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Abstract. The single-valued neutrosophic set (SVNS) is a widely known model for dealing with uncertain, conflicting,

and indeterminate information. In practice, the SVNSs are very useful tools to be used in solving multi-criteria

decision-making (MCDM), but in the process of processing by the three functions of SVNS the evaluation process

for this handling disappears. To overcome this deficiency, we present in this work a new approach called possibility

single-valued neutrosophic set (PSVNS) that differs from previous approaches. The implementation of this proposed

approach in this work is based on giving each of the three functions in SVNS a fuzzy degree ranging between 0 and

1. As a result, firstly, the elementary notion of possibility single neutrosophic set is proposed, and some of its primary

properties, i.e., subset, null set, absolute set, and complement are explored, as well as some numerical examples that

explain the mechanism of the obtained results. Secondly, the basic set-theoretic operations i.e., such as extended

union, the intersection of two PSVNSs, and the complement operation of PSVNS, as well as some relevant properties,

are investigated, and numerical examples are provided to illustrate the mechanism behind these results. Lastly, the

similarity measure between two PSVNSs is characterized with the help of an example. This technique of similarity

measure is successfully used in decision-making to choose the appropriate college.

Received: Jun. 29, 2025.

2020 Mathematics Subject Classification. 03E72, 03B52, 90B50.
Key words and phrases. fuzzy set; single -valued neutrosophic set; possibility fuzzy set; similarity measures; decision-

making.

https://doi.org/10.28924/2291-8639-23-2025-213
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-213


2 Int. J. Anal. Appl. (2025), 23:213

1. Introduction

Classical mathematical methods struggle to address complicated problems in everyday fields

such as economics, medical sciences, engineering, and management sciences due to the inherent

uncertainty in the graphical environments of these fields. To manage this shortage, Zadeh [1] found

the notion of fuzzy sets (FSs) as a mathematical structure that contains a membership foundation

called true membership and is denoted as follows µA. The degree of truth in FS emphasizes

the degree of belonging or membership to a certain particular object (element) from the initial

universal set space X. In 1986, Atanassov [2]realized that the degree of belonging in FS was no

longer sufficient, so he resorted to adding another degree called the degree of non-belonging, so

that the mathematical structure that combines the two degrees of belonging and non-belonging is

called intuitionistic fuzzy sets (IFSs).

Both FS and IFS have been a great inspiration to researchers, which has led them to present many

research achievements in all areas of life. Because science is constantly advancing, the scientist

Smarandache [3] appeared in 1998 and presented the neutrosophic set (NS) theory by adding a

new aspect to the aspect of correctness and disagreement, which is the neutrality principle to

cover human thinking. Mathematically, this theory consists of three functions, the starting point

of which is the universal set and the rest of each of which is the closed set 0 and 1. Because of

its integration with the previous tools, NS is considered a good tool for dealing with problems

that contain inaccurate, uncertain, and conflicting data. Thus, many research works related to this

theory have emerged, for instance: Yang et al [4] lighted a single valued neutrosophic set (SVNS)

to facilitate application in real applications. Chai et al. [5] proposed several similarity measures

for SVNSs and employed them in pattern recognition and medical diagnosis problems. Majumdar

et al. [6] introduced the measures of distance between two SVNSs and studied their properties.

Bolturk and Kahraman [7] introduced a novel Analytic Hierarchy Process (AHP) method for the

design-making process with interval-valued neutrosophic sets (IVNS). Al-Quran et al. [8,9] employ

the NS methods with some aggregation techniques. Hazaymeh and Bataihah [10,11]studied some

topological methods on SVNS. Maji [12] proposed the notion of a neutrosophic soft set (NSS)

by merging both soft sets (SSs) and NS. Deli and Broumi [13] studied the relationship between

two NSSs and their applications. Ali et al. [14] defined bipolar property on NSS and used this

method in design making. Al-Qudah et al. [15,16] showed some mathematical structures on NSSs

and employed them in solving some real-life applications. In addition, many researchers[17-21]

have employed these techniques to deal with issues characterised by ambiguity, uncertainty, and

obscurity.

On the other hand, Probability theory plays an important role in indicating the probability of

an event occurring or indicating the user’s confidence in the effectiveness of the assessment. From

the human thinking side, which drives the decision-making process, probability theory evaluates

outcomes and decisions according to well-studied criteria. Therefore, it is essential to employ

this theory in the fuzzy structures mentioned above. The concept of the possibility fuzzy soft
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sets (PFSSs) was first introduced by Alkhazaleh et al. [22] when they gives each overall PFSSs

structure has a fuzzy probability score ranging from 0 to 1, where this score expresses the degree

of satisfaction with this PFSSs evaluation. Based on this idea and following this trend, many

works have emerged through applying this idea to many vague concepts. Among these works

are: Selvachandran and Salleh [23] applied this idea to intuitionistic fuzzy soft sets. Karaaslan

[24] introduced concept of possibility neutrosophic soft set and defined some related properties.

Romdhini et al. [25] explored similarity measures of possibility interval-valued fuzzy soft sets and

possibility interval-valued fuzzy hypersoft sets, and they showed how these tools can be applied

in solving DM problems. Al-Qudah and Al-Sharqi [15] pointed out the similarity measures of

possibility interval-valued neutrosophic soft and checked it with some applications. Al-Hijjawi

and Alkhazaleh [26] introduced concept of Possibility Neutrosophic Hypersoft Set (PNHSS) and

their operations and discussed similarity measure between two PNHSSs. In addition to many

research works in this field, including [27-33].

