transformations reduce to the well-known C-conformal transformation.

Definition 3.3. The anisotropic conformal change (2.8) is said to be horizontal C-anisotropic conformal if

(δiφ)Ci
jk = 0. Similarly, it is said to be horizontal C-anisotropic conformal if (δiφ)C

i
jk = 0.

Theorem 3.1. Let (M, F) be a Finsler surface and (2.8) be the anisotropic conformal transformation. Then
we have the following:

(i): the anisotropic conformal transformation (2.8) is horizontal C-anisotropic conformal if and only if
either F is Riemannian or φ,2 = 0.

(ii): the anisotropic conformal transformation (2.8) is horizontal C-anisotropic conformal if and only
if I = ε

2 (lnρ− 4φ);2 or φ,2 = φ,1φ;2.

(iii): The anisotropic conformal change (2.8) between non-Riemannian surfaces is a horizontal C-
anisotropic and C-anisotropic if and only if the geodesic spray is invariant.

Proof. (i): The anisotropic conformal transformation (2.8) is horizontal C-anisotropic confor-

mal means that

0 = (δiφ)Ci
jk = (φ,1`i + φ,2mi)

I

F
mim jmk =

εφ,2I

F
m jmk,

which is equivalent that either F being Riemannian or φ,2 = 0.

(ii): From (2.10) and (2.11), the anisotropic conformal transformation (2.8) is a horizontal

C-anisotropic conformal if and only if

0 =(δiφ)C
i
jk =

1
F
[(φ,1`i + φ,2mi)(I+ 2εφ;2 −

ερ;2

2ρ
)(mim jmk − εφ;2`

im jmk)]

=
1
F
[(I+ 2εφ;2 −

ερ;2

2ρ
)(εφ,2m jmk − εφ,1φ;2m jmk)].

Hence, the anisotropic conformal transformation (2.8) is horizontal C-anisotropic conformal

if and only if I = ε
2 [
ρ;2
ρ − 4φ;2] =

ε
2 (lnρ− 4φ);2 or φ,2 = φ,1φ;2.

(iii): (⇐=) If the geodesic spray is invariant, thenφ is horizontally constant [22, Theorem 4.11].

Consequently, the anisotropic conformal transformation (2.8) is horizontal C-anisotropic

and C-anisotropic.

(=⇒) If the anisotropic conformal change (2.8) is a horizontal C-anisotropic and C-

anisotropic. Also, F and F are non-Riemannian. Then, we get φ,2 = 0, and φ,2 = φ;2φ,1.

Therefore, φ,1 = φ,2 = 0 (as φ;2 , 0) which implies that the geodesic spray is invariant.
�

Proposition 3.3. Let (M, F) (resp. (M, F)) be non-Riemannian surface and (2.8) be a horizontal C-
anisotropic (resp. horizontal C-anisotropic). The geodesic spray is invariant if and only if the conformal
factor is first integral of S (resp. either φ,2 = 0 or φ,1 = 0) .

Proof. Let the conformal factor be first integral of S and (2.8) be horizontal C-anisotropic conformal,

provided that F is non-Riemannian, then by Proposition 3.1, we get φ,1 = 0 = φ,2 which is
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equivalent to φ is constant horizontally which means the geodesic spray is invariant under the

anisotropic change (2.8) by [22, Theorem 4.11]. In the case of (M, F) being a non-Riemannian

surface and (2.8) being horizontally C-anisotropic, we have φ,2 = φ;2φ,1. Then the geodesic spray

is invariant if and only if either φ,2 = 0 or φ,1 = 0. �

Proposition 3.4. Let (M, F) be non-Riemannian surface and (2.8) be a horizontal C-anisotropic. The two
geodesic sprays S and S are projectively equivalent if and only if φ;2,1 = 0 ( i.e. φ;2 is first integral of the
geodesic spray S).

Proof. The two geodesic sprays S and S are projectively equivalent if and only if Q = 0, by [22,

Theorem 5.2]. Then from (2.14) and (2.6), we have

0 = φ;2φ,1 + φ,1;2 − 2φ,2 = φ;2φ,1 + φ;2,1 −φ,2 (3.8)

Since (2.8) is a horizontal C-anisotropic conformal change, provided that (M, F) is a non Riemannian

metric, then from Proposition 3.1 (ii) and (3.8), the two geodesic sprays S and S are projectively

equivalent if and only if φ;2,1 = 0. �

Remark 3.3. Let (2.8) be the anisotropic conformal transformation between non-Riemannian metrics. We
have the following:

(i): From the commutation formula (2.6), the conditions that φ and φ;2 are first integral of the geodesic
spray S is equivalent to that S and S are invariant under the anisotropic conformal change (2.8).