From the above and through a comprehensive study of these research works, we note that the

degree of probability is related to the overall mathematical structure of the concept, given that

this concept consists of more than one belonging function. Accordingly, to overcome this gap,

we will present in this work a new organization of the concept presented in PSVNS by linking

or distributing the degree of fuzzy probability to all three mathematical components of SVNS.

Therefore, this work will provide greater freedom for the decision maker to set a probability score

(evaluation) for each of the SVNS scores, and thus the decision taken will become more credible

and reliable. The principal contributions in this work are described as follows:

(1) The new view of concepts in PSVNS has been introduced, where every SVN membership

has a fuzzy possibility grade.

(2) The comprehension investigation of the set-theoretic operations of PSVNS is proposed,

which is necessary for understanding the suggested idea.

(3) An algorithm is proposed based on a similarity measure between two PSVNSs to choose a

suitable real solution.

This manuscript is designed as follows: The definitions and features of SNS are covered in

Section 2. The definitions and basic properties of PSVNS are introduced in Section 3. The MADM

problem based on the similarity measure between two PSVNSs is proposed in Section 4.

2. Preliminaries

All authors have read and approved the final version of the manuscript. The authors contributed

equally to this work.

Definition 2.1. [4] Let V be a universe then the SVNS structure given as following:

Ö =
{〈
ε, T̈Ö (ε) , ÏÖ (ε) , F̈Ö (ε)

〉
|ε ∈ V

}
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is called SVNS where the three memberships functions: true
_

TΘ (ϋ):U→[0, 1],indeterminacy
_

IΘ (ϋ):U→[0, 1],falsity
_

F Θ (ϋ):U→[0, 1] all of them for component (ϋ) in U with stander condition

0≤
_

TΘ (ϋ)+
_

IΘ (ϋ)+
_

F Θ (ϋ) ≤3.

Definition 2.2. [4] The following structure defined on U

Θ̃ =
{〈
ϋ,

_

TΘ (ϋ) ,
_

IΘ (ϋ) ,
_

F Θ (ϋ)
〉
|ϋ ∈ U

}
is called SVNS where the three memberships functions: true

_

TΘ (ϋ):U→[0, 1],indeterminacy
_

IΘ (ϋ):U→[0, 1],falsity
_

F Θ (ϋ):U→[0, 1] all of them for component (ϋ) in U with stander condition

0≤
_

TΘ (ϋ)+
_

IΘ (ϋ)+
_

F Θ (ϋ) ≤3.

Definition 2.3. [4] Assume that
Ö1 =

{〈
ε, T̈Ö1

(ε) , ÏÖ1
(ε) , F̈Ö1

(ε)
〉
|ε ∈ V

}
and Ö2 =

{〈
ε, T̈Ö2

(ε) , ÏÖ2
(ε) , F̈Ö2

(ε)
〉
|ε ∈ V

}
be two

SVNSs on V. Then we know the basic operations as follows:
(i.) Ö1 is submerged in Ö2 and denotes as Ö1 ⊆ Ö2 if

T̈Ö1
(ε) ≤ T̈Ö2

(ε) , ÏÖ1
(ε) ≥ ÏÖ2

(ε) , F̈Ö1
(ε) ≥ F̈Ö2

(ε)

(ii.) Ö1 is equal in Ö2 and denotes as Ö1 = Ö2 if

T̈Ö1
(ε) = T̈Ö2

(ε) , ÏÖ1
(ε) = ÏÖ2

(ε) , F̈Ö1
(ε) = F̈Ö2

(ε)

(iii.) Ö1 union Ö2 denotes as Ö1 ∪ Ö2 given as following

Ö1 ∪ Ö2 =


max

(
T̈Ö1

(ε) , T̈Ö2
(ε)

)
min

(
ÏÖ1

(ε) , ÏÖ2
(ε)

)
min

(
F̈Ö1

(ε) , F̈Ö2
(ε)

)


(iv.) Ö1 intersection Ö2 denotes as Ö1 ∩ Ö2 given as following

Ö1 ∩ Ö2 =


min

(
T̈Ö1

(ε) , T̈Ö2
(ε)

)
max

(
ÏÖ1

(ε) , ÏÖ2
(ε)

)
max

(
F̈Ö1

(ε) , F̈Ö2
(ε)

)


(iiv.) The complement of Ö1 denotes as Öc
1 and given as following:

Öc
1 =


T̈Öc

1
(ε) = F̈Ö1

(ε)

ÏÖc
1
(ε) = 1− ÏÖ1

(ε)

F̈Öc
1
(ε) = T̈Ö1

(ε)


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3. Possibility single-valued neutrosophic environment

In this section, we will introduce PSVNS as a new approach. We also present the basic operations

related to this concept.

Definition 3.1. Let
V={ε̈1, ε̈2, ε̈3, ..., ε̈m} . Then the mathematical structure of PSVNS is given as follows:

Öp =
{〈
εm,

(
pT̈Ö

T̈Ö

)
(εm) ,

(
pÏÖ

ÏÖ

)
(εm) ,

(
pF̈Ö

F̈Ö

)
(εm)

〉
|εm ∈ V

}
where(

pT̈Ö
T̈Ö

)
(εm) : V → [0, 1] is the product of the probability degree with the truth-neutrosophic function.(

pÏÖ
ÏÖ

)
(εm) : V → [0, 1] is the product of the probability dgree with the non-neutrality-neutrosophic

function and
(
pF̈Ö

F̈Ö

)
(εm) : V → [0, 1] is the product of the probability dgree with the non-truth-

neutrosophic, such that there is stander condution given as following 0 ≤
(
pT̈Ö

T̈Ö

)
(εm) +

(
pÏÖ

ÏÖ

)
(εm) +(

pF̈Ö
F̈Ö

)
(εm) ≤ 3.

To explain the main definition above, we present the following numerical example.

Example 3.1. Let V={ε̈1, ε̈2, ε̈3} . Then a PSVNS Öp on V given as following:

Öp =


〈
ε̈1, (0.4 (0.7) , 0.6 (0.5) , 0.8 (0.4))

〉〈
ε̈2, (0.6 (0.3) , 0.3 (0.2) , 0.5 (0.4))

〉〈
ε̈3, (0.7 (0.4) , 0.9 (0.4) , 0.6 (0.2))

〉


Definition 3.2. A PSVNS Θ̃p =
{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) , p_
IΘ(ϋ)

_

IΘ (ϋ) , p_
F Θ(ϋ)

_

F Θ (ϋ)
〉
|ϋ ∈ U

}
on U is side

to Null-PSVNS and given as following

Θ̃∅p =
{〈
ϋ, p_

T Θ̃∅ (ϋ)

_

TΘ̃∅ (ϋ) , p_
I Θ̃∅ (ϋ)

_

I Θ̃∅ (ϋ) , p_
F Θ̃∅ (ϋ)

_

FΘ̃∅ (ϋ)
〉
|ϋ ∈ U

}
Where
p_
TΘ∅ (ϋ)

= 0,
_

TΘ∅ (ϋ) = 0, p_
IΘ∅ (ϋ)

= 0,
_

IΘ∅ (ϋ) = 0 and p_
F Θ∅ (ϋ)

= 0,
_

F Θ∅ (ϋ) = 0

Example 3.2. Assume that Öp given as following

Öp =


〈
ε̈1, (0 (0) , 0 (0) , 0 (0))

〉〈
ε̈2, (0 (0) , 0 (0) , 0 (0))

〉〈
ε̈3, (0 (0) , 0 (0) , 0 (0))

〉


Then the Öp here named Null-PSVNS.

Definition 3.3. A PSVNS Θ̃p =
{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) , p_
IΘ(ϋ)

_

IΘ (ϋ) , p_
F Θ(ϋ)

_

F Θ (ϋ)
〉
|ϋ ∈ U

}
on U is side

to Absolute-PSVNS and given as following

Θ̃U
p =

{〈
ϋ, p_

T Θ̃∅ (ϋ)

_

TΘ̃U (ϋ) , p_
I Θ̃U (ϋ)

_

I Θ̃U (ϋ) , p_
F Θ̃U (ϋ)

_

FΘ̃U (ϋ)

〉
|ϋ ∈ U

}
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Where
p_
TΘU (ϋ)

= 1,
_

TΘU (ϋ) = 1, p_
IΘU (ϋ)

= 1,
_

IΘU (ϋ) = 1 and p_
F ΘU (ϋ)

= 1,
_

F ΘU (ϋ) = 1

Example 3.3. Assume that Öp given as following

Öp =


〈
ε̈1, (1 (1) , 1 (1) , 1 (1))

〉〈
ε̈2, (1 (1) , 1 (1) , 1 (1))

〉〈
ε̈3, (1 (1) , 1 (1) , 1 (1))

〉


Then the Öp here named Absolute-PSVNS.

Definition 3.4. We say that the Θ̃1
p =

{〈
ϋ, p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
F Θ1 (ϋ)

_

F Θ1 (ϋ)

〉
|ϋ ∈ U

}
is

subset of Θ̃2
p =

{〈
ϋ, p_
TΘ2 (ϋ)

_

TΘ2 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

〉
|ϋ ∈ U

}
and denotes as Θ̃1

p ≤ Θ̃2
p

if :

p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) ≤ p_
TΘ2 (ϋ)

_

TΘ2 (ϋ), p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) ≥ p_
IΘ2 (ϋ)

_

IΘ2 (ϋ), p_
F Θ1 (ϋ)

_

F Θ1 (ϋ) ≥

p_
F Θ2 (ϋ)

_

F Θ2 (ϋ) .

Example 3.4. Assume that Ö1
p and Ö2

p given as following

Ö1
p =

{〈
ε̈1, (0.3 (0.5) , 0.4 (0.6) , 0.5 (0.4))

〉}
and

Ö2
p =

{〈
ε̈2, (0.4 (0.6) , 0.2 (0.1) , 0.3 (0.4))

〉}
Then here Θ̃1

p ≤ Θ̃2
p.

Definition 3.5. We say that the Θ̃1
p =

{〈
ϋ, p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
F Θ1 (ϋ)

_

F Θ1 (ϋ)

〉
|ϋ ∈ U

}
is

equal of Θ̃2
p =

{〈
ϋ, p_
TΘ2 (ϋ)

_

TΘ2 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

〉
|ϋ ∈ U

}
and denotes as Θ̃1

p = Θ̃2
p

if :

p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) = p_
TΘ2 (ϋ)

_

TΘ2 (ϋ), p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) = p_
IΘ2 (ϋ)

_

IΘ2 (ϋ), p_
F Θ1 (ϋ)

_

F Θ1 (ϋ) =

p_
F Θ2 (ϋ)

_

F Θ2 (ϋ) .