(ii): The anisotropic conformal transformation (2.8) is C-anisotropic and horizontal C-anisotropic
conformal if and only if Gi

kmkmi = 0, which follows from Proposition 3.1 (i), (3.3) and Theorem 3.1.
(iii): The anisotropic conformal transformation (2.8) is C-anisotropic and horizontal C-anisotropic

conformal if and only if 2φ;2Gkmk = εFGi
kmkmi.

We have discussed the C-anisotropic conformal transformation ((∂iφ)Ci
jk = 0) and horizontal

C-anisotropic conformal transformation ((δiφ)Ci
jk = 0). These two types of anisotropic conformal

transformation reduce to C-conformal transformation when the conformal factor φ is a function of

x only. If we take the condition as (∂̇iφ)Ci
jk = 0 (what we call “vertical C anisotropic conformal"),

then it does not reduce to the C-conformal transformation.

Definition 3.4. The proper anisotropic conformal change (2.8) is said to be vertical C-anisotropic conformal

change if (∂̇iφ)Ci
jk = 0. Similarly, (2.8) is said to be vertical C-anisotropic conformal change if (∂̇iφ)C

i
jk = 0.

Proposition 3.5. Let (M, F) be a conic pseudo-Finsler surface. The anisotropic conformal change (2.8) is
vertical C-anisotropic if and only if F is Riemannian. Moreover, the anisotropic conformal change (2.8) is
vertical C-anisotropic if and only if F is Riemannian.

Proof. Since, we have, by (2.2), (2.3) and (2.4),

(∂̇iφ)Ci
jk =

I

F
(∂̇iφ)mim jmk =

I

F2 εφ;2m jmk.
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Consequently, the anisotropic conformal transformation (2.8) is vertical C-anisotropic if and only

if F is Riemannian (as φ;2 , 0). Secondly, the anisotropic conformal change (2.8) is vertical C-

anisotropic if and only if

0 = (∂̇iφ)C
i
jk = φ;2miI(mim jmk − εφ;2`

im jmk) = εφ;2Im jmk.

As φ;2 , 0, the anisotropic conformal transformation (2.8) is vertical C-anisotropic if and only if F
is Riemannian. �

Vector fields in differential geometry, especially concurrent vector fields, are essential for under-

standing manifold geometry. Concurrent vector fields play a key role in characterizing geometric

properties in Riemannian and Finsler spaces. In 1950, Tachibana established the basis for inves-

tigating concurrent vector fields in Finsler spaces [20]. Then, Hashiguchi studied the effect of

C-conformal change on Finsler metrics in 1976, linking them to concurrent vector fields [9] . The

notion of a semi-concurrent vector field was introduced by N. Youssef and colleagues in 2019 [24].

Definition 3.5. [24] A vector field Xi(x) on M is said to be semi-concurrent if it satisfies

XiCi jk = 0. (3.9)

Remark 3.4. [15, Example 3.1.1.1] Let (M, F) be a conic pseudo-Finsler surface. The vector field Xi(x) =
A(x, y)`i + B(x, y)mi in M is a function of position only if and only if A;2 = B and B;2 = −ε(A−IB).
Similarly, a covariant vector field wi(x) = C(x, y)`i + D(x, y)mi is a function of x only if and only if
C;2 = D and D;2 = −ε(C−ID).
Also, we have if one of “A and B" or “C and D" vanishes then the other vanishes also.

We introduce an alternative proof to the known result that a two-dimensional Finsler manifold

admitting a semi-concurrent vector field is Riemannian [24, Theorem 3.9 (a)].

Proposition 3.6. A conic pseudo-Finsler surface (M, F) admits semi-concurrent vector field if and only if
Fis Riemannian.

Proof. Assume that (M, F) admits semi-concurrent vector field Xi(x) = A(x, y)`i + B(x, y)mi, then

we have

0 = Xi(x)Ci jk =
I

F
(A(x, y)`i + B(x, y)mi)mim jmk =

εI
F

B(x, y)m jmk.

Which is equivalent to either F is Riemannian or B(x, y) = 0. From Remark 3.4, the later shows

that Xi is zero vector, which is contradiction. Hence the result. �

Now, we will determine the necessary and sufficient condition for the property of admitting a

semi-concurrent vector field to be preserved under the anisotropic conformal change (2.8).

Proposition 3.7. Let (2.8) be the anisotropic conformal transformation of a Finsler space (M, F) which
admits a semi-concurrent vector field. A necessary and sufficient condition for (M, F) to admit a semi-
concurrent vector field is that the function (4φ− lnρ) is isotropic.
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Proof. Let (M, F) admits a semi-concurrent vector field, by Proposition 3.6, we get I = 0. Also,

(M, F) admits a semi-concurrent vector field if and only if F is Riemannian, or equivalently I = 0,

that is

I+ 2εφ;2 −
ερ;2

2ρ
= 0. (3.10)

Therefore, (3.10) becomes 2εφ;2 −
ερ;2
2ρ = 0, which is (4φ − lnρ);2 = 0. Then, (M, F) admits a

semi-concurrent vector field is equivalent to (4φ− lnρ) is an isotropic function. �

Remark 3.5. (i): From (2.13) and Proposition 3.7 a necessary and sufficient condition for (M, F) to
admit a semi-concurrent vector field is that φ;2;2;2 + 6φ;2φ;2;2 + 4(φ;2)3 + 4εφ;2 = 0, provided
that, (M, F) admits a semi-concurrent vector field.

(ii): If φ is a function of position only, the property of admitting a semi-concurrent vector field is
conserved. In other words, the property of admitting a semi-concurrent vector field is preserved if
the anisotropic conformal change is reduced to an isotropic conformal change.

Corollary 3.1. Let (M, F) be a conic pseudo-Finsler surface and (2.8) be a proper anisotropic conformal
transformation. If g = e4φg, then the Finsler metric F admits a semi-concurrent vector if and only if
φ;2;2 = (φ;2)2.

Proof. Since g = e4φg is equivalent to σ = (φ;2)2, then from (2.9) we get

I+ εφ;2 =
−εφ;2;2

φ;2
. (3.11)

Also, by using (2.13) we have ρ = ε, ρ;2 = 0. Moreover, Remark 3.5 and(3.11) gives rise to the

Finsler metric F admits a semi-concurrent vector if and only if

0 = I+ 2εφ;2 −
ερ;2

2ρ
=
−εφ;2;2

φ;2
+ εφ;2 =

ε(−φ;2;2 + (φ;2)2)

φ;2
.

Hence, F admits a semi-concurrent vector if and only if φ;2;2 = (φ;2)2. �

4. Anisotropic φT-Condition

The T-tensor “FTi jkh = I;2 mim jmkmh" is one of the fundamental objects in Finsler geometry. The

Finsler metric satisfies the T-condition if its T-tensor vanishes identically. The T-condition and

σT-condition are equivalent in the case of Finsler surfaces [5, Theorem 3.5].

Definition 4.1. A Finsler space (M, F) satisfies the σT-condition if M admits a non-constant smooth
function σ such that (∂iσ)Ti

jkr = 0.

We present an alternative proof of [5, Theorem 3.5]

Proposition 4.1. A two-dimensional Finsler metric satisfies σT-condition if and only if has vanishing
T-tensor.
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Proof. Let (M, F) satisfy σT-condition, that is, (∂iσ)Ti
jkr = 0. Then, by (2.4), (2.2) and the definition

of T-tensor, we have

0 = ∂iσ = (δiσ)Ti
jkr = (σ,1`i + σ,2mi)

I;2

F
mim jmkmr =

εI;2σ,2

F
m jmkmr. (4.1)

Consequently, the Finsler metric F satisfies σT-condition if and only if either F has vanishing T-

tensor (i.e., I;2 = 0) or σ,2 = 0. The later gives σ,2 = σ;2 = 0. Then, σ is a constant function, by

Lemma 2.1, which contradicts σ is non-constant function. �

From Proposition 4.1, any Landsberg surface satisfies the σT-condition is Berwaldian [5]. Under

the anisotropic conformal transformation (2.8), we see that the conformal factor depends on both

position and direction arguments and the transformation of the T-tensor is not invariant:

Ti jhk =
εe3φ

ρ

[
Ti jkh +

1
2Fρ

(
4ερφ;2;2 + ρ;2(I+ 2εφ;2 +

ερ;2

2ρ
) − ερ;2;2

)
mim jmhmk

]
.