Example 3.5. Assume that Ö1
p and Ö2

p given as following

Ö1
p =

{〈
ε̈1, (0.3 (0.5) , 0.4 (0.6) , 0.5 (0.4))

〉}
and

Ö2
p =

{〈
ε̈2, (0.3 (0.5) , 0.4 (0.6) , 0.5 (0.4))

〉}
Then here Θ̃1

p = Θ̃2
p.
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Definition 3.6. The complement of PSVNS Θ̃p =

{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) , p_
IΘ(ϋ)

_

IΘ (ϋ) , p_
F Θ(ϋ)

_

F Θ (ϋ)

〉
|ϋ ∈ U

}
is denotes as Θ̃c

p =
{〈
ϋ, p_
TΘc (ϋ)

_

TΘc (ϋ) , p_
IΘc (ϋ)

_

IΘc (ϋ) , p_
F Θc (ϋ)

_

F Θc (ϋ)
〉
|ϋ ∈ U

}
.

Where
p_
TΘc (ϋ)

_

TΘc (ϋ) = p_
F Θ(ϋ)

.
_

F Θ (ϋ), p_
IΘc (ϋ)

_

IΘc (ϋ) =
(
1− p_

IΘ(ϋ)

)
.
(
1−

_

IΘ (ϋ)
)
, p_
F Θc (ϋ)

_

F Θc (ϋ) =

p_
TΘ(ϋ)

.
_

TΘ (ϋ) .

Example 3.6. Assume that Öp given as following

Öp =
{〈
ε̈1, (0.3 (0.5) , 0.4 (0.6) , 0.5 (0.4))

〉}
then the complement of Öp

Öc
p =

{〈
ε̈2, (0.5 (0.4) , 0.6 (0.4) , 0.3 (0.5))

〉}
Proposition 3.1. For PSVNS Θ̃p then

((
Θ̃p

)c)c
= Θ̃p.

Proof. This proof depends on the definition 3.6.

Firstly take Θ̃p =
{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) , p_
IΘ(ϋ)

_

IΘ (ϋ) , p_
F Θ(ϋ)

_

F Θ (ϋ)
〉
|ϋ ∈ U

}
and take

Θ̃c
p =

{〈
ϋ, p_
TΘc (ϋ)

_

TΘc (ϋ) , p_
IΘc (ϋ)

_

IΘc (ϋ) , p_
F Θc (ϋ)

_

F Θc (ϋ)
〉
|ϋ ∈ U

}
.

=
{〈
ϋ, p_

F Θ(ϋ)

_

FΘ (ϋ) ,
(
1− p_

I Θ(ϋ)

) (
1−

_

I Θ (ϋ)
)

, p_
TΘ(ϋ)

_

TΘ (ϋ)
〉
|ϋ ∈ U

}
Now take

((
Θ̃p

)c)c(
Θ̃c

p

)c
=

{〈
ϋ, p_

F Θc (ϋ)

_

FΘc (ϋ) ,
(
1− p_

I Θc (ϋ)

) (
1−

_

I Θc (ϋ)
)

, p_
TΘc (ϋ)

_

TΘc (ϋ)
〉
|ϋ ∈ U

}
=

{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) ,
(
1−

(
1− p_

IΘ(ϋ)

)) (
1−

(
1−

_

IΘ (ϋ)
))

, p_
F Θ(ϋ)

_

F Θ (ϋ)
〉
|ϋ ∈ U

}
=

{〈
ϋ, p_
TΘ(ϋ)

_

TΘ (ϋ) , p_
IΘ(ϋ)

_

IΘ (ϋ) , p_
F Θ(ϋ)

_

F Θ (ϋ)
〉
|ϋ ∈ U

}
= Θ̃p is a PSVNS.

�

Definition 3.7. The union between two PSVNSs

Θ̃1
p =

{〈
ϋ, p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
F Θ1 (ϋ)

_

F Θ1 (ϋ)

〉
|ϋ ∈ U

}
and

Θ̃2
p =

{〈
ϋ, p_
TΘ2 (ϋ)

_

TΘ2 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

〉
|ϋ ∈ U

}
given as following:

Θ̃1
p
⋃

Θ̃2
p =

{
〈ϋ, max

[
p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
TΘ2 (ϋ)

_

TΘ2 (ϋ)

]
,

min
[
p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ)

]
, min

[
p_
F Θ1 (ϋ)

_

F Θ1 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

]〉}
.
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Example 3.7. Assume that the following two PSVNSs

Θ̃1
p =


〈
ε̈1, (.3 (.8) , .9 (.6) , .2 (.7))

〉〈
ε̈2, (.7 (.1) , .8 (.6) , .3 (.9))

〉〈
ε̈3, (.6 (.1) , .6 (.7) , .5 (.6))

〉


and

Θ̃2
p =


〈
ε̈1, (.1 (.5) , .3 (.4) , .5 (.3))

〉〈
ε̈2, (.2 (.2) , .6 (.3) , .7 (.3))

〉〈
ε̈3, (.4 (.6) , .1 (.5) , .3 (.7))

〉


Then

Θ̃1
p

⋃
Θ̃2

p =


〈
ε̈1, (.3 (.8) , .3 (.4) , .2 (.3))

〉〈
ε̈2, (.7 (.2) , .6 (.3) , .3 (.3))

〉〈
ε̈3, (.6 (.6) , .1 (.5) , .3 (.6))

〉


Proposition 3.2. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
Ö2

p =
{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
and

Ö3
p =

{〈
ε,

(
pT̈Ö3

T̈Ö2

)
(ε) ,

(
pÏÖ3

ÏÖ3

)
(ε) ,

(
pF̈Ö3

F̈Ö3

)
(ε)