This leads us to define φT-condition, φT-condition, horizontal φT-condition and horizontal

φT-condition and determine the conditions under which these properties coincide with the T-

condition. In other words, we aim to find the conditions such that any Landsberg surface that

satisfies these properties is a Berwald surface. In Finsler surfaces, the T-tensor components Ti
jkr are

defined by FTi
jkr = I;2mim jmkmr. By using (2.10), under the anisotropic conformal transformation

(2.8). We have

F T
i
jkr = I;bmim jmkmr = e2φ

√
ε
ρ
I;2(mi

− εφ;2`
i)m jmkmr (4.2)

Also, from [23, §2] we have

I; b =
√
ερ I;2, (4.3)

I, a = e−φ [I,1 −
2ε
F2 QI;2], (4.4)

I, b = e−φ
√
ερ [I,2 −φ;2 I,1 −

ε

F2 (εP + Q;2 − εIQ− 2φ;2 Q)I;2], (4.5)

where

I;2 =

√
ερ

2ρ
[ρ;2(I+ 2εφ;2 +

ε
2
(lnρ);2) + 2ρ(I;2 + 2εφ;2;2) − ερ;2;2]. (4.6)

I,1 =

√
ερ

2ρ
[ρ,1(I+ 2εφ;2 +

ε
2
(lnρ);2) + 2ρ(I,1 + 2εφ;2,1) − ερ;2,1]. (4.7)

I,2 =

√
ερ

2ρ
[ρ,2(I+ 2εφ;2 +

ε
2
(lnρ);2) + 2ρ(I,2 + 2εφ;2,2) − ερ;2,2]. (4.8)

The Landsbergian property of F is characterized by I,a = 0 and the Berwaldian property of F is

characterized by I,a = 0 = I,b.
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Definition 4.2. The anisotropic conformal change (2.8) is said to be satisfying the anisotropic φT-condition
if (∂iφ)Ti

jkr = 0. Similarly, the anisotropic conformal change (2.8) is said to be satisfying the anisotropic

φT-condition if (∂iφ)T
i
jkr = 0.

Lemma 4.1. The anisotropic conformal change (2.8) satisfies the anisotropic φT-condition if and only if
either mi∂iφ = 0 or F has vanishing T-tensor. Similarly, The anisotropic conformal change (2.8) satisfies
the anisotropic φT-condition if and only if either mi∂iφ = εφ;2`i∂iφ or F has vanishing T-tensor.

Proof. The anisotropic conformal change (2.8) satisfies the anisotropic φT-condition, by definition,

means that

0 = (∂iφ)Ti
jkr =

I;2

F
m jmkmr(mi∂iφ).

Which is equivalent to either F has vanishing T-tensor or mi∂iφ = 0. Similarly, from (4.2), (2.8)

satisfies the anisotropic φT-condition is equivalent to

0 = (∂iφ)T
i
jkr = eφ

√
ε
ρ

I;2

F
(mi∂iφ− εφ;2`

i∂iφ)m jmkmr.

Thereby, the anisotropic φT-condition is satisfied if and only if either mi∂iφ = εφ;2`i∂iφ or I;2 = 0.

Then, either F has vanishing T-tensor, by [23, Remark 4.1], or mi∂iφ = εφ;2`i∂iφ . �

Theorem 4.1. Let F = eφF be the anisotropic conformal transformation (2.8). Then we have:

(i): If F is a Landsberg metric and (2.8) satisfies the anisotropicφT-condition, provided that, mi∂iφ , 0,
then F is Berwaldian.

(ii): If (M, F) is a Landsberg surface and (2.8) satisfies the anisotropic φT-condition, provided that,
mi∂iφ , εφ;2`i∂iφ, then (M, F) is Berwaldian. In other words, a non-Riemannian Landsberg
surface (M, F) is Berwaldian if the anisotropic φT-condition is satisfied, provided that, (2.8) does
not C-anisotropic conformal change.

Proof. (i) and first part of (ii) Follows from Lemma 4.1 and the fact that any Landsberg surface

with a vanishing T-tensor is Berwaldian. The proof of second part of (ii): As, (2.8) does not satisfy

C-anisotropic conformal change and (M, F) is a non-Riemannian surface, then from Proposition

3.1, we get

mi∂iφ , εφ;2`
i∂iφ. (4.9)

Since (2.8) satisfies the anisotropic φT-condition, then from Lemma 4.1 and (4.9), we get I;2 = 0,

consequently, (M, F) has vanishing T-tensor. Hence (M, F) is Berwaldian. �

Remark 4.1. Every C-anisotropic conformal transformation satisfies the φT-condition. Correspondingly,
every C-anisotropic conformal transformation satisfies the φT-condition. However, the converse is not true
in general, that is, not every anisotropic conformal transformation satisfies theφT-condition is C-anisotropic
conformal transformation.
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Definition 4.3. The anisotropic conformal transformation (2.8) is said to be satisfying the horizontal φT-
condition if (δiφ)Ti

jkr = 0. Similarly, the anisotropic conformal transformation (2.8) is said to be satisfying

the horizontal φT-condition if (δiφ)T
i
jkr = 0.