〉
|ε ∈ V

}
be three PSVNSs on V. Then a following

points are satisfied:
(i.) Ö1

p ∪ Öφ
p = Öφ

p ∪ Ö1
p = Ö1

p

(ii.) Ö1
p ∪ ÖV

p = ÖV
p ∪ Ö1

p = ÖV
p

(iii.) Ö1
p ∪ Ö2

p = Ö2
p ∪ Ö1

p

(iv.) Ö1
p ∪

(
Ö2

p ∪ Ö3
p

)
=

(
Ö1

p ∪ Ö2
p

)
∪ Ö3

p

Proof. Direct depending on the definition 3.7 �

Definition 3.8. The intersection between two PSVNSs

Θ̃1
p =

{〈
ϋ, p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
F Θ1 (ϋ)

_

F Θ1 (ϋ)

〉
|ϋ ∈ U

}
and

Θ̃2
p =

{〈
ϋ, p_
TΘ2 (ϋ)

_

TΘ2 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

〉
|ϋ ∈ U

}
given as following:

Θ̃1
p
⋂

Θ̃2
p =

{
〈ϋ, min

[
p_
TΘ1 (ϋ)

_

TΘ1 (ϋ) , p_
TΘ2 (ϋ)

_

TΘ2 (ϋ)

]
,

max
[
p_
IΘ1 (ϋ)

_

IΘ1 (ϋ) , p_
IΘ2 (ϋ)

_

IΘ2 (ϋ)

]
, max

[
p_
F Θ1 (ϋ)

_

F Θ1 (ϋ) , p_
F Θ2 (ϋ)

_

F Θ2 (ϋ)

]〉}
.

Example 3.8. Assume that the following two PSVNSs

Θ̃1
p =


〈
ε̈1, (.3 (.8) , .9 (.6) , .2 (.7))

〉〈
ε̈2, (.7 (.1) , .8 (.6) , .3 (.9))

〉〈
ε̈3, (.6 (.1) , .6 (.7) , .5 (.6))

〉

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and

Θ̃2
p =


〈
ε̈1, (.1 (.5) , .3 (.4) , .5 (.3))

〉〈
ε̈2, (.2 (.2) , .6 (.3) , .7 (.3))

〉〈
ε̈3, (.4 (.6) , .1 (.5) , .3 (.7))

〉


Then

Θ̃1
p

⋂
Θ̃2

p =


〈
ε̈1, (.1 (.5) , .9 (.6) , .5 (.7))

〉〈
ε̈2, (.2 (.2) , .8 (.6) , .7 (.9))

〉〈
ε̈3, (.4 (.1) , .6 (.7) , .5 (.7))

〉


Proposition 3.3. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
Ö2

p =
{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
and

Ö3
p =

{〈
ε,

(
pT̈Ö3

T̈Ö2

)
(ε) ,

(
pÏÖ3

ÏÖ3

)
(ε) ,

(
pF̈Ö3

F̈Ö3

)
(ε)

〉
|ε ∈ V

}
be three PSVNSs on V. Then a following

points are satisfied:
(i.) Ö1

p ∩ Öφ
p = Öφ

p ∩ Ö1
p = Öφ

p

(ii.) Ö1
p ∩ ÖV

p = ÖV
p ∩ Ö1

p = Ö1
p

(iii.) Ö1
p ∩ Ö2

p = Ö2
p ∩ Ö1

p

(iv.) Ö1
p ∩

(
Ö2

p ∩ Ö3
p

)
=

(
Ö1

p ∩ Ö2
p

)
∩ Ö3

p

Proof. Direct depending on the definition 3.8 �

Proposition 3.4. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
and

Ö2
p =

{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
be two PSVNSs on V. Then a following

points are satisfied the De Morgan’s laws:
(i.)

(
Ö1

p ∪ Ö2
p

)c
=

(
Ö1

p

)c
∩

(
Ö2

p

)c
.

(ii.)
(
Ö1

p ∩ Ö2
p

)c
=

(
Ö1

p

)c
∪

(
Ö2

p

)c

Proof. Direct depending on the definition 3.7 and 3.8.

�

Proposition 3.5. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
Ö2

p =
{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
and

Ö3
p =

{〈
ε,

(
pT̈Ö3

T̈Ö2

)
(ε) ,

(
pÏÖ3

ÏÖ3

)
(ε) ,

(
pF̈Ö3

F̈Ö3

)
(ε)

〉
|ε ∈ V

}
be three PSVNSs on V. Then a following

points are satisfied:
(i.) Ö1

p ∪
(
Ö2

p ∩ Ö3
p

)
=

(
Ö1

p ∪ Ö2
p

)
∩

(
Ö1

p ∪ Ö3
p

)
.

(ii.) Ö1
p ∩

(
Ö2

p ∪ Ö3
p

)
=

(
Ö1

p ∩ Ö2
p

)
∪

(
Ö1

p ∩ Ö3
p

)
.