Proposition 4.2. Let (M, F) be a conic pseudo-Finsler surface. Then we have the following:

(i): The anisotropic conformal transformation (2.8) satisfies horizontal φT-condition if and only if
either F has vanishing T-tensor or φ,2 = 0.

(ii): The anisotropic conformal transformation (2.8) satisfies horizontal φT-condition if and only if F
has vanishing T-tensor or φ,2 = φ,1φ;2.

Proof. (i): Assume that the anisotropic conformal transformation (2.8) satisfies horizontal

φT-condition, then we have

0 = (δiφ)Ti
jkr = (φ,1`i + φ,2mi)I;2mim jmkmr = εφ,2I;2m jmkmr,

which is equivalent to that either F has vanishing T-tensor or φ,2 = 0.

(ii): From (4.2), the anisotropic conformal transformation (2.8) satisfies horizontal φT-

condition if and only if

0 =(δiφ)T
i
jkr = [(φ,1`i + φ,2mi)I;2(mim jmkmr − εφ;2`

im jmkmr)]

=I;2(εφ,2m jmkmr − εφ,1φ;2m jmkmr)].

Hence, the anisotropic conformal transformation (2.8) satisfies horizontal φT-condition if

and only if F has vanishing T-tensor or φ,2 = φ,1φ;2.
�

Theorem 4.2. Assume that (2.8) is a vertical C-anisotropic conformal change with φ;2 being horizontally
constant. Then the following are equivalent:

(i): The Finsler metric F is Landsbergian.
(ii): The anisotropic conformal change (2.8) satisfies the horizontal φT-condition.
(iii): The Finsler metric F is Berwaldian or the two geodesic sprays S and S are projectively equivalent.

Proof. We assume that (2.8) is a vertical C-anisotropic change. By Proposition 3.5, F is a Riemannian

metric and φ;2 is horizontally constant, by assumption. Then, according to [23, Corollary 2.5], we

have that ρ and ρ;2 are horizontally constant. This implies that

I = ρ,1 = ρ,2 = ρ;2,1 = ρ;2,2 = 0. (4.10)

(i)⇐⇒ (ii) It follows by [23, Proposition 4.7] and Proposition 4.2 (ii).
(ii)=⇒ (iii) Assume that (2.8) satisfies the horizontal φT-condition. By Proposition 4.2, we have

I;2 = 0 or φ,2 = φ;2φ,1. First, if I;2 = 0, substituting from (4.10) into (4.7) and (4.8), we get

I;2 = 0 = I,1 = I,2. (4.11)
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Substituting (4.11) into (4.4) and (4.5), we find that F is Berwaldian. Secondly, if φ;2φ,1 = φ,2 and

φ;2 is horizontally constant, by assumption and using the commutation formula (2.6), we have

0 = φ;2φ,1 + φ;2,1 −φ,2 = φ;2φ,1 + φ,1;2 −φ,2 = Q. (4.12)

(iii)=⇒ (i) Let F be a Berwald metric then F Landsbergian. Also, if the two geodesic spray S and

S are projectively equivalent, using (4.10), we get

Q = I,1 = 0. (4.13)

Substituting (4.13) into (4.4), we find that F is Landsbergian. �

Definition 4.4. The proper anisotropic conformal change (2.8) is said to be satisfying the vertical φT-

condition if (∂̇iφ)Ti
jkr = 0. Similarly, (2.8) is said to be satisfying the verticalφT-condition if (∂̇iφ)T

i
jkr = 0.

Lemma 4.2. Let (M, F) be a conic pseudo-Finsler surface. The anisotropic conformal change (2.8) satisfies
the vertical φT-condition if and only if F has a vanishing T-tensor.

Proof. We have, by (2.2),

(∂̇iφ)Ti
jkr =

I;2

F
(∂̇iφ)mim jmkmr =

εI;2

F2 φ;2m jmkmr.

Consequently, the anisotropic conformal transformation (2.8) satisfies the vertical φT-condition if

and only if F has a vanishing T-tensor. �

According to Lemma 4.2, we have

Remark 4.2. (i): The anisotropic conformal transformation (2.8) satisfies the vertical φT-condition if
and only if F has a vanishing T-tensor.

(ii): The φT-condition is equivalent to the T-condition.

From Remark 4.2 and the fact that any Landsberg surface satisfies the T-condition is Berwaldian,

we have

Corollary 4.1. Let F be anisotropically conformal to F by (2.8). Then, we have the following:

(i): If F is a Landsberg metric and (2.8) satisfies the vertical φT-condition, then, F is Berwaldian.
(ii): If F is a Landsberg metric and (2.8) satisfies the vertical φT-condition, then, F is Berwaldian.

5. Special Choice of the Conformal Factor

In this section, we assume that F is a non-Riemannian metric and the conformal factor of the

anisotropic conformal transformation (2.8) is the main scalar I of F, that is,

F(x, y) = eI(x,y)F(x, y). (5.1)
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From (2.9)-(2.15) then we have the following:

σ = I;2;2 + εII;2 + 2 (I;2)
2, (5.2)

2Q = ερF2(I;2I,1 + I,1;2 − 2I,2), (5.3)

2P = −ρF2
I;2(I;2I,1 + I,1;2 − 2I,2) + F2

I,1. (5.4)

Furthermore, from (5.3) and (5.4), we get

2εI;2Q + 2P = F2
I,1. (5.5)

Proposition 5.1. Under the anisotropic conformal change (5.1), we have the following:

(i): If the conic pseudo-Finsler surface (M, F) has vanishing T-tensor, then the anisotropic conformal
change (5.1) reduces to isotropic conformal change.

(ii): If (M, F) is a Berwald surface, then the geodesic spray is invariant.
(iii): If (M, F) is a Landsberg surface, then the geodesic spray of F has the the coefficients

G
i
= Gi

− ερF2
I,2mi + ρF2

I;2I,2`i.

Proof. (i): It follows from the fact that a Finsler F has a vanishing T-tensor if and only if the

main scalar (conformal factor) is a function of x only.

(ii): Let (M, F) be a Berwald surface, then I,1 = I,2 = 0. Substituting into (5.3) and (5.4),

we get P = Q = 0. Then, by (2.12), the geodesic spray is invariant under the anisotropic

change.

(iii): Since F is Landsbergian, that is, I,1 = 0. Thus, (5.3) and (5.4) become Q = −ερF2
I,2 and

P = ρF2
I;2 I,2. Hence, the result follows from (2.12).

�

Lemma 5.1. Assume that the anisotropic conformal change (5.1) satisfies the C-anisotropic conformal
change. Then, F is weakly Berwaldian if and only if Gi

kmkmi = 0.

Proof. From Proposition 3.1 and (3.3), the anisotropic conformal transformation (5.1) satisfies the

C-anisotropic conformal change if and only if I,2 = −
εφ;2

F Gi
kmkmi. Then F is weakly Berwald if and

only if Gi
kmkmi = 0. �

Let F be a non-Riemannian metric. From Proposition 3.1: the property of C-anisotropic confor-

mal is invariant if and only if

`i∂iI = 0⇐⇒ I,1 = −
2
F2I;2Gk mk.

Lemma 5.2. Under the anisotropic conformal change (5.1), if F is a non-Riemannian metric and the
property of C-anisotropic conformal is invariant, then, the Finsler metric F is Landsbergian if and only if it
is projectively flat metric.

Theorem 5.1. The Finsler surface (M, F) is Berwaldian if one of the following is satisfied:

(i): (M, F) is a Landsberg surface and (5.1) is horizontal C-anisotropic conformal transformation.
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(ii): (M, F) is a Landsberg or weak Berwald surface and (5.1) is horizontal C-anisotropic conformal
transformation.

Proof. (i): Since (M, F) is a Landsberg surface (i.e., I,1 = 0) and (5.1) is a horizontal C-

anisotropic conformal transformation, then from Proposition 3.1, we have I,2 = 0. Thus,

(M, F) is a Berwald surface.

(ii): From Proposition 3.1, the anisotropic conformal change (5.1) is horizontal C-anisotropic

if and only if I,2 = I;2I,1. Then (M, F) is a Berwald surface if (M, F) is a Landsberg or

weak Berwald surface.
�

6. A Finslerian Schwarzschild-de Sitter Solution

An anisotropic conformal transformation differs from a conformal transformation in which it

can transform a Riemannian metric into a Finslerian metric [22, 23]. For instance, consider the

Riemannian metric defined on the 2-dimensional sphere by:

F(θ, η; yθ, yη) =
√
(yθ)2 + sin2(θ) (yη)2.