Proof. (i.) Take Ö1
p ∪

(
Ö2

p ∩ Ö3
p

)
and for all ε ∈ V, Then

W(Ö1
p∪(Ö2

p∩Ö3
p))

(ε) =∪
{
WÖ1

p(ε)
, W(Ö2

p(ε)∩Ö3
p(ε))

}
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= ∪
{
WÖ1

p(ε)
,∩

(
W(Ö2

p(ε))
, WÖ3

p(ε)

)}
=

{〈
ε, max

(
T̈Ö1

p(ε)
, min

(
T̈Ö2

p(ε)
, T̈Ö3

p(ε)

))
, min

(
ÏÖ1

p(ε)
, max

(
ÏÖ2

p(ε)
, ÏÖ3

p(ε)

))
, min

(
F̈Ö1

p(ε)
, max

(
F̈Ö2

p(ε)
, F̈Ö3

p(ε)

))〉 }
=

{〈
ε, min

(
, max

(
T̈Ö1

p(ε)
, T̈Ö2

p(ε)

)
, max

(
T̈Ö1

p(ε)
, T̈Ö3

p(ε)

))
,

max
(
min

(
ÏÖ1

p(ε)
, ÏÖ2

p(ε)

)
, min

(
ÏÖ1

p(ε)
, ÏÖ3

p(ε)

))
,

max
(
min

(
F̈Ö1

p(ε)
, F̈Ö2

p(ε)

)
, min

(
F̈Ö1

p(ε)
, F̈Ö3

p(ε)

))〉}
= ∩

(
∪

(
W(Ö1

p(ε)∪Ö2
p(ε))

, W(Ö1
p(ε)∪Ö3

p(ε))

))
= W(Ö1

p(ε)∪Ö2
p(ε))∩(Ö1

p(ε)∪Ö3
p(ε))

=
(
Ö1

p ∪ Ö2
p

)
∩

(
Ö1

p ∪ Ö3
p

)
.

The Proof for the second (ii) is similar to the first (i).

�

Definition 3.9. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
and

Ö2
p =

{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
be two PSVNSs on V. Then the ‘OR’

product between PSVNSs Ö1
p and Ö2

p denotes as Ö1
p∨ Ö2

p and given by following formalh:

Ö1
p ∨ Ö2

p =
{〈
ε,

((
pT̈Ö1

T̈Ö1

)
∨

(
pT̈Ö2

T̈Ö2

))
(ε) ,

((
pÏÖ1

ÏÖ1

)
∧

(
pÏÖ2

ÏÖ2

))
(ε) ,((

pF̈Ö1
F̈Ö1

)
∧

(
pF̈Ö2

F̈Ö2

))
(ε)

〉}
.

Definition 3.10. Let Ö1
p =

{〈
ε,

(
pT̈Ö1

T̈Ö1

)
(ε) ,

(
pÏÖ1

ÏÖ1

)
(ε) ,

(
pF̈Ö1

F̈Ö1

)
(ε)

〉
|ε ∈ V

}
and

Ö2
p =

{〈
ε,

(
pT̈Ö2

T̈Ö2

)
(ε) ,

(
pÏÖ2

ÏÖ2

)
(ε) ,

(
pF̈Ö2

F̈Ö2

)
(ε)

〉
|ε ∈ V

}
be two PSVNSs on V. Then the ‘AND’

product between PSVNSs Ö1
p and Ö2

p denotes as Ö1
p∧ Ö2

p and given by following formalh:

Ö1
p ∧ Ö2

p =
{〈
ε,

((
pT̈Ö1

T̈Ö1

)
∧

(
pT̈Ö2

T̈Ö2

))
(ε) ,

((
pÏÖ1

ÏÖ1

)
∨

(
pÏÖ2

ÏÖ2

))
(ε) ,((

pF̈Ö1
F̈Ö1

)
∨

(
pF̈Ö2

F̈Ö2

))
(ε)

〉}
.

4. Noval similarity measures between PSVN-sets

In this section, we will explore the idea of a similarity measure between PSVNSs, which is

organized as follows.

Definition 4.1. Suppose that Ö1
p =

{〈
ε,

(
pT̈Ö1

p
T̈Ö1

)
(ε) ,

(
pÏÖ1

p
ÏÖ1

)
(ε) ,

(
pF̈Ö1

p
F̈Ö1

)
(ε)

〉
|ε ∈ V

}
and Ö2

p ={〈
ε,

(
pT̈Ö2

p
T̈Ö2

)
(ε) ,

(
pÏÖ2

p
ÏÖ2

)
(ε) ,

(
pF̈Ö2

p
F̈Ö2

)
(ε)

〉
|ε ∈ V

}
be two PSVNSs on V. Then the similarity mea-

sure (SM) between two component PSVNSs Ö1
p and Ö2

p is indicate by

SM
(
Ö1

p, Ö2
p

)
and given as the following formalh:
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SM
(
Ö1

p, Ö2
p

)
=

A1

(
Ö1

p, Ö2
p

)
+ A2

(
Ö1

p, Ö2
p

)
+ A3

(
Ö1

p, Ö2
p

)
3

Where

A1

(
Ö1

p, Ö2
p

)
=

n∑
i=1

(
pT̈Ö1

p
T̈Ö1 (εi)

) (
pT̈Ö2

p
T̈Ö2 (εi)

)
n∑

i=1

1−
√1− (

pT̈Ö1
p
T̈Ö1 (εi)

)2 .

1− (
pT̈Ö2

p
T̈Ö2 (εi)

)2


A2

(
Ö1

p, Ö2
p

)
=

n∑
i=1

(
pÏÖ1

p
ÏÖ1 (εi)

) (
pÏÖ2

p
ÏÖ2 (εi)

)
n∑

i=1

1−
√(1− (

pÏÖ1
p
ÏÖ1 (εi)

)2 .

1− (
pÏÖ1

p
ÏÖ2 (εi)

)2


A3

(
Ö1

p, Ö2
p

)
=

√√√√√√√√√√√√√√√√√√1−

n∑
i=1

∣∣∣∣∣∣∣
(
pF̈Ö1

p
F̈Ö1 (εi)

)2

−

(
pF̈Ö2

p
F̈Ö2 (εi)

)2
∣∣∣∣∣∣∣

n∑
i=1

1 +

(pF̈Ö1
p
F̈Ö1 (εi)

)2

.
(
pF̈Ö2

p
F̈Ö2 (εi)

)2
Proposition 4.1. Assume that Ö1

p, Ö2
p and Ö3

p be three PSVNSs on V. Then a following points are satisfied

(i.) SM
(
Ö1

p, Ö2
p

)
= SM

(
Ö2

p, Ö1
p

)
.

(ii.) 0≤SM
(
Ö1

p, Ö2
p

)
≤1.

(iii.) If Ö1
p = Ö2

p then SM
(
Ö1

p, Ö2
p

)
= 1.

(vi.) Ö1
p ⊆ Ö2

p ⊆ Ö3
p then SM

(
Ö1

p, Ö3
p

)
≤ SM

(
Ö2

p, Ö3
p

)
.

(vii.) Ö1
p ∩ Ö2

p = φ then SM
(
Ö1

p, Ö2
p

)
= 0.

Proof. The proofs (i), (ii) and (v) are clear. Now we will proof (iii).

Suppose that Ö1
p = Ö2

p and T.P SM
(
Ö1

p, Ö2
p

)
= 1 implies

That mean we have

pT̈Ö1
p
T̈Ö1 (εi) = pT̈Ö2

p
T̈Ö2 (εi) , pÏÖ1

p
ÏÖ1 (εi) = pÏÖ2

p
ÏÖ2 (εi) , and pF̈Ö1

p
F̈Ö1 (εi) = pF̈Ö2

p
F̈Ö2 (εi)

A1

(
Ö1

p, Ö2
p

)
=

n∑
i=1

(
pT̈Ö1

p
T̈Ö1 (εi)

)2

n∑
i=1

1−

1− (
pT̈Ö1

p
T̈Ö1 (εi)

)2
=

n∑
i=1

(
pT̈Ö1

p
T̈Ö1 (εi)

)2

n∑
i=1

(
pT̈Ö1

p
T̈Ö1 (εi)

)2 = 1

A2

(
Ö1

p, Ö2
p

)
=

n∑
i=1

(
pÏÖ1

p
ÏÖ1 (εi)

)2

n∑
i=1

1−

1− (
pÏÖ1

p
ÏÖ1 (εi)

)2
=

n∑
i=1

(
pÏÖ1

p
ÏÖ1 (εi)

)2

n∑
i=1

(
pÏÖ1

p
ÏÖ1 (εi)

)2 = 1

A3

(
Ö1

p, Ö2
p

)
=
√

1− 0 = 1
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Thus, we get

SM
(
Ö1

p, Ö2
p

)
=

1 + 1 + 1
3

= 1

(vi) Clearly, pT̈Ö1
p
T̈Ö1 (εi) .pT̈Ö3

p
T̈Ö3 (εi) ≤ pT̈Ö2

p
T̈Ö2 (εi) .pT̈Ö3

p
T̈Ö3 (εi)

implies that ∑n

i=1
pT̈Ö1

p
T̈Ö1 (εi) .pT̈Ö3

p
T̈Ö3 (εi) ≤

∑n

i=1
pT̈Ö2

p
T̈Ö2 (εi) .pT̈Ö3

p
T̈Ö3 (εi)(

pT̈Ö1
p
T̈Ö1 (εi)

)2

≤

(
pT̈Ö2

p
T̈Ö2 (εi)

)2

implies that −
(
pT̈Ö1

p
T̈Ö1 (εi)

)2

≥ −

(
pT̈Ö2

p
T̈Ö2 (εi)

)2

and 1−
(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2 ≥ 1−
(
pT̈Ö2

p
T̈Ö2 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2√1−
(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2 ≥
√1−

(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö2

p
T̈Ö2 (εi)

)2
1−

√1−
(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2 ≤ 1−

√1−
(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö2

p
T̈Ö2 (εi)

)2
and∑n

i=1 1−

√1−
(
pT̈Ö1

p
T̈Ö1 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2 ≤
∑n

i=1 1−

√1−
(
pT̈Ö2

p
T̈Ö2 (εi)

)2 .

1−
(
pT̈Ö3

p
T̈Ö3 (εi)

)2
from above, we get

n∑
i=1

pT̈
Ö1

p
T̈Ö1 (εi)


pT̈

Ö3
p

T̈Ö3 (εi)


n∑

i=1

1−

√√√
1−

pT̈
Ö1

p
T̈Ö1 (εi)


2.

1−

pT̈
Ö3

p
T̈Ö3 (εi)


2



≤

n∑
i=1

pT̈
Ö2

p
T̈Ö2 (εi)


pT̈

Ö3
p

T̈Ö3 (εi)


n∑

i=1

1−

√√√
1−

pT̈
Ö2

p
T̈Ö2 (εi)


2.