By using the conformal factor

φ = ln


√
(1− a2 sin2 θ)(yθ)2 + sin2 θ (yη)2 − a sin2 θ yη

(1− a2 sin2 θ)
√
(yθ)2 + sin2 θ (yη)2

 ,

we get the Finsler metric

F = eφF =

√
(1− a2 sin2(θ)) (yθ)2 + sin2(θ) (yη)2

1− a2 sin2(θ)
−

a sin2(θ) yη

1− a2 sin2(θ)
, (6.1)

where 0 ≤ a < 1 is a constant known as the Finsler parameter. It is worth noting that F is a two

dimensional Randers-Finsler space with constant positive flag curvature λ = 1 and is homotopy

equivalent to the two dimensional sphere with volume 4π, when a = 0, F = F. The Finslerian

analogue of Birkhoff’s theorem states that a Finslerian gravitational field with the symmetry of a

“Finslerian sphere”in vacuum must be static [14]. Building on this, the Einstein field equations

with a non-zero cosmological constant (Λ , 0) have been extended to the Finslerian framework

in [16], resulting in a Finslerian Schwarzschild-de Sitter solution that possesses the symmetry of a

“Finslerian sphere”. An example of such a Finslerian sphere is given by the expression (6.1). We

have the following:

(i): The Finsler metric F is a Riemannian metric of constant curvature and does not satisfy the

Hamel’s equations, therefore it is not locally projectively flat.

(ii): F is C-anisotropic conformal, horizontal C-anisotropic, vertical C-anisotropic and satisfies

the φT-condition, as F is a Riemannian metric.
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(iii): In a non-Riemannian Randers space (M, F), the 1-form is not covariantly constant with

respect to the Riemannian metric α =

√
(1−a2 sin2(θ)) (yθ)2+sin2(θ) (yη)2

1−a2 sin2(θ)
. Hence, it is neither

Berwaldian nor Landsbergian (by using [18, Theorem 3.2].)

In more details: the Riemannian metric ai j and its inverse ai j are given by

(ai j) =

 1
1−a2 sin2 θ

0

0 sin2 θ
(1−a2 sin2 θ)2

 , (ai j) =

1− a2 sin2 θ 0

0 (1−a2 sin2 θ)2

sin2 θ

 .

The corresponding non-zero coefficients γh
ij of the Levi-Civita connection are given by:

γθθθ =
a2 sinθ cosθ
(1− a2 sin2 θ)

, γ
η
θη

=
cosθ(1 + a2 sin2 θ)

sinθ (1− a2 sin2 θ)
, γθηη = −

cosθ sinθ (1 + a2 sin2 θ)

(1− a2 sin2 θ)2
.

Since, the 1-form β = bi yi, with bθ = 0, bη = −a sinθ
1−a2 sin2 θ

, the covariant derivative of bθ with

respect to the Levi-Civita connection is given by:

∇ηbθ =∂ηbθ − γθθηbθ − γ
η
θη

bη = −
−a sinθ

(1− a2 sin2 θ)

cosθ(1 + a2 sin2 θ)

sinθ (1− a2 sin2 θ)
=

a cosθ(1 + a2 sin2 θ)

(1− a2 sin2 θ)2
.

Therefore, the 1-form is not covariantly constant with respect to the Riemannian metric α.

(iv): The Finsler metric F is of constant curvature λ = 1 and not locally projectively flat [19,

Theorem 1.1].

(v): By using Mapple’s package uploaded to

https://github.com/salahelgendi/Special_anisotropics_Section_6

we get mi∂iφ− εφ;2`i∂iφ , 0 and φ,2 , φ;2φ,1. According to Proposition 3.1 and Theorem

3.1, the anisotropic conformal change (6.1) is not C-anisotropic conformal and does not

satisfy the horizontal C-anisotropic property, as F is not Riemannian. Also, (6.1) is not a

vertical C-anisotropic conformal change.

(vii): As F is a Riemannian metric, it admits a semi-concurrent vector field. However, F is not

(as it is a non-Riemannian metric).