1−

pT̈
Ö3

p
T̈Ö3 (εi)


2




The rest of the terms can be treated in the same way, and thus we get:

SM
(
Ö1

p, Ö3
p

)
≤ SM

(
Ö2

p, Ö3
p

)
. �

Example 4.1. Assume that the following two PSVNSs

Θ̃1
p =


〈
ε̈1, (.3 (.8) , .9 (.6) , .2 (.7))

〉〈
ε̈2, (.7 (.1) , .8 (.6) , .3 (.9))

〉〈
ε̈3, (.6 (.1) , .6 (.7) , .5 (.6))

〉

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and

Θ̃2
p =


〈
ε̈1, (.1 (.5) , .3 (.4) , .5 (.3))

〉〈
ε̈2, (.2 (.2) , .6 (.3) , .7 (.3))

〉〈
ε̈3, (.4 (.6) , .1 (.5) , .3 (.7))

〉


Then, the similarity measure between the two PSVNSs calculate as following:

A1

(
Ö1

p, Ö2
p

)
=

(.3×.8)(.1×.5)+(.7×.1)(.2×.2)+(.6×.1)(.4×.6)

1−
(√

(0.9424)(0.9975)
)
+1−

(√
(0.9951)(0.9984)

)
+1−

(√
(0.9964)(0.9424)

) = 0.0292
0.09792 = 0.2982

A2

(
Ö1

p, Ö2
p

)
=

(.9×.6)(.3×.4)+(.8×.6)(.6×.3)+(.6×.7)(.1×.5)

1−
(√

(0.8354)(0.6438)
)
+1−

(√
(0.9632)(0.9972)

)
+1−

(√
(0.8598)(0.9972)

) = 0.1722
0.5082 = 0.3388

A3

(
Ö1

p, Ö2
p

)
=

√
1−

∣∣∣(.2×.7)2
−(.5×.3)2∣∣∣+∣∣∣(.3×.9)2

−(.7×.3)2∣∣∣+∣∣∣(.5×.6)2
−(.3×.7)2∣∣∣

1+((.2×.7)2
×(.5×.3)2+(.3×.9)2

×(.7×.3)2+(.5×.6)2
×(.3×.7)2)

=
√

1− 0.0972
1.0076 = 0.9505

Then,

SM
(
Ö1

p, Ö2
p

)
=

0.2982 + 0.3388 + 0.9505
3

= 0.5292

.
Therefor, the similarity degree between the two PSVNSs Ö1

p, Ö2
p is 0.5292.

5. Application

In various fields of life, such as education, politics, management, and economics, users face

difficulties in making decisions among a number of available options. For example, in the field of

education, there is confusion or hesitation in choosing the best academic program among many.

Accordingly, numerous studies have been conducted on the influential criteria that parents rely

on when choosing educational programs for their newly graduated children from middle school.

The influencing factors can be divided into the academic reputation of the university campus,

academic quality, the financial cost of the academic program, and employment opportunities. To

clarify this context, we will present a scenario in this section that illustrates this problem, and we

will employ our proposed concept in this work to solve it.

Example 5.1. Alex recently completed his high school education with a GPA of 95, which qualified him to
enter many available colleges. Here, Alex entered an internal conflict about choosing the appropriate college.
In order to help him, the family sat down and began discussing the options that Alex was considering
in order to help him choose according to specific criteria. Therefore, in order to solve this problem and
gives their helps to Alex they are using our proposed concept, we assume that these colleges are as follows:
ε1 = College o f Medicine, ε2 = College o f Dentistry and ε3 = College o f Arti f icial Intelligence. As for
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the criteria, they are as follows: γ1 = Quality, γ2 = Studycost, and γ3 = Job opportunities. Therefor the
following PSVNSs shows the numerical analysis in line with our proposed concept of the family’s opinions
and suggestions according to the choices and criteria mentioned above.

Ö1
p (ε1) =


〈
γ1, (.3) .8, (.9) .6, (.1) .4

〉〈
γ2, (.5) .2, (.6) .3, (.7) .2

〉〈
γ3, (.2) .6, (.4) .9, (.6) .7

〉


Ö2
p (ε2) =


〈
γ1, (.1) .4, (.7) .2, (.8) .3

〉〈
γ2, (.5) .2, (.8) .4, (.2) .1

〉〈
γ3, (.2) .6, (.8) .7, (.4) .3

〉


Ö3
p (ε3) =


〈
γ1, (.6) .8, (.9) .1, (.2) .1

〉〈
γ2, (.8) .2, (.4) .5, (.3) .6

〉〈
γ3, (.2) .4, (.2) .7, (.6) .8

〉


Now we work on finding the SM between each of the three models Ö1
p, Ö2

p and Ö3
p shown above

and the standard solution shown in Ö4
p:

Ö4
p (εi) =


〈
γ1, (1) 1, (1) 1, (1) 1

〉〈
γ2, (1) 1, (1) 1, (1) 1

〉〈
γ3, (1) 1, (1) 1, (1) 1

〉


Using the methods shown in Example 4.1, we obtain:

SM
(
Ö1

p, Ö4
p

)
= 0, 463, SM

(
Ö2

p, Ö4
p

)
= 0, 628, SM

(
Ö3

p, Ö4
p

)
= 0, 842

Therefore, the relative choice is ε3 = College o f Arti f icial Intelligence.

6. Conclusion

The primary goal of this study is to present a possibility single neutrosophic set (PSVNS) as a

new methodology that differs from current methods to solve the phenomena related to decision-

making that involve uncertainty issues. As a result, the elementary notion of possibility single

neutrosophic set is proposed, and some of its primary properties, i.e., subset, null set, absolute set,

and complement, are explored, as well as some numerical examples that explain the mechanism of

the obtained results. Secondly, the basic set-theoretic operations i.e., such as extended union, the

intersection of two PSVNSs, and the complement operation of PSVNS, as well as some relevant

properties, are investigated, and numerical examples are provided to illustrate the mechanism

behind these results. Lastly, the above discussion has an important point in influence on the

similarity measure; therefore, the similarity measure between two PSVNSs is characterized with

the help of an example. This technique of similarity measure is successfully used in decision-

making to judge the appropriate college according to specific criteria.
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