7. Concluding Remarks

In conformal theory, special conformal transformations like C-conformal transformations have

been studied. This transformation depends on the Cartan tensor (which is invariant under the

conformal change) and the conformal factor (which only depends on position). The Cartan tensor

is not invariant under anisotropic conformal transformations and the conformal factor depends

on the position and direction. This motivated us to study C-anisotropic, C-anisotropic, horizontal

C-anisotropic and horizontal C-anisotropic transformations.

Under the anisotropic conformal transformation F = eφF defined by (2.8), the following points are

to be highlighted:

(i): We have characterized C-anisotropic, C-anisotropic, horizontal C-anisotropic and hori-

zontal C-anisotropic transformations.

https://github.com/salahelgendi/Special_anisotropics_Section_6
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(ii): We have determined the conditions under which the properties of C-anisotropic and

horizontal C-anisotropic are preserved under the anisotropic conformal change (2.8).

(iii): Let (2.8) be the anisotropic conformal transformation between two non-Riemannian

surfaces then we have:

(a): If the property of C-anisotropic conformal is preserved, then F is projectively flat if

and only if φ is a first integral of the geodesic spray S.

(b): If F is a flat metric and the anisotropic conformal transformation (2.8) is C-anisotropic

conformal change, then the two sprays S and S are projectively equivalent if and only

if φ;2 is a first integral of the geodesic spray S.

(c): If (2.8) satisfies the horizontal C-anisotropic (or horizontal C-anisotropic), the geo-

desic spray is invariant if and only if the conformal factor is first integral of the geodesic

spray S.

(d): If (2.8) satisfies the horizontal C-anisotropic, the two geodesic sprays S and S are

projectively equivalent if and only if φ;2 is a first integral of the geodesic spray S.

(e): If the conformal factor is a function of x only, the C-anisotropic, C-anisotropic, hori-

zontal C-anisotropic and horizontal C-anisotropic transformations are reduced to the

well-known C-conformal transformation. However, the vertical C-anisotropic confor-

mal transformation does not reduce to C-conformal and it characterizes the property

of F to be a Riemannian metric.

Secondly, in conformal transformation, a smooth non-constant function σ on M that satisfies certain

conditions with the T-tensor is called the σT-condition. Based on the fact that the T-tensor is not

invariant under the anisotropic conformal transformation (2.8) and the conformal factor depend

on position and direction arguments, we discuss under what condition (2.8) satisfiesφT-condition,

φT-condition, horizontal φT-condition and horizontal φT-condition. This is achieved through the

existence of a function φ that satisfies certain conditions with the T and T-tensors.

(i): We have established the characterization of the anisotropic conformal transformation

(2.8) satisfies the φT-condition, φT-condition, horizontal φT-condition and horizontal φT-

condition.

(ii): Since any Landsberg metric satisfying the σT-condition is Berwaldian, we have found un-

der what conditions a Landsberg metric F (resp. F) that satisfies φT-condition or horizontal

φT-condition (resp. φT-condition or and horizontal φT-condition) is Berwaldian.

(iii): Under a vertical C-anisotropic conformal change with horizontally constant φ;2, the

Finsler metric F is Landsbergian if and only if the transformation satisfies the horizontal

φT-condition, which is also equivalent to F being Berwaldian or the two geodesic sprays S
and S are projectively equivalent.

(iv): The property that the anisotropic conformal transformation (2.8) satisfies the vertical

φT-condition is equivalent to that it satisfies the T-condition.
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(v): If the conformal factor depends on the position only, the φT-condition, φT-condition,

horizontal φT-condition and horizontal φT-condition are simplified to the notion of σT-

condition. However, the φT-condition does not simplify to the σT-condition and is equiv-

alent to the T-condition.

Finally, we provide the following table which summarizes all special anisotropic conformal

transformations that we studied.

Table: Equivalence of special anisotropic conformal changes
Special anisotropic change equivalent conditions

C-anisotropic F is Riemannian or mi∂iφ = 0

C-anisotropic F is Riemannian or mi∂iφ− εφ;2`i∂iφ = 0

horizontal C-anisotropic F is Riemannian or φ,2 = 0

horizontal C-anisotropic F is Riemannian or φ,2 = φ;2φ,1

vertical C-anisotropic F is Riemannian

φT-condition F has vanishing T-tensor or mi∂iφ = 0

φT-condition F has vanishing T-tensor or mi∂iφ = 0

horizontal φT-condition F has vanishing T-tensor or φ,2 = 0

horizontal φT-condition F has vanishing T-tensor or φ,2 = φ;2φ,1

vertical φT F is Riemannian
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